Insulin Resistance and Bone Metabolism Markers in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study on Females from the Islamic University Medical Center
Abstract
:1. Introduction
2. Aim of the Study
3. Subjects and Methods
- Group I included 100 healthy female patients as controls;
- Group IIa included 70 overweight or obese female patients diagnosed as having polycystic ovary syndrome and with BMI above 25 kg/m2;
- Group IIb included 30 non-obese female patients diagnosed as having polycystic ovary syndrome and with BMI less than 25 kg/m2. All study subjects were subjected to physical, anthropometric, and laboratory examinations.
3.1. Exclusion Criteria
3.2. Physical Examination and Anthropometric Measures
- Oligomenorrhea (irregular menstrual periods) or amenorrhea (absence of menstrual periods);
- Hyperandrogenism (based on clinical signs in the body) and/or biochemical signs (hormone levels in the blood);
- Polycystic ovaries (on the ultrasound): Polycystic ovaries are described on an ultrasound scan as the “presence of 12 or more follicles in one or both ovaries measuring 2–9 mm in diameter, and/or increased ovarian volume (>10 mL)” [38].
3.3. Laboratory Measurements
3.4. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Zhang, J.; Cheng, X.; Nie, X.; He, B. Insulin resistance in polycystic ovary syndrome across various tissues: An updated review of pathogenesis, evaluation, and treatment. J. Ovarian Res. 2023, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised (2003) consensus on diagnostic criteria and long- term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. Position statement: Criteria for defi ning polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An androgen excess society guideline. J. Clin. Endocrinol. Metab. 2006, 91, 4237–4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azziz, R.; Woods, K.S.; Reyna, R.; Key, T.J.; Knochenhauer, E.S.; Yildiz, B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 2004, 89, 2745–2749. [Google Scholar] [CrossRef] [Green Version]
- Diamanti-Kandarakis, E.; Kouli, C.R.; Bergiele, A.T.; Filandra, F.A.; Tsianateli, T.C.; Spina, G.G.; Zapanti, E.D.; Bartzis, M.I. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: Hormonal and metabolic profi le. J. Clin. Endocrinol. Metab. 1999, 84, 4006–4011. [Google Scholar] [CrossRef]
- Asuncion, M.; Calvo, R.M.; San, M.J. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 2000, 85, 2434–2438. [Google Scholar] [CrossRef] [Green Version]
- Kumarapeli, V.; Seneviratne, R.D.; Wijeyaratne, C.N.; Yapa, R.M.; Dodampahala, S.H. A simple screening approach for assessing community prevalence and phenotype of polycystic ovary syndrome in a semi-urban population in Sri Lanka. Am. J. Epidemiol. 2008, 168, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Vutyavanich, T.; Khaniyao, V.; Wongtra-Ngan, S. Clinical, endocrine and ultrasonographic features of polycystic ovary syndrome in Thai women. J. Obs. Gynaecol. Res. 2007, 33, 677–680. [Google Scholar] [CrossRef] [PubMed]
- March, W.A.; Moore, V.M.; Willson, K.J.; Phillips, D.I.; Norman, R.J.; Davies, M.J. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 2010, 25, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Mehrabian, F.; Khani, B.; Kelishadi, R.; Ghanbari, E. The prevalence of polycystic ovary syndrome in Iranian women based on different diagnostic criteria. Endokrynol. Pol. 2011, 62, 238–242. [Google Scholar]
- Tehrani, F.R.; Simbar, M.; Tohidi, M.; Hosseinpanah, F.; Azizi, F. The prevalence of polycystic ovary syndrome ina community sample of Iranian population: Iranian PCOS prevalence study. Reprod. Biol. Endocrinol. 2011, 9, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, B.O.; Bozdag, G.; Yapici, Z.; Esinler, I.; Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 2012, 27, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- Kahn, C.R. The molecular mechanism of insulin action. Ann. Rev. Med. 1985, 36, 429–451. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, M.; Zick, Y.; Blith, D.L.; Karlsson, F.A.; Häring, H.U.; Kahn, C.R. Insulin stimulation of phosphorylation of the subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. J. Biol. Chem. 1982, 257, 9891–9894. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Boni-Schnetzler, M.; Pilch, P.F.; Kahn, C.R. Autophosphorylation within insulinreceptor α-subunits can occur as an intramolecular process. Biochemistry 1991, 30, 7740–7746. [Google Scholar] [CrossRef]
