Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Present Study with Gingiva-Derived Mesenchymal Stem Cells and Fabrication of Stem Cell Spheroids
2.2. Determination of Qualitative and Quantitative Cell Viability
2.3. Total RNA Extraction and Quantification of RUNX2 and COL1A1 mRNA by Real-Time Quantitative Polymerase Chain Reaction (qPCR)
2.4. Statistical Analysis
3. Results
3.1. Cell Spheroids of Human Gingiva-Derived Mesenchymal Stem Cells
3.2. Qualitative Determination and Quantitative Values of Cellular Viability
3.3. Evaluations of RUNX2 and COL1A1 by qPCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.; Jeong, S.; Nam, Y.H.; Yum, Y.; Jung, S.C. Transplantation of Differentiated Tonsil-Derived Mesenchymal Stem Cells Ameliorates Murine Duchenne Muscular Dystrophy via Autophagy Activation. Tissue Eng. Regen. Med. 2022, 19, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, L.; Dong, W.; Du, G.; Dang, X. Effect of Urolithin A on Bone Repair in Mice with Bone Defects. Tissue Eng. Regen. Med. 2022, 19, 151–159. [Google Scholar] [CrossRef]
- Poulos, J. The limited application of stem cells in medicine: A review. Stem Cell Res. Ther. 2018, 9, 1. [Google Scholar] [CrossRef]
- Nava, M.M.; Raimondi, M.T.; Pietrabissa, R. Controlling self-renewal and differentiation of stem cells via mechanical cues. J. Biomed. Biotechnol. 2012, 2012, 797410. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Kim, I.; Lee, W.; Kim, H. Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model. J. Periodontal Implant Sci. 2023, 53, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Cheng, T.S.; Liao, H.J.; Chuang, M.H.; Chen, H.T.; Chen, C.H.; Zhang, K.L.; Chang, C.H.; Lin, P.C.; Huang, C.F. Mesenchymal Stem Cell Secreted-Extracellular Vesicles are Involved in Chondrocyte Production and Reduce Adipogenesis during Stem Cell Differentiation. Tissue Eng. Regen. Med. 2022, 19, 1295–1310. [Google Scholar] [CrossRef]
- Raik, S.; Thakur, R.; Rattan, V.; Kumar, N.; Pal, A.; Bhattacharyya, S. Temporal Modulation of DNA Methylation and Gene Expression in Monolayer and 3D Spheroids of Dental Pulp Stem Cells during Osteogenic Differentiation: A Comparative Study. Tissue Eng. Regen. Med. 2022, 19, 1267–1282. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Zhao, Y.; Gao, X.; Zhu, Z.; Mao, Y.; Qian, T. Graded-Three-Dimensional Cell-Encapsulating Hydrogel as a Potential Biologic Scaffold for Disc Tissue Engineering. Tissue Eng. Regen. Med. 2022, 19, 1001–1012. [Google Scholar] [CrossRef]
- Mack, D.L.; Guan, X.; Wagoner, A.; Walker, S.J.; Childers, M.K. Disease-in-a-dish: The contribution of patient-specific induced pluripotent stem cell technology to regenerative rehabilitation. Am. J. Phys. Med. Rehabil. 2014, 93, S155–S168. [Google Scholar] [CrossRef]
- Tong, Y.W.; Chen, A.C.; Lei, K.F. Analysis of Cellular Crosstalk and Molecular Signal between Periosteum-Derived Precursor Cells and Peripheral Cells During Bone Healing Process Using a Paper-Based Osteogenesis-On-A-Chip Platform. ACS Appl. Mater. Interfaces 2023, 15, 49051–49059. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Kim, D.; Lee, A.E.; Xu, Q.; Zhang, Q.; Le, A.D. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine—A Comprehensive Review. Front. Immunol. 2021, 12, 667221. [Google Scholar] [CrossRef]
