Assessment of Selected Anthropometric Parameters Influence on Balance Parameters in Children
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Błaszczyk, J. Kontrola stabilności postawy ciała. KOSMOS 1993, 42, 473–486. [Google Scholar]
- Held-Ziółkowska, M. Organizacja zmysłowa i biomechanika układu równowagi. Magazyn Otolaryngol. 2006, 5, 39–46. [Google Scholar]
- Atwater, S.W.; Crowe, T.K.; Deitz, J.C.; Richardson, P.K. Interrater and Test-Retest Reliability of Two Pediatric Balance Tests. Phys. Ther. 1990, 70, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Miko, I.; Szerb, I.; Szerb, A.; Bender, T.; Poór, G. Effect of a balance-training programme on postural balance, aerobic capacity and frequency of falls in women with osteoporosis: A randomized controlled trial. J. Rehabil. Med. 2018, 50, 542–547. [Google Scholar] [CrossRef]
- Ng, S.S.M.; Guo, X.; Liu, K.; Ki, W.; Louie, L.H.T.; Chung, R.C.; Macfarlane, D.J. Task-Specific Balance Training Improves the Sensory Organisation of Balance Control in Children with Developmental Coordination Disorder: A Randomised Controlled Trial. Sci. Rep. 2016, 6, 20945. [Google Scholar] [CrossRef]
- Condon, C.; Cremin, K. Static Balance Norms in Children. Physiother. Res. Int. 2013, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Paszko-Patej, G.; Terlikowski, R.; Kułak, W.; Sienkiewicz, D.; Okurowska-Zawada, B. Czynniki wpływające na proces kształtowania równowagi dziecka oraz możliwości jej obiektywnej oceny. Neurol. Dziecięca 2011, 20, 121–127. [Google Scholar]
- Lin, S.-I.; Woollacott, M.H. Postural Muscle Responses Following Changing Balance Threats in Young, Stable Older, and Unstable Older Adults. J. Mot. Behav. 2002, 34, 37–44. [Google Scholar] [CrossRef]
- Powers, C.M. The Influence of Altered Lower-Extremity Kinematics on Patellofemoral Joint Dysfunction: A Theoretical Perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef]
- Kostiukow, A.; Rostkowska, E.; Samborski, W. Badanie zdolności zachowania równowagi ciała. Ann. Acad. Med. Stetin. 2009, 55, 102–109. [Google Scholar] [PubMed]
- Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, M.; Hortobágyi, T.; Muehlbauer, T.; Gollhofer, A.; Granacher, U. Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis. Sports Med. 2014, 45, 557–576. [Google Scholar] [CrossRef] [PubMed]
- Mraz, M.; Nowacka, U.; Skrzek, A.; Mraz, M.; Dębiec-Bąk, A.; Sidorowska, M. Postural stability of women at the age of 8–22 on the basis of posturographic examinations. Physiotherapy 2010, 18, 35–43. [Google Scholar] [CrossRef]
- Wolański, N. Rozwój Biologiczny Człowieka, 7th ed.; Wydawnictwo PWN: Warszawa, Poland, 2006. [Google Scholar]
- Roncesvalles, M.N.; Schmitz, C.; Zedka, M.; Assaiante, C.; Woollacott, M. From Egocentric to Exocentric Spatial Orientation: Development of Posture Control in Bimanual and Trunk Inclination Tasks. J. Mot. Behav. 2005, 37, 404–416. [Google Scholar] [CrossRef]
- Riach, C.; Starkes, J. Stability limits of quiet standing postural control in children and adults. Gait Posture 1993, 1, 105–111. [Google Scholar] [CrossRef]
- Berger, W.; Quintern, J.; Dietz, V. Stance and gait perturbations in children: Developmental aspects of compensatory mechanisms. Electroencephalogr. Clin. Neurophysiol. 1985, 61, 385–395. [Google Scholar] [CrossRef]