- Dunaif, A.; Xia, J.; Book, C.B.; Schenker, E.; Tang, Z. Excessive insulin receptor serine phosphorylation incultured fi broblasts and in skeletal muscle. J. Clin. Investig. 1995, 96, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Dunaif, A.; Segal, K.R.; Shelley, D.R.; Green, G.; Dobrjansky, A.; Licholai, T. Evidence for distinctive and intrinsic defects ininsulin action in polycystic ovary syndrome. Diabetes 1992, 41, 1257–1266. [Google Scholar] [CrossRef]
- Ciaraldi, T.P.; el-Roeiy, A.L.; Madar, Z.E.; Reichart, D.O.; Olefsky, J.M.; Yen, S.S. Cellular mechanisms of insulin resistance inpolycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 1992, 75, 577–583. [Google Scholar]
- An, P.; Ra, M.; Mf, S.; Ga, S.; Ah, K. Relationship of androgenic activity tosplanchnic insulin metabolism and peripheral glucose utilization in premenopausal women. J. Clin. Endocrinol. Metab. 1987, 64, 162–169. [Google Scholar]
- Book, C.; Dunaif, A. Selective insulin resistance in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1999, 84, 3110–3116. [Google Scholar] [CrossRef]
- Glueck, C.; Papanna, R.; Wang, P.; Goldenberg, N.; Sieve-Smith, L. Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome. Metabolism 2003, 52, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.K.; Ehrmann, D.A. Cardiometabolic features of polycystic ovary syndrome. Nat. Clin. Pr. Endocrinol. Metab. 2008, 4, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Dunaif, A.; Segal, K.R.; Futterweit, W.; Dobrjansky, A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989, 38, 1165–1174. [Google Scholar] [CrossRef]
- Hahn, S.; Haselhorst, U.; Tan, S.; Quadbeck, B.; Schmidt, M.; Roesler, S.; Kimmig, R.; Mann, K.; Janssen, O. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 2006, 114, 577–583. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Freundlich, M.; Quiroz, Y.; Zhang, Z.; Zhang, Y.; Bravo, Y.; Weisinger, J.R.; Li, Y.C.; Rodriguez-Iturbe, B. Suppression of renin-angiotensin gene expression in the kidney by paricalcitol. Kidney Int. 2008, 74, 1394–1402. [Google Scholar] [CrossRef] [Green Version]
- Munger, K.L.; Levin, L.I.; Hollis, B.W.; Howard, N.S.; Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006, 296, 2832–2838. [Google Scholar] [CrossRef] [Green Version]
- Panidis, D.; Balaris, C.; Farmakiotis, D.; Rousso, D.; Kourtis, A.; Balaris, V.; Katsikis, I.; Zournatzi, V.; Diamanti-Kandarakis, E. Serum parathyroid hormone concentrations are increased in women with polycystic ovary syndrome. Clin. Chem. 2005, 51, 1691–1697. [Google Scholar] [CrossRef]
- Reineher, T.; DeSousa, G.; Alexy, U.; Kersting, M.; Andler, W. Vitamin D status and parathyroid hormone in obese children before and after weightloss. Eur. J. Endocrinol. 2007, 157, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Zhang, B.; Jiang, X.; Li, Z.; Zhao, S.; Cui, L.; Chen, Z.J. Metabolic disturbances in non-obese women with polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2019, 111, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovezan, J.M.; Premaor, M.O.; Comim, F.V. Negative impact of polycystic ovary syndrome on bone health: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Yanaihara, T. Steroid formation in osteoblast-like cells. J. Int. Med. Res. 1998, 26, 1–12. [Google Scholar] [CrossRef]
- Recker, R.R.; Davies, K.M.; Hinders, S.M.; Heaney, R.P.; Stegman, M.R.; Kimmel, D.B. Bone gain in young adult women. JAMA 1992, 268, 2403–2408. [Google Scholar] [CrossRef]
- Yüksel, O.; Dökmetaş, H.S.; Topcu, S.; Erselcan, T.; Şencan, M. Relationship between bone mineral density and insulin resistance in polycystic ovary syndrome. J. Bone Min. Metab. 2001, 19, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Kirchengast, S.; Huber, J. Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum. Reprod. 2001, 16, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Lingaiah, S.; Piltonen, T.; Puurunen, J.; Sundström-Poromaa, I.; Stener-Victorin, E.; Bloigu, R.; Risteli, J.; Juha, S. Tapanainen: Bone markers in polycystic ovary syndrome: A multicentre Study. Clin. Endocrinol. 2017, 87, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Legro, R.S.; Arslanian, S.A.; Ehrmann, D.A.; Hoeger, K.M.; Murad, M.H.; Pasquali, R.; Welt, C.K. Diagnosis and treatment of polycystic ovary syndrome: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4565–4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, F.A.; Odeku, A.O. Poly cystic ovaries: A common feature in transvaginal scans of gynecology patients. Ann. Ibadan Postgrad. Med. 2015, 13, 108–109. [Google Scholar]
- Jacobs, D.S. Laboratory Test Handbook; Lexi-Comp: Hudson, OH, USA, 2001; pp. 131–133. [Google Scholar]
- US Department of Health and Human Services. Biosafety in Microbiological and Biomedical Laboratories, 5th ed.; US Government Printing Office: Washington, DC, USA, 2009.