- Grawish, M.E. Gingival-derived mesenchymal stem cells: An endless resource for regenerative dentistry. World J. Stem Cells 2018, 10, 116–118. [Google Scholar] [CrossRef]
- Yang, H.; Gao, L.N.; An, Y.; Hu, C.H.; Jin, F.; Zhou, J.; Jin, Y.; Chen, F.M. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 2013, 34, 7033–7047. [Google Scholar] [CrossRef]
- Dave, J.R.; Chandekar, S.S.; Behera, S.; Desai, K.U.; Salve, P.M.; Sapkal, N.B.; Mhaske, S.T.; Dewle, A.M.; Pokare, P.S.; Page, M.; et al. Human gingival mesenchymal stem cells retain their growth and immunomodulatory characteristics independent of donor age. Sci. Adv. 2022, 8, eabm6504. [Google Scholar] [CrossRef]
- Angelopoulos, I.; Brizuela, C.; Khoury, M. Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential. Cell Transplant. 2018, 27, 967–978. [Google Scholar] [CrossRef]
- Fonticoli, L.; Della Rocca, Y.; Rajan, T.S.; Murmura, G.; Trubiani, O.; Oliva, S.; Pizzicannella, J.; Marconi, G.D.; Diomede, F. A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 4135. [Google Scholar] [CrossRef]
- Balaban, Y.E.; Akbaba, S.; Bozkurt, S.B.; Buyuksungur, A.; Akgun, E.E.; Gonen, Z.B.; Salkin, H.; Tezcaner, A.; Hakki, S.S. Local application of gingiva-derived mesenchymal stem cells on experimental periodontitis in rats. J. Periodontol. 2023, in press. [Google Scholar] [CrossRef]
- Cooper, B.L.; Salameh, S.; Posnack, N.G. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. bioRxiv 2023. [Google Scholar] [CrossRef]
- Hasan, A.S.; Luo, L.; Baba, S.; Li, T.S. Estrogen is required for maintaining the quality of cardiac stem cells. PLoS ONE 2021, 16, e0245166. [Google Scholar] [CrossRef]
- Zhao, G.; Li, X.; Miao, H.; Chen, S.; Hou, Y. Estrogen Promotes cAMP Production in Mesenchymal Stem Cells by Regulating ADCY2. Int. J. Stem Cells 2020, 13, 55–64. [Google Scholar] [CrossRef]
- Liu, W.; Huang, Y.; Liu, D.; Zeng, T.; Wang, J.; Li, A.; Wang, D.; Wang, X. The Combination of Platelet Rich Plasma Gel, Human Umbilical Mesenchymal Stem Cells and Nanohydroxyapatite/polyamide 66 Promotes Angiogenesis and Bone Regeneration in Large Bone Defect. Tissue Eng. Regen. Med. 2022, 19, 1321–1336. [Google Scholar] [CrossRef]
- Song, J.H.; Oh, S.Y.; Jo, S.A. Basic Fibroblast Growth Factor Induces Cholinergic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Tissue Eng. Regen. Med. 2022, 19, 1063–1075. [Google Scholar] [CrossRef]
- Cho, S.H.; Shin, K.K.; Kim, S.Y.; Cho, M.Y.; Oh, D.B.; Lim, Y.T. In Situ-Forming Collagen/poly-γ-glutamic Acid Hydrogel System with Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 for Bone Tissue Regeneration in a Mouse Calvarial Bone Defect Model. Tissue Eng. Regen. Med. 2022, 19, 1099–1111. [Google Scholar] [CrossRef]
- Chaicharoenaudomrung, N.; Kunhorm, P.; Noisa, P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J. Stem Cells 2019, 11, 1065–1083. [Google Scholar] [CrossRef]
- Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef]
- Yen, B.L.; Hsieh, C.C.; Hsu, P.J.; Chang, C.C.; Wang, L.T.; Yen, M.L. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl. Med. 2023, 12, 235–244. [Google Scholar] [CrossRef]
