Immunosuppressive Agent Options for Primary Nephrotic Syndrome: A Review of Network Meta-Analyses and Cost-Effectiveness Analysis
Abstract
:1. Introduction
2. Current Applications of Immunosuppressive Agents for Primary NS Listed in Guidelines
3. Options for Immunosuppressive Agents
3.1. Cyclophosphamide (CPA)
3.2. Chlorambucil (CLB)
3.3. Levamisole (LEV)
3.4. Rituximab (RTX)
3.5. Calcineurin Inhibitors (CNIs): Cyclosporine (CsA) and Tacrolimus (TAC)
3.6. Mycophenolate Mofetil (MMF)
3.7. Mizoribine (MZB)
3.8. AZP
4. Emerging Network Meta-Analysis of Efficacy of Immunosuppressive Agents for NS
5. Cost-Effectiveness Studies in Treatment of NS
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- KDIGO Clinical Practice Guidelines for Glomerulonephropahy. Kidney Int. Suppl. 2012, 2, 139–274.
- Noone, D.G.; Iijima, K.; Parekh, R. Idiopathic nephrotic syndrome in children. Lancet 2018, 392, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Amann, K. Primary glomerulonephritides. Lancet 2016, 387, 2036–2048. [Google Scholar] [CrossRef] [PubMed]
- Nazareth, T.A.; Kariburyo, F.; Kirkemo, A.; Xie, L.; Pavlova-Wolf, A.; Bartels-Peculis, L.; Vaidya, N.; Sim, J.J. Patients with Idiopathic Membranous Nephropathy: A Real-World Clinical and Economic Analysis of U.S. Claims Data. J. Manag. Care Spec. Pharm. 2019, 25, 1011–1020. [Google Scholar] [CrossRef]
- Kaneko, K.; Tuchiya, K.; Fujinaga, S.; Kawamura, R.; Ohtomo, Y.; Shimizu, T.; Yamashiro, Y. Th1/Th2 balance in childhood idiopathic nephrotic syndrome. Clin. Nephrol. 2002, 58, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Stachowski, J.; Barth, C.; Michalkiewicz, J.; Krynicki, T.; Jarmolinski, T.; Runowski, D.; Lewandowska-Stachowiak, M.; Zaniew, M.; Warzywoda, A.; Bortkiewicz, E.; et al. Th1/Th2 balance and CD45-positive T cell subsets in primary nephrotic syndrome. Pediatr. Nephrol. 2000, 14, 779–785. [Google Scholar] [CrossRef]
- Shao, X.S.; Yang, X.Q.; Zhao, X.D.; Li, Q.; Xie, Y.Y.; Wang, X.G.; Wang, M.; Zhang, W. The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr. Nephrol. 2009, 24, 1683–1690. [Google Scholar] [CrossRef]
- Liu, L.L.; Qin, Y.; Cai, J.F.; Wang, H.Y.; Tao, J.L.; Li, H.; Chen, L.M.; Li, M.X.; Li, X.M.; Li, X.W. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin. Immunol. 2011, 139, 314–320. [Google Scholar] [CrossRef]
- Iharada, A.; Kaneko, K.; Tsuji, S.; Hasui, M.; Kanda, S.; Nishiyama, T. Increased nitric oxide production by T- and B-cells in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2009, 24, 1033–1038. [Google Scholar] [CrossRef]
- Colucci, M.; Oniszczuk, J.; Vivarelli, M.; Audard, V. B-Cell Dysregulation in Idiopathic Nephrotic Syndrome: What We Know and What We Need to Discover. Front. Immunol. 2022, 13, 823204. [Google Scholar] [CrossRef]
- Orikasa, M.; Matsui, K.; Oite, T.; Shimizu, F. Massive proteinuria induced in rats by a single intravenous injection of a monoclonal antibody. J. Immunol. 1988, 141, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Topham, P.S.; Kawachi, H.; Haydar, S.A.; Chugh, S.; Addona, T.A.; Charron, K.B.; Holzman, L.B.; Shia, M.; Shimizu, F.; Salant, D.J. Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin. J. Clin. Investig. 1999, 104, 1559–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, A.J.B.; Keller, K.H.; Lerner, G.; Rosales, I.; Collins, A.B.; Sekulic, M.; Waikar, S.S.; Chandraker, A.; Riella, L.V.; Alexander, M.P.; et al. Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. J. Am. Soc. Nephrol. 2022, 33, 238–252. [Google Scholar] [CrossRef]