- World Health Organization. Laboratory Biosafety Manual, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Burtis, C.A.; Ashwood, E.R. (Eds.) Tietz Fundamentals of Clinical Chemistry, 5th ed.; WB Saunders: Philadelphia, PA, USA, 2001; pp. 480–485. [Google Scholar]
- Beastall, G.H.; Ferguson, K.M.; O’reilly, D.S.; Seth, J.; Sheridan, B. Assays for Follicle Stimulating Hormone and Luteinizing Hormone: Guidelines for the Provision of a Clinical Biochemistry Service. Ann. Clin. Biochem. 1987, 24, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Protection of Laboratory Workers from Occupationally Acquired Infections: Approved Guideline, 3rd ed.; CLSI Document M29-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2005. [Google Scholar]
- Cavaco, B.; Leite, V.; Santos, M.A.; Sobrinho, L.G. Anti-prolactin (PRL) Autoantibodies Cause Asymptomatic Hyperprolactinemia: Bioassay and Clearance Studies of PRL-immunoglobulin G Complex. J. Clin. Endocrinol. Metab. 1995, 80, 2342–2346. [Google Scholar]
- La’ulu, S.L.; Straseski, J.A.; Schmidt, R.L.; Genzen, J.R. Thrombin-mediated degradation of parathyroid hormone in serum tubes. Clin. Chim. Acta 2014, 437, 191–196. [Google Scholar] [CrossRef]
- CLSI. Statistical Quality Control for Quantitative Measurements: Principles and Definitions; Approved Guideline, 3rd ed.; CLSI document C24-A3 [ISBN 1-56238-613-1]; CLSI: Wayne, PA, USA, 2006. [Google Scholar]
- NCCLS. Evaluation of Precision Performance of Quantitative Measurement Methods; Approved Guideline, 2nd ed.; NCCLS document EP5-A2 [ISBN 1-56238-542-9]; CLSI: Wayne, PA, USA, 2004. [Google Scholar]
- Pilz, S. Vitamin D status and arterial hypertension: A systematic review. Nat. Rev. Cardiol. 2009, 6, 621–630. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrin Metabol. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Goltzman, D.; Hendy, G.N. Parathyroid hormone. In Principles and Practice of Endocrinology and Metabolism, 3rd ed.; Becker, K.L., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 497–512. [Google Scholar]
- Kroboth, P.D.; Salek, F.S.; Pittenger, A.L.; Fabian, T.J.; Frye, R. DHEA and DHEA-S: A review. J. Clin. Pharmacol. 1999, 39, 327–348. [Google Scholar] [CrossRef]
- Robbins, D.C.; Tager, H.S.; Rubenstein, A.H. Biologic and Clinical Importance of Proinsulin. N. Engl. J. Med. 1984, 310, 1165–1175. [Google Scholar] [CrossRef]
- Pugeat, M.; Crave, J.C.; Tourniaire, J.; Forest, M.G. Clinical utility of sex hormone binding globulin measurement. Horm. Res. 1996, 45, 148–155. [Google Scholar] [CrossRef]
- Rosenquist, C.; Qvist, P.; Bjarnason, N.; Christiansen, C. Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin. Chem. 1995, 41, 1439–1445. [Google Scholar] [CrossRef]
- Jensen, C.H.; Hansen, M.; Brandt, J.; Rasmussen, H.B.; Jensen, P.B.; Teisner, B. Quantification of the N-terminal propeptide of human procollagen type I (PINP): Comparison of ELISA and RIA with respect to different molecular forms. Clin. Chim. Acta 1998, 269, 31–41. [Google Scholar] [CrossRef]
- Hanson, D.A.; Weis, M.A.; Bollen, A.M.; Maslan, S.L.; Singer, F.R.; Eyre, D.R. A specific immunoassay for monitoring human bone resorption: Quantitation of Type 1 collagen cross-linked N-telepeptides in urine. J. Bone Min. Res. 1992, 7, 1251–1258. [Google Scholar] [CrossRef]
