Dynamic Arterial Elastance as a Predictor of Supine-to-Prone Hypotension (SuProne Study): An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Inclusion and Exclusion Criteria
2.3. Anesthesia and Study Method
2.4. Hemodynamic Data Collection
2.5. Definition of Supin-to-Prone Hypotension
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Hemodynamic Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sudheer, P.S.; Logan, S.W.; Ateleanu, B.; Hall, J.E. Haemodynamic effects of the prone position: A comparison of propofol total intravenous and inhalation anaesthesia. Anaesthesia 2006, 61, 138–141. [Google Scholar] [CrossRef]
- De Courson, H.; Boyer, P.; Grobost, R.; Lanchon, R.; Sesay, M.; Nouette-Gaulain, K.; Futier, E.; Biais, M. Changes in dynamic arterial elastance induced by volume expansion and vasopressor in the operating room: A prospective bicentre study. Ann. Intensiv. Care 2019, 9, 117. [Google Scholar] [CrossRef]
- Tabara, Y.; Tachibana-Iimori, R.; Yamamoto, M.; Abe, M.; Kondo, I.; Miki, T.; Kohara, K. Hypotension associated with prone body position: A possible overlooked postural hypotension. Hypertens. Res. 2005, 28, 741–746. [Google Scholar] [CrossRef]
- Yoon, H.K.; Lee, H.C.; Chung, J.; Park, H.P. Predictive Factors for Hypotension Associated with Supine-to-Prone Positional Change in Patients Undergoing Spine Surgery. J. Neurosurg. Anesthesiol. 2020, 32, 140–146. [Google Scholar] [CrossRef]
- Manohar, N.; Ramesh, V.J.; Radhakrishnan, M.; Chakraborti, D. Haemodynamic changes during prone positioning in anaesthetised chronic cervical myelopathy patients. Indian J. Anaesth. 2019, 63, 212–217. [Google Scholar]
- Tang, Y.; Zhu, C.; Liu, J.; Wang, A.; Duan, K.; Li, B.; Yuan, H.; Zhang, H.; Yao, M.; Ouyang, W. Association of Intraoperative Hypotension with Acute Kidney Injury after Noncardiac Surgery in Patients Younger than 60 Years Old. Kidney Blood Press. Res. 2019, 44, 211–221. [Google Scholar] [CrossRef]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef]
- Maheshwari, K.; Turan, A.; Mao, G.; Yang, D.; Niazi, A.K.; Agarwal, D.; Sessler, D.I.; Kurz, A. The association of hypotension during non-cardiac surgery, before and after skin incision, with postoperative acute kidney injury: A retrospective cohort analysis. Anaesthesia 2018, 73, 1223–1228. [Google Scholar] [CrossRef]
- Hsieh, J.K.; Dalton, J.E.; Yang, D.; Farag, E.S.; Sessler, D.I.; Kurz, A.M. The Association Between Mild Intraoperative Hypotension and Stroke in General Surgery Patients. Anesth. Analg. 2016, 123, 933–939. [Google Scholar] [CrossRef]
- Kamming, D.; Clarke, S. Postoperative visual loss following prone spinal surgery. Br. J. Anaesth. 2005, 95, 257–260. [Google Scholar] [CrossRef]