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, P.; Beck, L.; Debiec, H.; Fervenza, F.C.; Hou, F.F.; Jha, V.; Sethi, S.; Tong, A.; Vivarelli, M.; Wetzels, J. Membranous nephropathy. Nat. Rev. Dis. Prim. 2021, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; Seitz-Polski, B.; Ma, H.; Zahner, G.; Dolla, G.; Hoxha, E.; Helmchen, U.; Dabert-Gay, A.S.; et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 2014, 371, 2277–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scolari, F.; Alberici, F.; Mescia, F.; Delbarba, E.; Trujillo, H.; Praga, M.; Ponticelli, C. Therapies for Membranous Nephropathy: A Tale From the Old and New Millennia. Front. Immunol. 2022, 13, 789713. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Lin, B.; Zhang, Y.; Ma, M.; Yang, M.; Qin, X. Novel Biomarkers in Membranous Nephropathy. Front. Immunol. 2022, 13, 845767. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Fervenza, F.C.; Remuzzi, G. Treatment of membranous nephropathy: Time for a paradigm shift. Nat. Rev. Nephrol. 2017, 13, 563–579. [Google Scholar] [CrossRef]
- Ronco, P.; Plaisier, E.; Debiec, H. The role of PLA2R antibody monitoring: What we know and what we don’t know. Nephrol. Dial. Transplant. 2021, 2021, gfab356. [Google Scholar] [CrossRef]
- Smarz-Widelska, I.; Chojeta, D.; Koziol, M.M. The Role of Anti-PLA(2)R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice. Int. J. Environ. Res. Public Health 2022, 19, 5301. [Google Scholar] [CrossRef] [PubMed]
- Tesar, V.; Hruskova, Z. Autoantibodies in the Diagnosis, Monitoring, and Treatment of Membranous Nephropathy. Front. Immunol. 2021, 12, 593288. [Google Scholar] [CrossRef] [PubMed]
- Ishikura, K.; Matsumoto, S.; Sako, M.; Tsuruga, K.; Nakanishi, K.; Kamei, K.; Saito, H.; Fujinaga, S.; Hamasaki, Y.; Chikamoto, H.; et al. Clinical practice guideline for pediatric idiopathic nephrotic syndrome 2013: Medical therapy. Clin. Exp. Nephrol. 2015, 19, 6–33. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Ishimoto, T.; Nakaya, I.; Kawaguchi, T.; Sofue, T.; Shimizu, S.; Kurita, N.; Sasaki, S.; Nishiwaki, H.; Koizumi, M.; et al. A digest of the Evidence-Based Clinical Practice Guideline for Nephrotic Syndrome 2020. Clin. Exp. Nephrol. 2021, 25, 1277–1285. [Google Scholar] [CrossRef]
- Ehren, R.; Benz, M.R.; Brinkkotter, P.T.; Dotsch, J.; Eberl, W.R.; Gellermann, J.; Hoyer, P.F.; Jordans, I.; Kamrath, C.; Kemper, M.J.; et al. Pediatric idiopathic steroid-sensitive nephrotic syndrome: Diagnosis and therapy -short version of the updated German best practice guideline (S2e)-AWMF register no. 166-001, 6/2020. Pediatr. Nephrol. 2021, 36, 2971–2985. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Sinha, A.; Bagga, A.; Banerjee, S.; Mishra, K.; Mehta, A.; Agarwal, I.; Uthup, S.; Saha, A.; Mishra, O.P.; Expert Group of Indian Society of Pediatric, N. Steroid Sensitive Nephrotic Syndrome: Revised Guidelines. Indian Pediatr. 2021, 58, 461–481. [Google Scholar] [CrossRef]
- Trautmann, A.; Boyer, O.; Hodson, E.; Bagga, A.; Gipson, D.S.; Samuel, S.; Wetzels, J.; Alhasan, K.; Banerjee, S.; Bhimma, R.; et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 2023, 38, 877–919. [Google Scholar] [CrossRef]
- Basu, B.; Angeletti, A.; Islam, B.; Ghiggeri, G.M. New and Old Anti-CD20 Monoclonal Antibodies for Nephrotic Syndrome. Where We Are? Front. Immunol. 2022, 13, 805697. [Google Scholar] [CrossRef]
- Wise, L.M.; Stohl, W. Belimumab and Rituximab in Systemic Lupus Erythematosus: A Tale of Two B Cell-Targeting Agents. Front. Med. 2020, 7, 303. [Google Scholar] [CrossRef]
- Vivarelli, M.; Colucci, M.; Gargiulo, A.; Bettini, C.; Lo Russo, A.; Emma, F. Belimumab for the treatment of children with frequently relapsing nephrotic syndrome: The BELNEPH study. Pediatr. Nephrol. 2022, 37, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Hartono, C.; Chung, M.; Kuo, S.F.; Seshan, S.V.; Muthukumar, T. Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. J. Nephrol. 2014, 27, 103–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, D.; Samuel, S.M.; Willis, N.S.; Craig, J.C.; Hobson, E.M. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst. Rev. 2020, 2020, CD001533. [Google Scholar] [CrossRef] [PubMed]