- NCCLS. Urinalysis and Collection, Transportation, and Preservation of Urine Specimens; Approved Guideline; NCCLS document GP16-A (ISBN 1-56238-282-9); CLSI: Wayne, PA, USA, 2001. [Google Scholar]
- Blaha, M.J.; Blumenthal, R.S.; Brinton, E.A.; Jacobson, T.A. National Lipid Association taskforce on non-HDL cholesterol. The importance of non-HDL cholesterol reporting in lipid management [monograph on the Internet]. J. Clin. Lipidol. 2008, 2, 267–273. [Google Scholar] [CrossRef]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef]
- Matthews, D.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Rabasa-Lhoret, R.; Bastard, J.-P.; Jan, V.; Ducluzeau, P.-H.; Andreelli, F.; Guebre, F.; Bruzeau, J.; Louche-Pellissier, C.; MaÎtrepierre, C.; Peyrat, J.; et al. Modified quantitative insulin sensitivity check index is better correlated to hyperinsulinemic glucose clamp than other fasting-based index of insulin sensitivity in different insulin-resistant states. J. Clin. Endocrinol. Metab. 2003, 88, 4917–4923. [Google Scholar] [CrossRef] [Green Version]
- Blake, G.M.; Fogelman, I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad. Med. J. 2007, 83, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Sheu, A.; Diamond, T. Bone mineral density: Testing for osteoporosis. Aust. Prescr. 2016, 39, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.W.; Wu, M.H. The role of vitamin D in polycystic ovary syndrome. Indian. J. Med. Res. 2015, 142, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.L.; Spedding, S.; Buckley, J.D. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 2012, 77, 343–350. [Google Scholar] [CrossRef]
- Lu, L.; Yu, Z.; Pan, A.; Hu, F.B.; Franco, O.H.; Li, H.; Li, X.; Yang, X.; Chen, Y.; Lin, X. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care 2009, 32, 1278–1283. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.A.; Ashraf, A. Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int. J. Endocrinol. 2010, 2010, 351385. [Google Scholar] [CrossRef] [Green Version]
- Iba, K.; Takada, J.; Hatakeyama, N.; Ozasa, Y.; Wada, T.; Yamashita, T. Changes in urinary NTX levels in patients with primary osteoporosis undergoing long-term bisphosphonate treatment. J. Orthop. Sci. 2008, 13, 438–441. [Google Scholar] [CrossRef]
- Koivula, M.K.; Ruotsalainen, V.; Björkman, M.; Nurmenniemi, S.; Ikäheimo, R.; Savolainen, K.; Sorva, A.; Risteli, J. Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann. Clin. Biochem. 2010, 47, 67–71. [Google Scholar] [CrossRef]
- Chavassieux, P.; Portero-Muzy, N.; Roux, J.-P.; Garnero, P.; Chapurlat, R. Are biochemical markers of bone turnover representative of bone histomorphometry in 370 postmenopausal women? J. Clin. Endocrinol. Metab. 2015, 100, 4662–4668. [Google Scholar] [CrossRef] [Green Version]
- Krege, J.H.; Lane, N.E.; Harris, J.M.; Miller, P.D. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos. Int. 2014, 25, 2159–2171. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.P.; von Muhlen, D.; Miller, E.R., III. Relation of 25-hydroxyvitamin D and parathyroid hormone levels with metabolic syndrome among US adults. Eur. J. Endocrinol. 2008, 159, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kumar, D.; Lal, A.K. Serum Osteocalcin as a Diagnostic Biomarker for Primary Osteoporosis in Women. J. Clin. Diagn. Res. 2015, 9, RC04-7. [Google Scholar] [CrossRef]