- Białkowska, K.; Komorowski, P.; Bryszewska, M.; Miłowska, K. Spheroids as a Type of Three-Dimensional Cell Cultures-Examples of Methods of Preparation and the Most Important Application. Int. J. Mol. Sci. 2020, 21, 6225. [Google Scholar] [CrossRef]
- Hamilton, G.; Rath, B. Role of circulating tumor cell spheroids in drug resistance. Cancer Drug Resist. 2019, 2, 762–772. [Google Scholar] [CrossRef]
- Qiu, X.; Jin, X.; Shao, Z.; Zhao, X. 17β-estradiol induces the proliferation of hematopoietic stem cells by promoting the osteogenic differentiation of mesenchymal stem cells. Tohoku J. Exp. Med. 2014, 233, 141–148. [Google Scholar] [CrossRef]
- Jin, S.H.; Lee, J.E.; Yun, J.H.; Kim, I.; Ko, Y.; Park, J.B. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J. Periodontal Res. 2015, 50, 461–467. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, B.; Zhou, Z.; Hu, C.; Li, J.; Zhou, C. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells. Ann. Transplant. 2023, 28, e940365. [Google Scholar] [CrossRef]
- Hu, C.; He, S.; Lee, Y.J.; He, Y.; Kong, E.M.; Li, H.; Anastasio, M.A.; Popescu, G. Live-dead assay on unlabeled cells using phase imaging with computational specificity. Nat. Commun. 2022, 13, 713. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, C.; Jiang, L.; Zhu, X.; Zhou, F.; Xia, M.; Chen, Y. The bone mesenchymal stem cell-derived exosomal miR-146a-5p promotes diabetic wound healing in mice via macrophage M1/M2 polarization. Mol. Cell. Endocrinol. 2023, 579, 112089. [Google Scholar] [CrossRef]
- Tsunoi, Y.; Miyazaki, H.; Kawauchi, S.; Akagi, T.; Akashi, M.; Saitoh, D.; Sato, S. Viability Improvement of Three-Dimensional Human Skin Substitutes by Photobiomodulation during Cultivation. Photochem. Photobiol. 2022, 98, 1464–1470. [Google Scholar] [CrossRef]
- Xiao, J.; Gong, X.; Fu, Z.; Song, X.; Ma, Q.; Miao, J.; Cai, R.; Yan, Z.; Wang, S.; Li, Q.; et al. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res. Ther. 2023, 14, 334. [Google Scholar] [CrossRef]
- Geng, S.; Zhou, S.; Glowacki, J. Effects of 25-hydroxyvitamin D(3) on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1α-hydroxylase. J. Bone Miner. Res. 2011, 26, 1145–1153. [Google Scholar] [CrossRef]
- Han, J.; Han, S.C.; Jeong, H.J.; Rhee, S.M.; Kim, Y.S.; Jin, Y.J.; Park, S.H.; Oh, J.H. Recombinant Human Parathyroid Hormone Biocomposite Promotes Bone-to-Tendon Interface Healing by Enhancing Tenogenesis, Chondrogenesis, Osteogenesis in a Rabbit Model of Chronic Rotator Cuff Tears. Arthrosc. J. Arthrosc. Relat. Surg. 2023, in press. [Google Scholar] [CrossRef]
- Oh, J.Y.; Choi, G.E.; Lee, H.J.; Jung, Y.H.; Chae, C.W.; Kim, J.S.; Lee, C.K.; Han, H.J. 17β-Estradiol protects mesenchymal stem cells against high glucose-induced mitochondrial oxidants production via Nrf2/Sirt3/MnSOD signaling. Free Radic. Biol. Med. 2019, 130, 328–342. [Google Scholar] [CrossRef]
- Nakamura, T.; Imai, Y.; Matsumoto, T.; Sato, S.; Takeuchi, K.; Igarashi, K.; Harada, Y.; Azuma, Y.; Krust, A.; Yamamoto, Y.; et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 2007, 130, 811–823. [Google Scholar] [CrossRef]