- Ruth, E.M.; Kemper, M.J.; Leumann, E.P.; Laube, G.F.; Neuhaus, T.J. Children with steroid-sensitive nephrotic syndrome come of age: Long-term outcome. J. Pediatr. 2005, 147, 202–207. [Google Scholar] [CrossRef]
- Emma, F.; Sesto, A.; Rizzoni, G. Long-term linear growth of children with severe steroid-responsive nephrotic syndrome. Pediatr. Nephrol. 2003, 18, 783–788. [Google Scholar] [CrossRef]
- Mishra, O.P.; Basu, B.; Upadhyay, S.K.; Prasad, R.; Schaefer, F. Behavioural abnormalities in children with nephrotic syndrome. Nephrol. Dial. Transpl. 2010, 25, 2537–2541. [Google Scholar] [CrossRef] [Green Version]
- Trautmann, A.; Vivarelli, M.; Samuel, S.; Gipson, D.; Sinha, A.; Schaefer, F.; Hui, N.K.; Boyer, O.; Saleem, M.A.; Feltran, L.; et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2020, 35, 1529–1561. [Google Scholar] [CrossRef]
- Ponticelli, C.; Altieri, P.; Scolari, F.; Passerini, P.; Roccatello, D.; Cesana, B.; Melis, P.; Valzorio, B.; Sasdelli, M.; Pasquali, S.; et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 1998, 9, 444–450. [Google Scholar] [CrossRef]
- Iorember, F.M.; Bamgbola, O.F. Structural Inequities and Barriers to Accessing Kidney Healthcare Services in the United States: A Focus on Uninsured and Undocumented Children and Young Adults. Front. Pediatr. 2022, 10, 833611. [Google Scholar] [CrossRef]
- Bagga, A.; Sharma, A.; Srivastava, R.N. Levamisole therapy in corticosteroid-dependent nephrotic syndrome. Pediatr. Nephrol. 1997, 11, 415–417. [Google Scholar] [CrossRef]
- Ekambaram, S.; Mahalingam, V.; Nageswaran, P.; Udani, A.; Geminiganesan, S.; Priyadarshini, S. Efficacy of levamisole in children with frequently relapsing and steroid-dependent nephrotic syndrome. Indian Pediatr. 2014, 51, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Dasgupta, I.; Hurcombe, J.A.; Colyer, H.F.; Mathieson, P.W.; Welsh, G.I. Levamisole in steroid-sensitive nephrotic syndrome: Usefulness in adult patients and laboratory insights into mechanisms of action via direct action on the kidney podocyte. Clin. Sci. 2015, 128, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Azukaitis, K.; Palmer, S.C.; Strippoli, G.F.; Hodson, E.M. Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst. Rev. 2022, 3, CD001537. [Google Scholar] [CrossRef]
- Cai, S.; Chen, Y.; Hu, Z.; Zhou, T.; Huang, Y.; Lin, S.; Gao, R.; Zhong, J.; Dong, L. The landscape of T and B lymphocytes interaction and synergistic effects of Th1 and Th2 type response in the involved tissue of IgG4-RD revealed by single cell transcriptome analysis. J. Autoimmun. 2022, 133, 102944. [Google Scholar] [CrossRef]
- King, C.; Tangye, S.G.; Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 2008, 26, 741–766. [Google Scholar] [CrossRef] [PubMed]
- Lund, F.E.; Randall, T.D. Effector and regulatory B cells: Modulators of CD4+ T cell immunity. Nat. Rev. Immunol. 2010, 10, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boumediene, A.; Vachin, P.; Sendeyo, K.; Oniszczuk, J.; Zhang, S.Y.; Henique, C.; Pawlak, A.; Audard, V.; Ollero, M.; Guigonis, V.; et al. NEPHRUTIX: A randomized, double-blind, placebo vs Rituximab-controlled trial assessing T-cell subset changes in Minimal Change Nephrotic Syndrome. J. Autoimmun. 2018, 88, 91–102. [Google Scholar] [CrossRef]
- Heidt, S.; Roelen, D.L.; Eijsink, C.; Eikmans, M.; van Kooten, C.; Claas, F.H.; Mulder, A. Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin. Exp. Immunol. 2010, 159, 199–207. [Google Scholar] [CrossRef]