- Vs, K.K.P.; Ramesh, M.; Venkatesan, V. The association of serum osteocalcin with the bone mineral density in post menopausal women. J. Clin. Diagn. Res. 2013, 7, 814–816. [Google Scholar] [CrossRef]
- Chitme, H.R.; Al Azawi, E.A.K.; Al Abri, A.M.; Al Busaidi, B.M.; Salam, Z.K.A.; Al Taie, M.M.; Al Harbo, S.K. Anthropometric and body composition analysis of infertile women with polycystic ovary syndrome. J. Taibah Univ. Med. Sci. 2017, 12, 139–145. [Google Scholar] [CrossRef]
- Lim, S.S.; Davies, M.J.; Norman, R.J.; Moran, L.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 618–637. [Google Scholar] [CrossRef]
- Borruel, S.; Fernández-Durán, E.; Alpañés, M.; Martí, D.; Alvarez-Blasco, F.; Luque-Ramírez, M.; Escobar-Morreale, H.F. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 2013, 98, 1254–1263. [Google Scholar] [CrossRef]
- Najem, F.; Elmehdawi, R.; Swalem, A. Clinical and Biochemical Characteristics of Polycystic Ovary Syndrome in Benghazi- Libya; A Retrospective study. Libyan J. Med. 2008, 3, 71–74. [Google Scholar] [CrossRef]
- Mario, F.M.; do Amarante, F.; Toscani, M.K.; Spritzer, P.M. Lean muscle mass in classic or ovulatory PCOS: Association with central obesity and insulin resistance. Exp. Clin. Endocrinol. Diabetes 2012, 120, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Sam, S.; Scoccia, B.; Yalamanchi, S.; Mazzone, T. Metabolic dysfunction in obese Hispanic women with polycystic ovary syndrome. Hum. Reprod. 2015, 30, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Glintborg, D.; Andersen, M.; Hagen, C.; Frystyk, J.; Hulstrøm, V.; Flyvbjerg, A.; Hermann, A.P. Evaluation of metabolic risk markers in polycystic ovary syndrome (PCOS). Adiponectin, ghrelin, leptin and body composition in hirsute PCOS patients and controls. Eur. J. Endocrinol. 2006, 155, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Bhadricha, H.; Hatkar, S.; Kadam, S.S.; Patil, A.; Surve, S.; Joshi, B.; Khatkhatay, M.I.; Desai, M. Effect of Vitamin D Levels on Bone Remodeling in Healthy Women. Int. J. Endocrinol. Metab. 2020, 18, e100656. [Google Scholar] [CrossRef]
Variable | Group | N | Mean ± SD | Range | F | P | p-Value | |
---|---|---|---|---|---|---|---|---|
Age (years) | Group I | 100 | 30.07 ± 5.31 | 20.00 | 40.00 | 1.98 | 0.06 NS | ---- |
Group IIa | 70 | 32.67 ± 6.00 | 20.00 | 42.00 | ||||
Group IIb | 30 | 30.97 ± 5.64 | 20.00 | 39.00 | ||||
WC (cm) | Group I | 100 | 85.37 ± 8.44 | 75.00 | 105.00 | 39.71 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 93.01 ± 6.27 | 80.00 | 105.00 | 0.004 * | |||
Group IIb | 30 | 80.50 ± 3.05 | 75.00 | 85.00 | <0.001 ** | |||
BMI (Kg/m2) | Group I | 100 | 24.76 ± 3.00 | 20.00 | 30.00 | 69.60 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 29.29 ± 3.05 | 25.00 | 35.00 | 0.03 * | |||
Group IIb | 30 | 23.23 ± 1.65 | 19.00 | 25.00 | <0.001 ** | |||
SBP (mmHg) | Group I | 100 | 116.97 ± 5.00 | 105.00 | 125.00 | 3.23 | 0.06 NS | ---- |
Group IIa | 70 | 118.89 ± 6.03 | 100.00 | 130.00 | ||||
Group IIb | 30 | 116.37 ± 4.63 | 105.00 | 122.00 | ||||
DBP (mmHg) | Group I | 100 | 80.98 ± 4.12 | 70.00 | 93.00 | 1.38 | 0.25 NS | ---- |
Group IIa | 70 | 81.54 ± 3.96 | 73.00 | 90.00 | ||||
Group IIb | 30 | 80.13 ± 3.10 | 75.00 | 88.00 |