- Assaiante, C.; Mallau, S.; Viel, S.; Jover, M.; Schmitz, C. Development of Postural Control in Healthy Children: A Functional Approach. Neural Plast. 2005, 12, 109–118. [Google Scholar] [CrossRef]
- Sá, C.D.S.C.D.; Boffino, C.C.; Ramos, R.T.; Tanaka, C. Development of postural control and maturation of sensory systems in children of different ages a cross-sectional study. Br. J. Phys. Ther. 2017, 22, 70–76. [Google Scholar] [CrossRef]
- Villarrasa-Sapiña, I.; García-Massó, X.; Serra-Añó, P.; García-Massó, X.; González, L.M.; Lurbe, E. Differences in intermittent postural control between normal-weight and obese children. Gait Posture 2016, 49, 1–6. [Google Scholar] [CrossRef]
- Peterson, M.L.; Christou, E.; Rosengren, K. Children achieve adult-like sensory integration during stance at 12-years-old. Gait Posture 2006, 23, 455–463. [Google Scholar] [CrossRef]
- Steindl, R.; Kunz, K.; Schrott-Fischer, A.; Scholtz, A. Effect of age and sex on maturation of sensory systems and balance control. Dev. Med. Child Neurol. 2006, 48, 477–482. [Google Scholar] [CrossRef]
- Nowotny, J. Ćwiczenia Korekcyjne w Systemie Stacyjnym; AWF: Katowice, Poland, 2001. [Google Scholar]
- World Health Organization Regional Office for Europe. Adolescent Obesity and Related Behaviours: Trends and Inequalities in the WHO European Region, 2002–2014; World Health Organization Regional Office for Europe: København, Denmark, 2017. [Google Scholar]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.A.; Góźdź, M.; Litwin, M.S. The prevalence of overweight and obesity among Polish school—Aged children and adolescents. Przegl. Epidemiol. 2016, 70, 641–651. [Google Scholar]
- Silferi, V.; Rougier, P.; Labelle, H.; Allard, P. Postural control in idiopathic scoliosis: Comparison between healthy and scoliotic subjects. Revue de Chirurgie Orthopedique et Reparatrice de L’appareil Moteur 2004, 90, 215–225. [Google Scholar] [CrossRef]
- Haumont, T.; Gauchard, G.C.; Lascombes, P.; Perrin, P.P. Postural Instability in Early-Stage Idiopathic Scoliosis in Adolescent Girls. Spine 2011, 36, E847–E854. [Google Scholar] [CrossRef]
- Walicka-Cupryś, K.; Skalska-Izdebska, R.; Drzał-Grabiec, J.; Sołek, A. Correlation between body posture and postural stability of school children. Adv. Rehabil. 2013, 27, 47–54. [Google Scholar] [CrossRef]
- Colné, P.; Frelut, M.; Peres, G.; Thoumie, P. Postural control in obese adolescents assessed by limits of stability and gait initiation. Gait Posture 2008, 28, 164–169. [Google Scholar] [CrossRef]
- Hue, O.; Simoneau, M.; Marcotte, J.; Berrigan, F.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Body weight is a strong predictor of postural stability. Gait Posture 2007, 26, 32–38. [Google Scholar] [CrossRef]
- Wyszyńska, J.; Podgórska-Bednarz, J.; Drzał-Grabiec, J.; Rachwał, M.; Baran, J.; Czenczek-Lewandowska, E.; Leszczak, J.; Mazur, A. Analysis of Relationship between the Body Mass Composition and Physical Activity with Body Posture in Children. BioMed Res. Int. 2016, 2016, 1851670. [Google Scholar] [CrossRef]
- McGraw, B.; McClenaghan, B.A.; Williams, H.G.; Dickerson, J.; Ward, D.S. Gait and postural stability in obese and nonobese prepubertal boys. Arch. Phys. Med. Rehabil. 2000, 81, 484–489. [Google Scholar] [CrossRef]