- De Bruyne, R.; Bogaert, D.; De Ruyck, N.; Lambrecht, B.N.; Van Winckel, M.; Gevaert, P.; Dullaers, M. Calcineurin inhibitors dampen humoral immunity by acting directly on naive B cells. Clin. Exp. Immunol. 2015, 180, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Houssiau, F.A. Cyclophosphamide in lupus nephritis. Lupus 2005, 14, 53–58. [Google Scholar] [CrossRef]
- Tune, B.M.; Kirpekar, R.; Sibley, R.K.; Reznik, V.M.; Griswold, W.R.; Mendoza, S.A. Intravenous methylprednisolone and oral alkylating agent therapy of prednisone-resistant pediatric focal segmental glomerulosclerosis: A long-term follow-up. Clin. Nephrol. 1995, 43, 84–88. [Google Scholar] [PubMed]
- Banfi, G.; Moriggi, M.; Sabadini, E.; Fellin, G.; D’Amico, G.; Ponticelli, C. The impact of prolonged immunosuppression on the outcome of idiopathic focal-segmental glomerulosclerosis with nephrotic syndrome in adults. A collaborative retrospective study. Clin. Nephrol. 1991, 36, 53–59. [Google Scholar] [PubMed]
- Ponticelli, C.; Zucchelli, P.; Passerini, P.; Cesana, B.; Locatelli, F.; Pasquali, S.; Sasdelli, M.; Redaelli, B.; Grassi, C.; Pozzi, C.; et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 1995, 48, 1600–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, M.J.; Jen, K.Y. Cocaine/levamisole-associated autoimmune syndrome: A disease of neutrophil-mediated autoimmunity. Curr. Opin. Hematol. 2018, 25, 29–36. [Google Scholar] [CrossRef]
- Sinha, A.; Puraswani, M.; Kalaivani, M.; Goyal, P.; Hari, P.; Bagga, A. Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: An open-label randomized controlled trial. Kidney Int. 2019, 95, 210–218. [Google Scholar] [CrossRef]
- Rongioletti, F.; Ghio, L.; Ginevri, F.; Bleidl, D.; Rinaldi, S.; Edefonti, A.; Gambini, C.; Rizzoni, G.; Rebora, A. Purpura of the ears: A distinctive vasculopathy with circulating autoantibodies complicating long-term treatment with levamisole in children. Br. J. Derm. 1999, 140, 948–951. [Google Scholar] [CrossRef]
- Dartevel, A.; Chaigne, B.; Moachon, L.; Grenier, F.; Dupin, N.; Guillevin, L.; Bouillet, L.; Mouthon, L. Levamisole-induced vasculopathy: A systematic review. Semin. Arthritis Rheum. 2019, 48, 921–926. [Google Scholar] [CrossRef]
- Maloney, D.G.; Grillo-Lopez, A.J.; White, C.A.; Bodkin, D.; Schilder, R.J.; Neidhart, J.A.; Janakiraman, N.; Foon, K.A.; Liles, T.M.; Dallaire, B.K.; et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 1997, 90, 2188–2195. [Google Scholar] [CrossRef] [Green Version]
- Iijima, K.; Sako, M.; Nozu, K.; Mori, R.; Tuchida, N.; Kamei, K.; Miura, K.; Aya, K.; Nakanishi, K.; Ohtomo, Y.; et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2014, 384, 1273–1281. [Google Scholar] [CrossRef]
- Wiederrecht, G.; Lam, E.; Hung, S.; Martin, M.; Sigal, N. The mechanism of action of FK-506 and cyclosporin A. Ann. N. Y. Acad. Sci. 1993, 696, 9–19. [Google Scholar] [CrossRef]
- Shen, X.; Jiang, H.; Ying, M.; Xie, Z.; Li, X.; Wang, H.; Zhao, J.; Lin, C.; Wang, Y.; Feng, S.; et al. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci. Rep. 2016, 6, 32087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, I.D.; Willis, N.S.; Craig, J.C.; Hodson, E.M. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst. Rev. 2019, 2019, CD003594. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.E.; Hoyt, E.G.; Murphy, M.P.; Eugui, E.M.; Allison, A.C. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T- and B-cell purine synthesis. Transplant. Proc. 1990, 22, 1659–1662. [Google Scholar] [PubMed]
- Querfeld, U.; Weber, L.T. Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr. Nephrol. 2018, 33, 2253–2265. [Google Scholar] [CrossRef] [PubMed]
- Koyama, H.; Tsuji, M. Genetic and biochemical studies on the activation and cytotoxic mechanism of bredinin, a potent inhibitor of purine biosynthesis in mammalian cells. Biochem. Pharm. 1983, 32, 3547–3553. [Google Scholar] [CrossRef]