- Barneze Costa, S.M.; da Silva Feltran, G.; Namba, V.; Silva, T.M.; Shetty Hallur, R.L.; Saraiva, P.P.; Zambuzzi, W.F.; Nogueira, C.R. Infraphysiological 17β-estradiol (E2) concentration compromises osteoblast differentiation through Src stimulation of cell proliferation and ECM remodeling stimulus. Mol. Cell. Endocrinol. 2020, 518, 111027. [Google Scholar] [CrossRef]
- Emmanuelle, N.E.; Marie-Cécile, V.; Florence, T.; Jean-François, A.; Françoise, L.; Coralie, F.; Alexia, V. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int. J. Mol. Sci. 2021, 22, 1568. [Google Scholar] [CrossRef]
- Li, Y.; Yan, M.; Wang, Z.; Zheng, Y.; Li, J.; Ma, S.; Liu, G.; Yu, J. 17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway. Stem Cell Res. Ther. 2014, 5, 125. [Google Scholar] [CrossRef]
- Irmak, G.; Demirtaş, T.T.; Çetin Altındal, D.; Çalış, M.; Gümüşderelioğlu, M. Sustained release of 17β-estradiol stimulates osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on chitosan-hydroxyapatite scaffolds. Cells Tissues Organs 2014, 199, 37–50. [Google Scholar] [CrossRef]
- Khalid, A.B.; Krum, S.A. Estrogen receptors alpha and beta in bone. Bone 2016, 87, 130–135. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Sun, C.; Wu, F. Identification of the occurrence and potential mechanisms of heterotopic ossification associated with 17-beta-estradiol targeting MKX by bioinformatics analysis and cellular experiments. PeerJ 2022, 9, e12696. [Google Scholar] [CrossRef]
- Yarmohammadi, R.; Ghollasi, M.; Kheirollahzadeh, F.; Soltanyzadeh, M.; Heshmati, M.; Amirkhani, M.A. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell. Dev. Biol. Anim. 2022, 58, 179–188. [Google Scholar] [CrossRef]
- Jahantigh, M.; Abtahi Froushani, S.M.; Afzale Ahangaran, N. Benefits of bone marrow-derived mesenchymal stem cells primed with estradiol in alleviating collagen-induced arthritis. Iran. J. Basic Med. Sci. 2023, 26, 400–407. [Google Scholar] [CrossRef]
- Franceschi, R.T.; Xiao, G. Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 2003, 88, 446–454. [Google Scholar] [CrossRef]
- Xiang, G.; Huang, L.; Zhang, X.; Wang, N.; Wang, H.; Mu, Y.; Li, K.; Liu, Z. Molecular Characteristics and Promoter Analysis of Porcine COL1A1. Genes 2022, 13, 1971. [Google Scholar] [CrossRef]
- Yang, R.; Li, J.; Zhang, J.; Xue, Q.; Qin, R.; Wang, R.; Goltzman, D.; Miao, D. 17β-estradiol plays the anti-osteoporosis role via a novel ESR1-Keap1-Nrf2 axis-mediated stress response activation and Tmem119 upregulation. Free Radic. Biol. Med. 2023, 195, 231–244. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Liu, D.; Li, Y.; He, J.; Shen, L. 17β-Estradiol promotes angiogenesis of bone marrow mesenchymal stem cells by upregulating the PI3K-Akt signaling pathway. Comput. Struct. Biotechnol. J. 2022, 20, 3864–3873. [Google Scholar] [CrossRef]
- Kang, S.; Bennett, C.N.; Gerin, I.; Rapp, L.A.; Hankenson, K.D.; Macdougald, O.A. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 2007, 282, 14515–14524. [Google Scholar] [CrossRef]
- Gray, T.K.; Flynn, T.C.; Gray, K.M.; Nabell, L.M. 17 beta-estradiol acts directly on the clonal osteoblastic cell line UMR106. Proc. Natl. Acad. Sci. USA 1987, 84, 6267–6271. [Google Scholar] [CrossRef]