- Bhandari, S.; Pokharel, K.; Sah, B.P. Postoperative Visual Loss Following Spine Surgery: A Case Report. J. Nepal. Med. Assoc. 2019, 57, 269–271. [Google Scholar] [CrossRef]
- Kalb, S.; Fakhran, S.; Dean, B.; Ross, J.; Porter, R.W.; Kakarla, U.K.; Ruggieri, P.; Theodore, N. Cervical spinal cord infarction after cervical spine decompressive surgery. World Neurosurg. 2014, 81, 810–817. [Google Scholar] [CrossRef]
- Li, A.; Swinney, C.; Veeravagu, A.; Bhatti, I.; Ratliff, J. Postoperative Visual Loss Following Lumbar Spine Surgery: A Review of Risk Factors by Diagnosis. World Neurosurg. 2015, 84, 2010–2021. [Google Scholar] [CrossRef]
- Monge García, M.I.; Gil Cano, A.; Gracia Romero, M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit. Care 2011, 15, R15. [Google Scholar] [CrossRef]
- Monge García, M.I.; Guijo González, P.; Gracia Romero, M.; Gil Cano, A.; Rhodes, A.; Grounds, R.M.; Cecconi, M. Effects of arterial load variations on dynamic arterial elastance: An experimental study. Br. J. Anaesth. 2017, 118, 938–946. [Google Scholar] [CrossRef]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052–1060. [Google Scholar] [CrossRef]
- Shin, B.; Maler, S.A.; Reddy, K.; Fleming, N.W. Use of the Hypotension Prediction Index During Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1769–1775. [Google Scholar] [CrossRef]
- Maheshwari, K.; Shimada, T.; Yang, D.; Khanna, S.; Cywinski, J.B.; Irefin, S.A.; Ayad, S.; Turan, A.; Ruetzler, K.; Qiu, Y. Hypotension Prediction Index for Prevention of Hypotension during Moderate- to High-risk Noncardiac Surgery. Anesthesiology 2020, 133, 1214–1222. [Google Scholar] [CrossRef]
- Wong, G.T.C.; Irwin, M.G. Post-induction hypotension: A fluid relationship? Anaesthesia 2021, 76, 15–18. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Park, J.H.; Kwon, J.Y.; Lee, S.E.; Kim, Y.H.; Kim, S.H. Sudden hemodynamic collapse after prone positioning on a Jackson spinal table for spinal surgery. Korean J. Anesthesiol. 2020, 73, 71–74. [Google Scholar] [CrossRef]
- Juri, T.; Suehiro, K.; Tsujimoto, S.; Kuwata, S.; Mukai, A.; Tanaka, K.; Yamada, T.; Mori, T.; Nishikawa, K. Pre-anesthetic stroke volume variation can predict cardiac output decrease and hypotension during induction of general anesthesia. J. Clin. Monit. Comput. 2018, 32, 415–422. [Google Scholar] [CrossRef]
- Ozkose, Z.; Ercan, B.; Unal, Y.; Yardim, S.; Kaymaz, M.; Dogulu, F.; Pasaoglu, A. Inhalation versus total intravenous anesthesia for lumbar disc herniation: Comparison of hemodynamic effects, recovery characteristics, and cost. J. Neurosurg. Anesthesiol. 2001, 13, 296–302. [Google Scholar] [CrossRef]
- Dharmavaram, S.; Jellish, W.S.; Nockels, R.P.; Shea, J.; Mehmood, R.; Ghanayem, A.; Kleinman, B.; Jacobs, W. Effect of prone positioning systems on hemodynamic and cardiac function during lumbar spine surgery: An echocardiographic study. Spine 2006, 31, 1388–1393, discussion 94. [Google Scholar] [CrossRef]