- Kusumi, T.; Tsuda, M.; Katsunuma, T.; Yamamura, M. Dual inhibitory effect of bredinin. Cell Biochem. Funct. 1989, 7, 201–204. [Google Scholar] [CrossRef]
- Manabe, S.; Nitta, K.; Nagata, M. Direct Effects of Immunomodulatory Agents on Podocytes in Immune-Mediated Glomerular Diseases. Contrib. Nephrol. 2018, 195, 131–142. [Google Scholar] [CrossRef]
- Takahara, S.; Takahashi, K.; Akiyama, T.; Uchida, K.; Tanabe, K.; Amada, N.; Toma, H. Randomized comparative trial of mizoribine versus mycophenolate mofetil in combination with tacrolimus for living donor renal transplantation. Clin. Exp. Nephrol. 2013, 17, 899–904. [Google Scholar] [CrossRef]
- Yoshioka, K.; Ohashi, Y.; Sakai, T.; Ito, H.; Yoshikawa, N.; Nakamura, H.; Tanizawa, T.; Wada, H.; Maki, S. A multicenter trial of mizoribine compared with placebo in children with frequently relapsing nephrotic syndrome. Kidney Int. 2000, 58, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Van Scoik, K.G.; Johnson, C.A.; Porter, W.R. The pharmacology and metabolism of the thiopurine drugs 6-mercaptopurine and azathioprine. Drug. Metab. Rev. 1985, 16, 157–174. [Google Scholar] [CrossRef]
- Jung, E.J.; Hur, M.; Kim, Y.L.; Lee, G.H.; Kim, J.; Kim, I.; Lee, M.; Han, H.K.; Kim, M.S.; Hwang, S.; et al. Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model. J. Pharm. Exp. 2009, 331, 1005–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiede, I.; Fritz, G.; Strand, S.; Poppe, D.; Dvorsky, R.; Strand, D.; Lehr, H.A.; Wirtz, S.; Becker, C.; Atreya, R.; et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Investig. 2003, 111, 1133–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Yang, H.; Guo, P.; Ao, X.; Wan, J.; Li, Q.; Tan, L. Efficacy and safety of immunosuppressive medications for steroid-resistant nephrotic syndrome in children: A systematic review and network meta-analysis. Oncotarget 2017, 8, 73050–73062. [Google Scholar] [CrossRef] [Green Version]
- Tonin, F.S.; Rotta, I.; Mendes, A.M.; Pontarolo, R. Network meta-analysis: A technique to gather evidence from direct and indirect comparisons. Pharm. Pract. 2017, 15, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.D.; Qian, G.L.; Jiang, Z.Y. Comparison of second-line immunosuppressants for childhood refractory nephrotic syndrome: A systematic review and network meta-analysis. J. Investig. Med. 2017, 65, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Li, S.; Yang, H.; Zou, Q.; Wan, J.; Li, Q. Efficacy and acceptability of immunosuppressive agents for pediatric frequently-relapsing and steroid-dependent nephrotic syndrome: A network meta-analysis of randomized controlled trials. Medicine 2019, 98, e15927. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Y.; Xian, L.; Toyama, T.; Jardine, M.; Li, G.; Perkovic, V.; Hong, D. Comparative effectiveness and tolerance of immunosuppressive treatments for idiopathic membranous nephropathy: A network meta-analysis. PLoS ONE 2017, 12, e0184398. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Shen, W.; Xu, X.; Shen, X.; Li, Y.; He, Q. Immunosuppressive therapy for steroid-resistant nephrotic syndrome: A Bayesian network meta-analysis of randomized controlled studies. Clin. Exp. Nephrol. 2018, 22, 562–569. [Google Scholar] [CrossRef]
- Zheng, Q.; Yang, H.; Liu, W.; Sun, W.; Zhao, Q.; Zhang, X.; Jin, H.; Sun, L. Comparative efficacy of 13 immunosuppressive agents for idiopathic membranous nephropathy in adults with nephrotic syndrome: A systematic review and network meta-analysis. BMJ Open 2019, 9, e030919. [Google Scholar] [CrossRef] [Green Version]