Variable | Group | N | Mean ± SD | Range | F | P | p-Value | |
---|---|---|---|---|---|---|---|---|
Fasting Glucose (mg/dL) | Group I | 100 | 87.41 ± 8.13 | 75.00 | 103.00 | 18.26 | <0.001 ** | 0.001 * |
Group IIa | 70 | 94.69 ± 8.52 | 80.00 | 113.00 | 0.01 * | |||
Group IIb | 30 | 92.10 ± 4.60 | 87.00 | 102.00 | 0.29 NS | |||
Fasting Insulin (μU/mL) | Group I | 100 | 13.14 ± 3.66 | 7.00 | 15.00 | 18.74 | <0.001 ** | 0.001 ** |
Group IIa | 70 | 16.43 ± 3.06 | 13.00 | 32.00 | 0.02 * | |||
Group IIb | 30 | 13.17 ± 3.86 | 11.00 | 18.00 | 0.23 NS | |||
HOMA IR | Group I | 100 | 2.37 ± 0.73 | 1.50 | 2.98 | 15.23 | <0.001 ** | 0.002 * |
Group IIa | 70 | 3.09 ± 1.04 | 2.60 | 8.30 | 0.005 * | |||
Group IIb | 30 | 2.94 ± 0.89 | 2.60 | 4.00 | 0.71 NS | |||
QICKI | Group I | 100 | 0.34 ± 0.07 | 0.32 | 0.36 | 9.43 | <0.001 ** | 0.001 * |
Group IIa | 70 | 0.29 ± 0.10 | 0.23 | 0.31 | 0.04 * | |||
Group IIb | 30 | 0.30 ± 0.006 | 0.28 | 0.33 | 0.82 NS |
Variable | Group | N | Mean ± SD | Range | F | P | p-Value | |
---|---|---|---|---|---|---|---|---|
Cholesterol (mg/dL) | Group I | 100 | 165.15 ± 32.6 | 140.00 | 170.00 | 8.77 | <0.001 ** | 0.002 * |
Group IIa | 70 | 189.81 ± 49.01 | 170.00 | 210.00 | 0.81 NS | |||
Group IIb | 30 | 170.02 ± 25.22 | 159.00 | 187.00 | 0.04 * | |||
TG (mg/dL) | Group I | 100 | 97.68 ± 5.83 | 75.00 | 110.00 | 1.93 | 0.15 NS | <0.001 ** |
Group IIa | 70 | 99.59 ± 5.43 | 90.00 | 110.00 | ||||
Group IIb | 30 | 98.93 ± 6.08 | 90.00 | 111.00 | ||||
HDL (mg/dL) | Group I | 100 | 43.69 ± 3.87 | 35.00 | 50.00 | 8.41 | <0.001 ** | 0.01 * |
Group IIa | 70 | 45.93 ± 4.07 | 35.00 | 55.00 | 0.01 * | |||
Group IIb | 30 | 46.03 ± 3.70 | 40.00 | 55.00 | 0.99 NS | |||
LDL (mg/dL) | Group I | 100 | 109.46 ± 28.61 | 78.00 | 122.00 | 8.16 | <0.001 ** | 0.003 * |
Group IIa | 70 | 123.13 ± 13.96 | 95.00 | 150.00 | 0.92 NS | |||
Group IIb | 30 | 111.27 ± 10.07 | 99.00 | 125.00 | 0.04 * | |||
Non-HDL (mg/dL) | Group I | 100 | 124.14 ± 28.60 | 92.00 | 131.00 | 12.3 | <0.001 ** | 0.001 * |
Group IIa | 70 | 143.90 ± 30.70 | 115.00 | 170.00 | 0.49 NS | |||
Group IIb | 30 | 130.20 ± 16.05 | 120.00 | 145.00 | 0.04 * |
Variable | Group | N | Mean ± SD | Range | F | P | p-value | |
---|---|---|---|---|---|---|---|---|
FSH (U/L) | Group I | 100 | 6.99 ± 2.33 | 5.60 | 10.20 | 3.02 | 0.06 NS | ----- |
Group IIa | 70 | 6.20 ± 2.10 | 4.00 | 8.00 | ||||
Group IIb | 30 | 6.31 ± 1.86 | 4.80 | 7.90 | ||||
LH (U/L) | Group I | 100 | 4.18 ± 0.61 | 3.00 | 5.30 | 737.34 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 8.80 ± 1.07 | 6.80 | 11.10 | <0.001 ** | |||
Group IIb | 30 | 8.65 ± 0.91 | 7.30 | 10.00 | 0.71 NS | |||
PRL (ng/mL) | Group I | 100 | 18.05 ± 5.49 | 12.00 | 22.00 | 2.81 | 0.06 NS | ----- |
Group IIa | 70 | 19.89 ± 4.78 | 15.00 | 25.00 | ||||
Group IIb | 30 | 19.37 ± 4.55 | 15.00 | 25.00 | ||||
Estrogen (pg/mL) | Group I | 100 | 76.88 ± 14.79 | 50.00 | 100.00 | 385.05 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 130.00 ± 13.31 | 100.00 | 150.00 | <0.001 ** | |||
Group IIb | 30 | 133.93 ± 11.69 | 112.00 | 152.00 | 0.40 NS | |||
SHGB (nmol/L) | Group I | 100 | 53.10 ± 6.89 | 30.00 | 67.00 | 149.16 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 38.01 ± 6.51 | 25.00 | 50.00 | <0.001 ** | |||
Group IIb | 30 | 35.53 ± 5.06 | 28.00 | 50.00 | 0.19 N | |||
