Narcotic Nitrogen Effects Persist after a Simulated Deep Dive
Abstract
1. Introduction
2. Methods
Statistics
3. Results
4. Discussion
4.1. Study Limitations
4.2. Sharpened Romberg Test (SRT)
4.3. Modified Tweezers Test
4.4. Oxygen vs. Nitrogen Effects
4.5. Fatigue
5. Summary/Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behnke, A.R.; Thomson, R.M.; Motley, E.P. The psychologic effects from breathing air at 4 atmospheres pressure. Am. J. Physiol. 1935, 112, 554–558. [Google Scholar] [CrossRef]
- Colladon, M. Relation d’une Descente en Mer dans la Cloche du Plongeur; Dondey-Dupré: Paris, France, 1826. [Google Scholar]
- Balestra, C.; Lafère, P.; Germonpré, P. Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: Evidence of prolonged nitrogen narcosis? Eur. J. Appl. Physiol. 2012, 112, 4063–4068. [Google Scholar] [CrossRef] [PubMed]
- Rostain, J.C.; Lavoute, C.; Risso, J.J.; Vallée, N.; Weiss, M. A review of recent neurochemical data on inert gas narcosis. Undersea Hyperb. Med. 2011, 38, 49–59. [Google Scholar] [PubMed]
- Hobbs, M. Subjective and behavioral responses to nitrogen narcosis and alcohol. Undersea Hyperb. Med. 2008, 35, 175–184. [Google Scholar] [PubMed]
- Monteiro, M.G.; Hernandez, W.; Figlie, N.B.; Takahashi, E.; Korukian, M. Comparison between subjective feelings to alcohol and nitrogen narcosis: A pilot study. Alcohol 1996, 13, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Pendergast, D.R.; Senf, C.J.; Fletcher, M.C.; Lundgren, C.E.G. Effects of ambient temperature on nitrogen uptake and elimination in humans. Undersea Hyperb. Med. 2015, 42, 85–94. [Google Scholar]
- Thom, S.R.; Milovanova, T.N.; Bogush, M.; Yang, M.; Bhopale, V.M.; Pollock, N.W.; Ljubkovic, M.; Denoble, P.; Madden, D.; Lozo, M.; et al. Bubbles, microparticles, and neutrophil activation: Changes with exercise level and breathing gas during open-water SCUBA diving. J. Appl. Physiol. 2013, 114, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Møllerløkken, A.; Breskovic, T.; Palada, I.; Valic, Z.; Dujic, Z.; Brubakk, A.O. Observation of increased venous gas emboli after wet dives compared to dry dives. Diving Hyperb. Med. 2011, 41, 124–128. [Google Scholar]
- Masurel, G.; Guillerm, R.; Cavenel, P. Détection ultrasonore par effet Doppler de bulles circulantes chez l’homme lors de 98 plongées à l’air. Méd. Aero. Spat. Méd. Sub. Hyp. 1976, 156, 199–202. [Google Scholar]
- Boussuges, A.; Retali, G.; Bodéré-Melin, M.; Gardette, B.; Carturan, D. Gender differences in circulating bubble production after SCUBA diving. Clin. Physiol. Funct. Imaging 2009, 29, 400–405. [Google Scholar] [CrossRef]
- Davis, C. Narked, how often has it happened to you? DeeperBlue 2017. [Google Scholar]
- Karakaya, H.; Aksu, S.; Egi, S.M.; Aydin, S.; Uslu, A. Effects of Hyperbaric Nitrogen Narcosis on Cognitive Performance in Recreational air SCUBA Divers: An Auditory Event-related Brain Potentials Study. Ann. Work. Expo. Health 2021, 65, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Khasnis, A.; Gokula, R.M. Romberg’s test. J. Postgrad. Med. 2003, 49, 169–172. [Google Scholar]
- Neurologie; Masuhr, K.F., Neumann, M., Pfiester, P., Eds.; Duale Reihe; 4., [überarb.] Aufl., mit Fallbeispiel-CD-ROM; Hippokrates-Verl: Stuttgart, Germany, 1998; ISBN 978-3-7773-1334-4. [Google Scholar]
- Dubey, Y.; Gujer, H.R. Alcohol intoxication at the wheel in the Waadt canton (Switzerland).A comparative study of penal and administrative measures 1970 and 1989 in the canton capital city (Lausanne) and a rural area. Blutalkohol 1993, 30, 266–289. [Google Scholar] [PubMed]
- Newmeyer, M.N.; Swortwood, M.J.; Taylor, M.E.; Abulseoud, O.A.; Woodward, T.H.; Huestis, M.A. Evaluation of divided attention psychophysical task performance and effects on pupil sizes following smoked, vaporized and oral cannabis administration: Performance on psychophysical tasks after inhaled and oral cannabis. J. Appl. Toxicol. 2017, 37, 922–932. [Google Scholar] [CrossRef]