- Dai, P.; Xie, W.; Yu, X.; Sun, J.; Wang, S.; Kawuki, J. Efficacy and cost of different treatment in patients with idiopathic membranous nephropathy: A network meta-analysis and cost-effectiveness analysis. Int. Immunopharmacol. 2021, 94, 107376. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Huang, T.; Xu, G. Efficacy and safety of 12 immunosuppressive agents for idiopathic membranous nephropathy in adults: A pairwise and network meta-analysis. Front. Pharm. 2022, 13, 917532. [Google Scholar] [CrossRef]
- Bose, B.; Chung, E.Y.M.; Hong, R.; Strippoli, G.F.M.; Johnson, D.W.; Yang, W.L.; Badve, S.V.; Palmer, S.C. Immunosuppression therapy for idiopathic membranous nephropathy: Systematic review with network meta-analysis. J. Nephrol. 2022, 35, 1159–1170. [Google Scholar] [CrossRef]
- Yokoyama, H.; Sugiyama, H.; Sato, H.; Taguchi, T.; Nagata, M.; Matsuo, S.; Makino, H.; Watanabe, T.; Saito, T.; Kiyohara, Y.; et al. Renal disease in the elderly and the very elderly Japanese: Analysis of the Japan Renal Biopsy Registry (J-RBR). Clin. Exp. Nephrol. 2012, 16, 903–920. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yao, J.; Kong, X.; Sun, Q.; Wang, Z.; Zhang, Y.; Wang, P.; Liu, Y.; Li, W.; Cui, M.; et al. Increasing prevalence of membranous nephropathy in patients with primary glomerular diseases: A cross-sectional study in China. Nephrology 2017, 22, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, X.; Zhang, W.; Lv, J.; Lan, P.; Wang, Z.; Sun, J.; Xie, L.; Lu, W.; Feng, X.; et al. Epidemiological characteristics and pathological changes of primary glomerular diseases. PLoS ONE 2022, 17, e0272237. [Google Scholar] [CrossRef] [PubMed]
- Fervenza, F.C.; Appel, G.B.; Barbour, S.J.; Rovin, B.H.; Lafayette, R.A.; Aslam, N.; Jefferson, J.A.; Gipson, P.E.; Rizk, D.V.; Sedor, J.R.; et al. Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. N. Engl. J. Med. 2019, 381, 36–46. [Google Scholar] [CrossRef]
- Dahan, K.; Debiec, H.; Plaisier, E.; Cachanado, M.; Rousseau, A.; Wakselman, L.; Michel, P.A.; Mihout, F.; Dussol, B.; Matignon, M.; et al. Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. J. Am. Soc. Nephrol. 2017, 28, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Gong, S.; Li, J.; Luo, H.; Wang, Y. Efficacy and safety of rituximab in the treatment of membranous nephropathy: A systematic review and meta-analysis. Medicine 2020, 99, e19804. [Google Scholar] [CrossRef]
- Webb, N.J.A.; Woolley, R.L.; Lambe, T.; Frew, E.; Brettell, E.A.; Barsoum, E.N.; Trompeter, R.S.; Cummins, C.; Deeks, J.J.; Wheatley, K.; et al. Long term tapering versus standard prednisolone treatment for first episode of childhood nephrotic syndrome: Phase III randomised controlled trial and economic evaluation. BMJ 2019, 365, l1800. [Google Scholar] [CrossRef] [Green Version]
- Simon, C.A.; Salmon, E.; Desmond, H.E.; Massengill, S.F.; Gipson, W.P.; Gipson, D.S. The Health Economic Impact of Nephrotic Syndrome in the United States. Kidney360 2022, 3, 1073–1079. [Google Scholar] [CrossRef]
- Hu, J.; Ke, R.; Teixeira, W.; Dong, Y.; Ding, R.; Yang, J.; Ai, X.; Ye, D.W.; Shang, J. Global, Regional, and National Burden of CKD due to Glomerulonephritis from 1990 to 2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Clin. J. Am. Soc. Nephrol. 2023, 18, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Bose, B.; Jha, V. Trends in the Global Burden of Glomerulonephritis. Clin. J. Am. Soc. Nephrol. 2023, 18, 14–16. [Google Scholar] [CrossRef]