- Greenwald, M.W.; Gluck, O.S.; Lang, E.; Rakov, V. Oral hormone therapy with 17beta-estradiol and 17beta-estradiol in combination with norethindrone acetate in the prevention of bone loss in early postmenopausal women: Dose-dependent effects. Menopause 2005, 12, 741–748. [Google Scholar] [CrossRef]
- Oh, J.S.; Kim, S.W.; Cho, H.J.; Kyong, Y.Y.; Oh, Y.M.; Choi, S.M.; Choi, K.H.; Park, K.N. Combination treatment with 17β-estradiol and therapeutic hypothermia for transient global cerebral ischemia in rats. Am. J. Emerg. Med. 2013, 31, 154–160. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Q.; He, S.; Simpkins, J.W.; Yang, S.H. Combination therapy of 17beta-estradiol and recombinant tissue plasminogen activator for experimental ischemic stroke. J. Pharmacol. Exp. Ther. 2010, 332, 1006–1012. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Path and Progression to Significance. Int. J. Mol. Sci. 2018, 19, 2871. [Google Scholar] [CrossRef]
- Hutchings, G.; Moncrieff, L.; Dompe, C.; Janowicz, K.; Sibiak, R.; Bryja, A.; Jankowski, M.; Mozdziak, P.; Bukowska, D.; Antosik, P.; et al. Bone Regeneration, Reconstruction and Use of Osteogenic Cells; from Basic Knowledge, Animal Models to Clinical Trials. J. Clin. Med. 2020, 9, 139. [Google Scholar] [CrossRef]
- Grässel, S.; Ahmed, N.; Göttl, C.; Grifka, J. Gene and protein expression profile of naive and osteo-chondrogenically differentiated rat bone marrow-derived mesenchymal progenitor cells. Int. J. Mol. Med. 2009, 23, 745–755. [Google Scholar] [CrossRef]
- Nicolas, J.; Magli, S.; Rabbachin, L.; Sampaolesi, S.; Nicotra, F.; Russo, L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020, 21, 1968–1994. [Google Scholar] [CrossRef] [PubMed]
- Gotlieb, N.; Rosenne, E.; Matzner, P.; Shaashua, L.; Sorski, L.; Ben-Eliyahu, S. The misleading nature of in vitro and ex vivo findings in studying the impact of stress hormones on NK cell cytotoxicity. Brain Behav. Immun. 2015, 45, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Diederichs, S.; Shine, K.M.; Tuan, R.S. The promise and challenges of stem cell-based therapies for skeletal diseases: Stem cell applications in skeletal medicine: Potential, cell sources and characteristics, and challenges of clinical translation. BioEssays News Rev. Mol. Cell. Dev. Biol. 2013, 35, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.S.; Park, J.H.; Lee, T.H. Recent Advances in Stem Cell Differentiation Control Using Drug Delivery Systems Based on Porous Functional Materials. J. Funct. Biomater. 2023, 14, 483. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Lee, H.-J.; Song, H.-J.; Park, J.-B. Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids. Medicina 2024, 60, 60. https://doi.org/10.3390/medicina60010060
Kim J-H, Lee H-J, Song H-J, Park J-B. Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids. Medicina. 2024; 60(1):60. https://doi.org/10.3390/medicina60010060
Chicago/Turabian StyleKim, Ju-Hwan, Hyun-Jin Lee, Hye-Jung Song, and Jun-Beom Park. 2024. "Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids" Medicina 60, no. 1: 60. https://doi.org/10.3390/medicina60010060
APA StyleKim, J.-H., Lee, H.-J., Song, H.-J., & Park, J.-B. (2024). Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids. Medicina, 60(1), 60. https://doi.org/10.3390/medicina60010060