Female Total Testosterone (ng/dL) | Group I | 100 | 62.59 ± 20.86 | 20.00 | 79.00 | 10.06 | <0.001 ** | 0.001 * |
Group IIa | 70 | 78.53 ± 26.83 | 65.00 | 92.00 | 0.04 * | |||
Group IIb | 30 | 74.33 ± 23.79 | 59.00 | 80.00 | 0.51 N | |||
Female FREE Testosterone (ng/dL) | Group I | 100 | 1.18 ± 0.06 | 0.66 | 1.56 | 6.99 | 0.001 * | 0.001 * |
Group IIa | 70 | 1.33 ± 0.44 | 1.02 | 1.81 | 0.04 * | |||
Group IIb | 30 | 1.32 ± 0.23 | 1.03 | 1.60 | 0.99 NS | |||
Female Testosterone (%) | Group I | 100 | 1.43 ± 0.43 | 1.11 | 1.90 | 8.11 | <0.001 ** | 0.005 * |
Group IIa | 70 | 1.69 ± 0.48 | 1.40 | 2.13 | 0.04 * | |||
Group IIb | 30 | 1.65 ± 0.35 | 1.40 | 2.00 | 0.91 N | |||
DHEAS (μg/dL) | Group I | 100 | 45.48 ± 6.91 | 34.00 | 60.00 | 66.65 | <0.001 ** | <0.001 * |
Group IIa | 70 | 60.33 ± 10.53 | 45.00 | 79.00 | <0.001 ** | |||
Group IIb | 30 | 55.97 ± 7.79 | 45.00 | 72.00 | 0.05 * |
Variable | Group | N | Mean ± SD | Range | F | P | p-Value | |
---|---|---|---|---|---|---|---|---|
Parathyroid Hormone (pg/mL) | Group I | 100 | 57.70 ± 15.54 | 30.00 | 50.00 | 1.8 | 0.17 NS | ----- |
Group IIa | 70 | 62.33 ± 14.95 | 55.00 | 70.00 | ||||
Group IIb | 30 | 61.43 ± 14.46 | 55.00 | 69.00 | ||||
Ca (mg/dL) | Group I | 100 | 9.18 ± 1.45 | 8.50 | 9.90 | 6.05 | 0.002 * | 0.008 * |
Group IIa | 70 | 8.68 ± 0.40 | 7.30 | 9.20 | 0.03 * | |||
Group IIb | 30 | 8.61 ± 0.34 | 8.00 | 9.40 | 0.95 NS | |||
Ph (mg/dL) | Group I | 100 | 3.13 ± 1.04 | 2.40 | 4.00 | 9.85 | <0.00 ** | 0.001 * |
Group IIa | 70 | 3.9 ± 1.33 | 3.50 | 4.90 | 0.02 * | |||
Group IIb | 30 | 3.80 ± 1.27 | 3.40 | 4.20 | 0.92 NS | |||
ALP (U/L) | Group I | 100 | 81.22 ± 14.27 | 55.00 | 105.00 | 2.26 | 0.11 NS | ---- |
Group IIa | 70 | 85.34 ± 10.54 | 60.00 | 105.00 | ||||
Group IIb | 30 | 82.13 ± 10.80 | 62.00 | 100.00 | ||||
25(OH)D (ng/mL) | Group I | 100 | 30.34 ± 5.67 | 20.00 | 40.00 | 47.10 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 22.96 ± 4.15 | 14.00 | 29.00 | 0.002 * | |||
Group IIb | 30 | 26.83 ± 3.37 | 20.00 | 35.00 | 0.001 * | |||
NTx (nM BCE/mM creatinine) | Group I | 100 | 34.07 ± 7.87 | 20.00 | 50.00 | 2.48 | 0.09 NS | ----- |
Group IIa | 70 | 33.96 ± 6.22 | 24.00 | 50.00 | ||||
Group IIb | 30 | 37.20 ± 6.98 | 25.00 | 50.00 | ||||
Osteocalcin (ng/mL) | Group I | 100 | 20.17 ± 3.34 | 15.00 | 25.00 | 195.01 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 11.46 ± 2.99 | 5.00 | 20.00 | <0.001 ** | |||
Group IIb | 30 | 11.67 ± 2.44 | 6.00 | 15.00 | 0.95 NS | |||
PINP (μg/L) | Group I | 100 | 57.80 ± 11.75 | 40.00 | 80.00 | 145.97 | <0.001 ** | <0.001 ** |
Group IIa | 70 | 35.97 ± 6.42 | 25.00 | 45.00 | <0.001 ** | |||
Group IIb | 30 | 33.43 ± 5.21 | 25.00 | 40.00 | 0.43 NS | |||
BMD T-score | Group I | 100 | 0.41 | −0.65 | 0.78 | 4.38 | 0.13 NS | ---- |
Group IIa | 70 | 0.29 | −1.56 | 0.78 | ||||
Group IIb | 30 | 0.23 | −1.50 | 0.70 | ||||
BMD Z-score | Group I | 100 | 0.36 | −0.42 | 0.93 | 4.71 | 0.10 NS | ---- |
Parameters and Groups | NTx (nM BCE/mM Creatinine) | Osteocalcin (ng/mL) | PINP (μg/L) | |
---|---|---|---|---|
Osteocalcin (ng/mL) | r | 0.030 | --- | −0.046 |
P | 0.768 | --- | 0.647 | |
PINP (μg/L) | r | −0.135 | −0.046 | --- |
P | 0.181 | 0.647 | --- | |
Age (years) | r | 0.047 | 0.188 | 0.059 |
P | 0.644 | 0.061 | 0.563 | |
WC (cm) | r | −0.136 | 0.061 | 0.200* |
P | 0.176 | 0.544 | 0.046 | |