- Asaria, M.; Mazumdar, S.; Chowdhury, S.; Mazumdar, P.; Mukhopadhyay, A.; Gupta, I. Socioeconomic inequality in life expectancy in India. BMJ Glob. Health 2019, 4, e001445. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Roy Chowdhury, I. Inequities in curative health-care utilization among the adult population (20–59 years) in India: A comparative analysis of NSS 71st (2014) and 75th (2017-18) rounds. PLoS ONE 2020, 15, e0241994. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Babu, B.G.; Mahapatra, T.K. Long-term efficacy and safety of common steroid-sparing agents in idiopathic nephrotic children. Clin. Exp. Nephrol. 2017, 21, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Takura, T.; Takei, T.; Nitta, K. Cost-Effectiveness of Administering Rituximab for Steroid-Dependent Nephrotic Syndrome and Frequently Relapsing Nephrotic Syndrome: A Preliminary Study in Japan. Sci. Rep. 2017, 7, 46036. [Google Scholar] [CrossRef]
- Hamilton, P.; Kanigicherla, D.; Venning, M.; Brenchley, P.; Meads, D. Rituximab versus the modified Ponticelli regimen in the treatment of primary membranous nephropathy: A Health Economic Model. Nephrol. Dial. Transplant. 2018, 33, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, R.; Bharati, J.; Rao, I.; Kashif, A.W.; Nada, R.; Minz, R.; Gupta, K.L.; Kohli, H.S. Persistent CD-19 depletion by rituximab is cost-effective in maintaining remission in calcineurin-inhibitor dependent podocytopathy. Nephrology 2019, 24, 1241–1247. [Google Scholar] [CrossRef]
- Takura, T.; Takei, T.; Nitta, K. Socioeconomics of Administering Rituximab for Nephrotic Syndrome. Contrib. Nephrol. 2018, 195, 110–119. [Google Scholar] [CrossRef]
- Takei, T.; Itabashi, M.; Moriyama, T.; Kojima, C.; Shiohira, S.; Shimizu, A.; Tsuruta, Y.; Ochi, A.; Amemiya, N.; Mochizuki, T.; et al. Effect of single-dose rituximab on steroid-dependent minimal-change nephrotic syndrome in adults. Nephrol. Dial. Transplant. 2013, 28, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Ruggenenti, P.; Ruggiero, B.; Cravedi, P.; Vivarelli, M.; Massella, L.; Marasa, M.; Chianca, A.; Rubis, N.; Ene-Iordache, B.; Rudnicki, M.; et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J. Am. Soc. Nephroly 2014, 25, 850–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Guideline | Children | Adults |
---|---|---|
KDIGO 2012 [1] | CPA, CLB, LEV, CsA, TAC, MMF (RTX not recommended as treatment option for SRNS, due to lack of RCTs; MZB and AZP considered ineffective) | MCNS: CPA, CsA, TAC, MMF |
MN: CPA, CLB, CsA, TAC, MMF | ||
FSGS: CsA, TAC | ||
(RTX not recommended as treatment option for SRNS, due to lack of RCTs) | ||
JSPN 2013 [23] | CPA, RTX, CsA, TAC, MMF, MZB | - |
JSN 2020 [24] | - | MCNS: CPA, RTX, CsA, TAC, MMF, MZB, AZP |
MN: CPA, CLB, RTX, CsA, TAC, MMF, MZB, AZP | ||
FSGS: CPA, RTX, CsA, MMF, MZB, AZP | ||
(CLB not approved; TAC not covered by insurance; RTX only for child-onset cases) | ||
GSPN 2020 [25] | CPA, LEV, RTX, CsA, TAC, MMF | - |
KDIGO 2021 [26] | CPA, LEV, RTX, CsA, TAC, MMF (CLB inferior to CPA) | MCNS: CPA, RTX, CsA, TAC, MMF |
MN: CPA, RTX, CsA, TAC (MMF not discussed because of insufficient RCTs; MZB considered only for maintenance) | ||
FSGS: CsA, TAC | ||
ISPN 2021 [27] | CPA, LEV, RTX, CsA, TAC, MMF | - |
IPNA 2022 [28] | CPA, LEV, RTX, CsA, TAC, MMF | - |
Author Name, Year, Disease | Total No. of Studies | IS Agents of Interest (No. of Studies) | Highlights |
---|---|---|---|
Fu, 2017, child NS [75] | 7 | CPA (2), CsA (5), TAC (3), MMF (3) | CPA and TAC are the best and second-best agents for relapsing NS. |
Ren, 2017, idiopathic MN [77] | 36 | CPA (15), CLB (9), CsA (6), TAC (5), MMF (4), MZB (2), AZA (3), leflunomide (1) | CPA and CLB reduce risk of renal failure. CsA and TAC increase rate of proteinuria remission. |
Li, 2017, child NS [73] | 18 | CPA (8), CLB (1), RTX (1), CsA (8), TAC (4), MMF (3), AZA (1), leflunomide (1) | TAC and CsA may be preferred initial treatments for children NS. MMF may be another option. |
Jiang, 2018, adult NS [78] | 7 | CPA (3), CsA (4), TAC (2) | TAC and CsA are the best and second-best agents for inducing remission. |