- Hedetoft, M.; Hyldegaard, O. Postural stability in patients with decompression sickness evaluated by means of Quantitative Romberg testing. Undersea Hyperb. Med. 2015, 42, 389–398. [Google Scholar] [PubMed]
- Panjan, A.; Sarabon, N. Review of Methods for the Evaluation of Human Body Balance. Sport Sci. Rev. 2010, 19, 131–163. [Google Scholar] [CrossRef]
- Lugassy, D.; Levanon, Y.; Pilo, R.; Shelly, A.; Rosen, G.; Meirowitz, A.; Brosh, T. Predicting the clinical performance of dental students with a manual dexterity test. PLoS ONE 2018, 13, e0193980. [Google Scholar] [CrossRef] [PubMed]
- Ghasemloonia, A.; Maddahi, Y.; Zareinia, K.; Lama, S.; Dort, J.C.; Sutherland, G.R. Surgical Skill Assessment Using Motion Quality and Smoothness. J. Surg. Educ. 2017, 74, 295–305. [Google Scholar] [CrossRef]
- Baddeley, A.D.; De Figueredo, J.W.; Curtis, J.W.; Williams, A.N. Nitrogen narcosis and performance under water. Ergonomics 1968, 11, 157–164. [Google Scholar] [CrossRef]
- Kneller, W.; Higham, P.; Hobbs, M. Measuring manual dexterity and anxiety in divers using a novel task at 35–41 m. Aviat. Space Environ. Med. 2012, 83, 54–57. [Google Scholar] [CrossRef] [PubMed]
- O’Connor Tweezer Dexterity Test. Medical Dictionary. 2009. Available online: https://medical-dictionary.thefreedictionary.com/O%27Connor+Tweezer+Dexterity+Test (accessed on 25 September 2021).
- Bundesamt für Justiz Verordnung über Arbeiten in Druckluft (DruckLV). 2017. Available online: https://www.gesetze-im-internet.de/drucklv/DruckLV.pdf (accessed on 20 February 2020).
- Ferguson, K.E.; Iverson, G.L. Qualified Examiner. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011; pp. 2095–2097. ISBN 978-0-387-79947-6. [Google Scholar]
- Seeman, T.E.; Charpentier, P.A.; Berkman, L.F.; Tinetti, M.E.; Guralnik, J.M.; Albert, M.; Blazer, D.; Rowe, J.W. Predicting Changes in Physical Performance in a High-Functioning Elderly Cohort: MacArthur Studies of Successful Aging. J. Gerontol. 1994, 49, M97–M108. [Google Scholar] [CrossRef]
- Fitzgerald, B. A review of the sharpened Romberg test in diving medicine. SPUMS J 1996, 26, 142–146. [Google Scholar] [PubMed]
- Lee, C.T. Sharpening the Sharpened Romberg. SPUMS J 1998, 28, 125–132. [Google Scholar]
- Sarabon, N.; Mlaker, B.; Markovic, G. A novel tool for the assessment of dynamic balance in healthy individuals. Gait Posture 2010, 31, 261–264. [Google Scholar] [CrossRef]
- Harrison, L.M.; Mayston, M.J.; Johansson, R.S. Reactive control of precision grip does not depend on fast transcortical reflex pathways in X-linked Kallmann subjects. J. Physiol. 2000, 527, 641–652. [Google Scholar] [CrossRef]
- Park, W.-H.; Leonard, C.T. The effect of intervening forces on finger force perception. Neurosci. Lett. 2008, 438, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Germonpre, P.; Balestra, C.; Hemelryck, W.; Buzzacott, P.; Lafere, P. Objective vs. Subjective Evaluation of Cognitive Performance During 0.4-MPa Dives Breathing Air or Nitrox. Aerosp. Med. Hum. Perform. 2017, 88, 469–475. [Google Scholar] [CrossRef]
- Hain, T.C. Approach to the patient with dizziness and vertigo. In Practical Neurology; Lipincott Raven Publishers: Philadelphia, PA, USA, 1997; p. 159. ISBN 978-1-4511-4263-1. [Google Scholar]
- Friello, P.; Silver, N.; Sangi-Haghpeykar, H.; Cohen, H.S. Screening for balance in children and adults in a community science education setting: Normative data, influence of age, sex, and body mass index, and feasibility. PLoS ONE 2022, 17, e0268030. [Google Scholar] [CrossRef]
- Dannenbaum, E.; Romberg Test. Shirley Ryan AbilityLab. 2013. Available online: www.sralab.org/rehabilitation-measures/romberg-test (accessed on 6 June 2021).