All Patients (n = 47) | No Hypotension (n = 34) | Hypotension (n = 13) | p-Value | |
---|---|---|---|---|
Age, years | 65 (12) | 65 (13) | 69 (9) | 0.289 |
Sex, male/female | 18/29 (38.3%/61.7%) | 15/19 (44.1%/55.9%) | 3/10 (23.1%/76.9%) | 0.315 |
Height, cm | 158 (8) | 160 (8) | 154 (7) | 0.014 |
Body weight, kg | 67 (13) | 69 (13) | 61 (12) | 0.054 |
Body mass index, kg/m2 | 27 (5) | 27 (5) | 26 (4) | 0.377 |
ASA PS | 2 (2–3) | 2 (2–3) | 2 (2–3) | 0.499 |
Smoker | 6 (12.8%) | 4 (11.8%) | 2 (15.4%) | >0.999 |
Hypertension | 29 (61.7%( | 19 (55.9%) | 10 (76.9%) | 0.315 |
Alpha 2 receptor blocker | 17 (36.2%) | 10 (29.4%) | 7 (53.8%) | 0.119 |
Beta-blocker | 5 (10.6%) | 4 (11.8%) | 1 (7.7%) | 1.000 |
Calcium channel blocker | 18 (38.3%) | 12 (35.3%) | 6 (46.2%) | 0.493 |
Diabetes mellitus | 11 (23.4%) | 9 (26.5%) | 2 (15.4%) | 0.702 |
Dyslipidemia | 18 (38.3%) | 14 (41.2%) | 4 (30.8%) | 0.739 |
No Hypotension (n = 34) | Hypotension (n = 13) | Difference (95% CI) | p-Value | |
---|---|---|---|---|
Mean arterial pressure, mmHg | ||||
Supine | 81 (16) | 95 (22) | −14 (−29–0) | 0.047 * |
Prone | 84 (15) | 64 (14) | 20 (10–29) | <0.001 * |
Systolic blood pressure, mmHg | ||||
Supine | 113 (24) | 142 (30) | 9 (−9–27) | 0.002 * |
Prone | 112 (23) | 88 (33) | 24 (7–41) | 0.007 * |
Diastolic blood pressure, mmHg | ||||
Supine | 62 (12) | 70 (16) | −8 (−17–1) | 0.078 |
Prone | 69 (14) | 54 (16) | 15 (6–25) | 0.003 * |
Stroke volume index, mL/m2 | ||||
Supine | 29 (7) | 29 (10) | −1 (−6–5) | 0.846 |
Prone | 27 (7) | 28 (7) | −2 (−6–3) | 0.484 |
Cardiac index, L/min/m2 | ||||
Supine | 2.1 (0.6) | 2.5 (0.9) | −0.4 (−0.8–0) | 0.179 |
Prone | 1.8 (0.5) | 2.0 (0.5) | −0.2 (−0.5–0) | 0.210 |
Stroke volume variation, % | ||||
Supine | 14.5 (12.0–18.0) | 16.0 (11.5–18.3) | 1.0 (−3.0–4.0) | 0.625 |
Prone | 14.0 (10.0–17.0) | 15.0 (9.8–18.5) | 0 (−3.0–5.0) | 0.849 |
Pulse pressure variance, % | ||||
Supine | 17.0 (12.0–22.0) | 17.0 (13.8–22.3) | 1.0 (−3.0–6.0) | 0.592 |
Prone | 13.0 (11.0–18.0) | 14.0 (9.8–22.8) | 1.0 (−4.0–6.0) | 0.567 |
Eadyn | ||||
Supine | 1.1 (0.9–1.5) | 1.2 (1.2–1.3) | 0.1 (−0.1–0.3) | 0.466 |
Prone | 1.1 (0.8–1.3) | 1.1 (0.9–1.3) | 0.0 (−0.2–0.2) | 0.886 |
dP/dt, mmHg/s | ||||
Supine | 828 (332) | 1140 (338) | −312 (−538 to −86) | 0.008 * |
Prone | 651 (243) | 610 (258) | 41 (−126–208) | 0.623 |
Hypotension prediction index | ||||
Supine | 33.0 (14.0–96.0) | 13.0 (2.5–60.0) | −13.0 (−36.0–1.0) | 0.069 |
Prone | 25.0 (11.0–68.0) | 94.5 (49.5–100) | 41.0 (1.0–78.0) | 0.021 * |
Tidal volume, mL | 443 (63) | 434 (62) | 10 (−32–51) | 0.639 |
Airway pressure, mmHg | ||||
Supine | 17 (3) | 16 (3) | 1 (−2–3) | 0.595 |
Prone | 19 (5) | 16 (4) | 3 (0–5) | 0.074 |