Tan, 2019, child NS [76] | 26 | CPA (8), CLB (4), LEV (10), RTX (3), CsA (4), MMF (3), AZA (2), vincristine (1) | CPA may be preferred initially in children with NS. CLB and RTX may be acceptable. |
Zheng, 2019, idiopathic MN [79] | 48 | CPA (23), CLB (11), RTX (1), CsA (10), TAC (16), MMF (6), MZB (1), leflunomide (2) | TAC and CPA are superior to other IS agents. |
Dai, 2021, idiopathic MN [80] | 75 (24 in English; 51 in Chinese) | CPA (57), CLB (5), RTX (3), CsA (16), TAC (30), MMF (15), leflunomide (11) | Remission rate highest with TAC despite high single-dose cost. |
Liu, 2022, idiopathic MN [81] | 51 | CPA (28), CLB (7), RTX (5), CsA (14), TAC (13), MMF (8), MZB (1), AZA (1), leflunomide (4) | TAC + MMF performed best in remission. Little advantage from MZB, AZA, or leflunomide in treating patients with idiopathic MN compared with control. |
Bose, 2022, idiopathic MN [82] | 56 | CPA (26), CLB (10), RTX (4), CsA (12), MMF (7), MZB (3), AZA (3), leflunomide (1), | Comparative effectiveness and safety of IS compared to CPA are uncertain in adults with idiopathic MN. |
First Author, Nation, Year Disease | Intervention/Exposure, Study Design/Model | Result | Interpretation |
---|---|---|---|
Takura, Japan, 2017 Adult NS [96] | Before and after RTX Observational cohort | Improvement in relapse rate from 4.3 to 0.3 events after administration of RTX, and total medical costs decreased from USD 2923 to USD 1280 per month. | Treatment with RTX is possibly superior to previous pharmacological treatments from a health economics perspective. |
Hamilton, UK, 2018 Idiopathic MN [97] | Decision-analytic model RTX Modified Ponticelli regimen (CPA + CS) | At 1 year post-treatment, rituximab therapy dominates CPA + CS. At ≥5 years post-treatment, RTX is cheaper than CPA + CS. | RTX is not more expensive than gold-standard treatment and is cheaper. |
Ramachandran, India, 2019 Adult SDNS/SRNS with CNI dependence [98] | Single-arm cohort CD19 cell monitored RTX regimen: 100 mg additional low dose if necessary after single dose of 375 mg/m2. | Average cost of monitored RTX regimen in the first year is USD 487. Conventional regimen (375 mg/m2 × 4 doses) is USD 1415. Over three-quarters of patients maintain remission. | CD19 monitored RTX regimen seems safe and cost-effective for remission maintenance in adult NS with CNI dependence. |
Dai, China, 2021 Idiopathic MN [80] | Decision tree model to simulate remission and recurrence after each IS agent: CPA, CLB, RTX, CsA, TAC, MMF, leflunomide | CER in China showed CPA was cheapest (USD 42 per unit utility), followed by leflunomide (USD 49) and MMF (USD 830). RTX exhibited the highest CER (USD 3042). | CPA is cheapest with obvious effect in China, while leflunomide is a cost-effective alternative therapy. CLB, RTX, CsA, and TAC are higher cost and lower utility than expected. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagai, K. Immunosuppressive Agent Options for Primary Nephrotic Syndrome: A Review of Network Meta-Analyses and Cost-Effectiveness Analysis. Medicina 2023, 59, 601. https://doi.org/10.3390/medicina59030601
Nagai K. Immunosuppressive Agent Options for Primary Nephrotic Syndrome: A Review of Network Meta-Analyses and Cost-Effectiveness Analysis. Medicina. 2023; 59(3):601. https://doi.org/10.3390/medicina59030601
Chicago/Turabian StyleNagai, Kei. 2023. "Immunosuppressive Agent Options for Primary Nephrotic Syndrome: A Review of Network Meta-Analyses and Cost-Effectiveness Analysis" Medicina 59, no. 3: 601. https://doi.org/10.3390/medicina59030601
APA StyleNagai, K. (2023). Immunosuppressive Agent Options for Primary Nephrotic Syndrome: A Review of Network Meta-Analyses and Cost-Effectiveness Analysis. Medicina, 59(3), 601. https://doi.org/10.3390/medicina59030601