- Hain, T.C.; Romberg Test for Imbalance. Dizziness-and-balance.com. 2021. Available online: https://dizziness-and-balance.com/practice/Romberg_test.html (accessed on 6 June 2021).
- Pontier, J.-M.; Buzzacott, P.; Nastorg, J.; Dinh-Xuan, A.T.; Lambrechts, K. Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans? Nitric Oxide 2014, 39, 29–34. [Google Scholar] [CrossRef]
- Lafere, P.; Balestra, C.; Hemelryck, W.; Donda, N.; Sakr, A.; Taher, A.; Marroni, S.; Germonpre, P. Evaluation of critical flicker fusion frequency and perceived fatigue in divers after air and enriched air nitrox diving. Diving Hyperb. Med. 2010, 40, 114–118. [Google Scholar] [PubMed]
- Frankenhaeuser, M.; Graff-Lonnevig, V.; Hesser, C.M. Effects on Psychomotor Functions of Different Nitrogen-Oxygen Gas Mixtures at Increased Ambient Pressures. Acta Physiol. Scand. 1963, 59, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.B.; Moss, M.C.; Neave, N.; Wesnes, K. Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiol. Behav. 1999, 67, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Vadas, D.; Kalichman, L.; Hadanny, A.; Efrati, S. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance. Front. Integr. Neurosci. 2017, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Brebeck, A.-K.; Deussen, A.; Schmitz-Peiffer, H.; Range, U.; Balestra, C.; Cleveland, S.; Schipke, J.D. Effects of oxygen-enriched air on cognitive performance during SCUBA-diving—an open-water study. Res. Sports Med. 2017, 25, 345–356. [Google Scholar] [CrossRef]
- Lafère, P.; Hemelryck, W.; Germonpré, P.; Matity, L.; Guerrero, F.; Balestra, C. Early detection of diving-related cognitive impairment of different nitrogen-oxygen gas mixtures using critical flicker fusion frequency. Diving Hyperb. Med. 2019, 49, 119–126. [Google Scholar] [CrossRef]
- Paton, W. Diver narcosis, from man to cell membrane. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), Providence, RI, USA, 11–14 September 2000. [Google Scholar] [CrossRef]
Air-Group n = 58 | O2-Group n = 28 | p | ||
---|---|---|---|---|
age | [years] | 30 (21–54) | 38 (26–58) | <0.05 |
height | [cm] | 184 ± 8 | 182 ± 7 | n.s. |
body mass | [kg] | 87 ± 10.9 | 89 ± 11.1 | n.s. |
BMI | [kg/m2] | 26.0 ± 2.6 | 27.5 ± 3.6 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreyer, S.; Schneppendahl, J.; Hoffmanns, M.; Muth, T.; Schipke, J.D. Narcotic Nitrogen Effects Persist after a Simulated Deep Dive. Medicina 2024, 60, 1083. https://doi.org/10.3390/medicina60071083
Dreyer S, Schneppendahl J, Hoffmanns M, Muth T, Schipke JD. Narcotic Nitrogen Effects Persist after a Simulated Deep Dive. Medicina. 2024; 60(7):1083. https://doi.org/10.3390/medicina60071083
Chicago/Turabian StyleDreyer, Sven, Johannes Schneppendahl, Martin Hoffmanns, Thomas Muth, and Jochen D. Schipke. 2024. "Narcotic Nitrogen Effects Persist after a Simulated Deep Dive" Medicina 60, no. 7: 1083. https://doi.org/10.3390/medicina60071083
APA StyleDreyer, S., Schneppendahl, J., Hoffmanns, M., Muth, T., & Schipke, J. D. (2024). Narcotic Nitrogen Effects Persist after a Simulated Deep Dive. Medicina, 60(7), 1083. https://doi.org/10.3390/medicina60071083