Δ (prone-supine) | 2.0 (0–3.0) | 0 (−0.25–1.25) | −1.0 (−3.0–0) | 0.051 |
AUC (95% CI) | Threshold | Sensitivity (%) | Specificity (%) | p-Value | |
---|---|---|---|---|---|
Definition 1: Mean arterial pressure decrease > 20% compared to the supine position | |||||
Mean arterial pressure | 0.678 (0.525–0.806) | >103 | 46.2 | 94.1 | 0.076 |
Systolic blood pressure | 0.760 (0.613–0.873) | >139 | 61.5 | 82.4 | 0.003 * |
Stroke volume index | 0.517 (0.370–0.662) | >30 | 50.0 | 71.4 | 0.869 |
Pulse pressure variance | 0.551 (0.399–0.696) | >9 | 100.0 | 17.7 | 0.580 |
Eadyn | 0.569 (0.416–0.713) | >1.1 | 76.9 | 55.9 | 0.440 |
dP/dt | 0.765 (0.617–0.877) | >981 | 75.0 | 82.4 | 0.002 * |
Hypotension prediction index | 0.678 (0.524–0.808) | ≤11 | 50.0 | 82.4 | 0.055 |
Definition 2: Mean arterial pressure < 65 mmHg in the prone position | |||||
Mean arterial pressure | 0.867 (0.736–0.948) | ≤75 | 88.9 | 79.0 | <0.001 * |
Systolic blood pressure | 0.757 (0.610–0.870) | ≤97 | 66.7 | 89.5 | 0.004 * |
Stroke volume variation | 0.632 (0.478–0.768) | >15 | 77.8 | 63.2 | 0.144 |
Pulse pressure variance | 0.680 (0.528–0.808) | >16 | 88.9 | 52.6 | 0.022 * |
Eadyn | 0.596 (0.443–0.737) | >1 | 77.8 | 42.1 | 0.381 |
dP/dt | 0.631 (0.476–0.768) | ≤815 | 77.8 | 64.9 | 0.221 |
Hypotension prediction index | 0.832 (0.692–0.926) | >51 | 88.9 | 75.7 | <0.001 * |
Definition 3: Systolic blood pressure < 100 mmHg in the prone position | |||||
Mean arterial pressure | 0.783 (0.639–0.890) | ≤75 | 63.16 | 85.71 | <0.001 * |
Systolic blood pressure | 0.746 (0.598–0.862) | ≤97 | 52.63 | 100 | 0.002 * |
Stroke volume variation | 0.684 (0.532–0.812) | >15 | 63.16 | 67.86 | 0.020 * |
Pulse pressure variance | 0.714 (0.564–0.836) | >13 | 94.74 | 42.86 | 0.005 * |
Eadyn | 0.601 (0.447–0.741) | >1.1 | 73.68 | 60.71 | 0.242 |
dP/dt | 0.653 (0.498–0.787) | ≤815 | 66.67 | 71.43 | 0.088 |
Hypotension prediction index | 0.790 (0.644–0.896) | >35 | 72.22 | 82.14 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.H.; Park, J.; Shim, J.-G.; Lee, S.H.; Ryu, K.-H.; Jeong, T.; Cho, E.-A. Dynamic Arterial Elastance as a Predictor of Supine-to-Prone Hypotension (SuProne Study): An Observational Study. Medicina 2023, 59, 2049. https://doi.org/10.3390/medicina59122049
Ahn JH, Park J, Shim J-G, Lee SH, Ryu K-H, Jeong T, Cho E-A. Dynamic Arterial Elastance as a Predictor of Supine-to-Prone Hypotension (SuProne Study): An Observational Study. Medicina. 2023; 59(12):2049. https://doi.org/10.3390/medicina59122049
Chicago/Turabian StyleAhn, Jin Hee, Jiyeon Park, Jae-Geum Shim, Sung Hyun Lee, Kyoung-Ho Ryu, Taeho Jeong, and Eun-Ah Cho. 2023. "Dynamic Arterial Elastance as a Predictor of Supine-to-Prone Hypotension (SuProne Study): An Observational Study" Medicina 59, no. 12: 2049. https://doi.org/10.3390/medicina59122049