BMI (Kg/m2) | r | −0.250 * | 0.018 | 0.165 |
P | 0.012 | 0.859 | 0.101 | |
SBP (mmHg) | r | −0.010 | 0.139 | 0.054 |
P | 0.920 | 0.167 | 0.592 | |
DBP (mmHg) | r | −0.070 | 0.195 | 0.058 |
P | 0.491 | 0.052 | 0.567 | |
Fasting Glucose (mg/dL) | r | −0.094 | 0.015 | −0.196 |
P | 0.354 | 0.886 | 0.051 | |
Fasting Insulin (μU/mL) | r | −0.352 ** | 0.006 | 0.143 |
P | <0.001 | 0.955 | 0.156 | |
HOMA IR | r | −0.343 ** | −0.004 | 0.046 |
P | <0.001 | 0.970 | 0.646 | |
QICKI | r | 0.348 ** | −0.021 | −0.125 |
P | <0.001 | 0.833 | 0.216 | |
Cholesterol (mg/dL) | r | −0.197 * | −0.018 | −0.036 |
P | 0.049 | 0.863 | 0.723 | |
TG (mg/dL) | r | 0.005 | 0.080 | −0.066 |
P | 0.964 | 0.428 | 0.514 | |
HDL (mg/dL) | r | 0.038 | 0.104 | −0.120 |
P | 0.708 | 0.302 | 0.236 | |
LDL (mg/dL) | r | −0.166 | −0.094 | 0.001 |
P | 0.098 | 0.353 | 0.993 | |
Non-HDL (mg/dL) | r | −0.188 | −0.051 | 0.010 |
P | 0.061 | 0.613 | 0.920 | |
FSH (U/L) | r | −0.022 | 0.047 | −0.077 |
P | 0.828 | 0.645 | 0.449 | |
LH (U/L) | r | −0.094 | −0.050 | −0.024 |
P | 0.352 | 0.624 | 0.809 | |
PRL (ng/mL) | r | 0.001 | −0.294 * | 0.083 |
P | 0.990 | 0.003 | 0.412 | |
Estrogen (pg/mL) | r | 0.138 | 0.068 | 0.049 |
P | 0.172 | 0.502 | 0.631 | |
SHGB (nmol/L) | r | 0.110 | 0.117 | −0.144 |
P | 0.278 | 0.247 | 0.153 | |
Total Testosterone (ng/dL) | r | −0.187 | 0.027 | 0.201 * |
P | 0.062 | 0.787 | 0.044 | |
Female Testosterone (ng/dL) | r | −0.215 * | −0.069 | 0.249 * |
P | 0.032 | 0.492 | 0.013 | |
Female Testosterone (%) | r | −0.124 | −0.132 | 0.159 |
P | 0.219 | 0.191 | 0.115 | |
DHEAS (μg/dL) | r | −0.031 | 0.089 | 0.148 |
P | 0.763 | 0.378 | 0.141 | |
Parathyroid Hormone (pg/mL) | r | 0.047 | 0.256 * | 0.161 |
P | 0.643 | 0.010 | 0.109 | |
Ca (mg/dL) | r | 0.131 | −0.099 | −0.162 |
P | 0.194 | 0.325 | 0.108 | |
Ph (mg/dL) | r | −0.134 | 0.158 | 0.180 |
P | 0.182 | 0.116 | 0.073 | |
ALP (U/L) | r | 0.076 | 0.278 * | 0.100 |
P | 0.451 | 0.005 | 0.321 | |
25(OH)D (ng/mL) | r | 0.140 | 0.218 * | −0.156 |
P | 0.164 | 0.029 | 0.121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhafiri, F.K.; Abdelgawad, F.E.; Mohamed Bakri, G.M.; Saber, T. Insulin Resistance and Bone Metabolism Markers in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study on Females from the Islamic University Medical Center. Medicina 2023, 59, 593. https://doi.org/10.3390/medicina59030593
Aldhafiri FK, Abdelgawad FE, Mohamed Bakri GM, Saber T. Insulin Resistance and Bone Metabolism Markers in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study on Females from the Islamic University Medical Center. Medicina. 2023; 59(3):593. https://doi.org/10.3390/medicina59030593
Chicago/Turabian StyleAldhafiri, Fahad Khalid, Fathy Elsayed Abdelgawad, Gihan Mohamed Mohamed Bakri, and Tamer Saber. 2023. "Insulin Resistance and Bone Metabolism Markers in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study on Females from the Islamic University Medical Center" Medicina 59, no. 3: 593. https://doi.org/10.3390/medicina59030593
APA StyleAldhafiri, F. K., Abdelgawad, F. E., Mohamed Bakri, G. M., & Saber, T. (2023). Insulin Resistance and Bone Metabolism Markers in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study on Females from the Islamic University Medical Center. Medicina, 59(3), 593. https://doi.org/10.3390/medicina59030593