- Sun, F.-H.; Wang, L.; Wang, L. Effects of weight management program on postural stability and neuromuscular function among obese children: Study protocol for a randomized controlled trial. Trials 2015, 16, 143. [Google Scholar] [CrossRef]
Variable | Boys (n = 123) | Girls (n = 100) | |||||||
---|---|---|---|---|---|---|---|---|---|
X | ±SD | Min | Max | X | ±SD | Min | Max | ||
Age [y] | 11.46 | 0.66 | 10 | 13 | 11.55 | 0.72 | 10 | 13 | |
Body mass [kg] | 41.97 | 11.08 | 25.1 | 70.8 | 42.14 | 8.8 | 24.5 | 77.0 | |
Height [cm] | 148.63 | 8.88 | 131 | 172 | 147.51 | 9.23 | 125 | 170 | |
Mean deviation from the axis | X | 0.072 | 0.06 | 0.004 | 0.308 | 0.07 | 0.06 | 0.001 | 0.29 |
Y | 0.05 | 0.06 | 0.0003 | 0.269 | 0.05 | 0.04 | 0.002 | 0.27 | |
Pathway length | 22.78 | 12.85 | 5.87 | 83.2 | 23.28 | 13.81 | 5.69 | 96.95 | |
Area | 0.88 | 0.56 | 0.1 | 2.76 | 0.89 | 0.49 | 0.1 | 2.49 |
Variable | Mean X-Axis Deviation | Mean Y-Axis Deviation | Pathway Length | |
---|---|---|---|---|
Entire study group | ||||
Age | R | −0.006 | −0.05 | 0.07 |
(p) | 0.93 | 0.42 | 0.28 | |
Children aged 10 | ||||
Body mass [kg] | R | −0.33 | 0.26 | 0.011 |
(p) | 0.37 | 0.72 | 0.97 | |
Height [cm] | R | 0.1 | 0.5 | −0.27 |
(p) | 0.77 | 0.19 | 0.61 | |
Children aged 11 | ||||
Body mass [kg] | R | 0.18 | 0.03 | 0.12 |
(p) | 0.07 | 0.79 | 0.23 | |
Height [cm] | R | 0.16 | 0.02 | 0.07 |
(p) | 0.1 | 0.86 | 0.45 | |
Children aged 12 | ||||
Body mass [kg] | R | 0.17 | 0.37 | 0.13 |
(p) | 0.1 | <0.001 | 0.2 | |
Height [cm] | R | 0.05 | 0.17 | 0.2 |
(p) | 0.6 | 0.09 | 0.047 | |
Children aged 13 | ||||
Body mass [kg] | R | −0.03 | 0.46 | −0.07 |
(p) | 0.92 | 0.17 | 0.84 | |
Height [cm] | R | 0.18 | −0.29 | −0.28 |
(p) | 0.59 | 0.37 | 0.4 |
Variable | Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean X-axis Deviation | Mean Y-axis Deviation | Pathway Length | Area | Mean X-axis Deviation | Mean Y-axis Deviation | Pathway Length | |||
Entire group | Age | R | 0.03 | 0.01 | 0.13 | 0.07 | −0.048 | −0.1 | 0.01 |
(p) | 0.72 | 0.96 | 0.16 | 0.46 | 0.63 | 0.29 | 0.89 | ||
Age 10 | Body mass [kg] | R | −0.1 | 0.53 | 0.47 | 0.46 | −0.78 | −0.67 | −0.9 |
(p) | 0.83 | 0.34 | 0.39 | 0.4 | 0.25 | 0.31 | 0.19 | ||
Height [cm] | R | 0.25 | 0.75 | 0.41 | 0.47 | −0.8 | −0.63 | −0.84 | |
(p) | 0.64 | 0.19 | 0.45 | 0.39 | 0.24 | 0.34 | 0.22 | ||
Age 11 | Body mass [kg] | R | 0.2 | 0.04 | 0.2 | 0.17 | 0.17 | −0.02 | −0.06 |
(p) | 0.14 | 0.74 | 0.13 | 0.22 | 0.29 | 0.91 | 0.72 | ||
Height [cm] | R | 0.14 | 0.05 | 0.15 | 0.22 | 0.3 | −0.11 | −0.14 | |
(p) | 0.3 | 0.66 | 0.27 | 0.1 | 0.053 | 0.49 | 0.38 | ||
Age 12 | Body mass [kg] | R | 0.03 | 0.33 | 0.1 | 0.13 | 0.37 | 0.45 | 0.17 |
(p) | 0.84 | 0.02 | 0.45 | 0.34 | 0.02 | 0.01 | 0.26 | ||
Height [cm] | R | 0.003 | 0.18 | 0.21 | 0.18 | 0.12 | 0.17 | 0.2 | |
(p) | 0.98 | 0.2 | 0.13 | 0.2 | 0.43 | 0.26 | 0.2 | ||
Age 13 | Body mass [kg] | R | −0.52 | 0.67 | 0.73 | 0.94 | 0.37 | −0.26 | −0.63 |
(p) | 0.41 | 0.31 | 0.28 | 0.18 | 0.44 | 0.59 | 0.2 | ||
Height [cm] | R | −0.16 | −0.02 | −0.07 | 0.72 | 0.32 | −0.75 | −0.37 | |
(p) | 0.79 | 0.97 | 0.9 | 0.27 | 0.5 | 0.14 | 0.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turon-Skrzypinska, A.; Uździcki, A.; Przybylski, T.; Szylinska, A.; Marchelek-Myśliwiec, M.; Rył, A.; Rotter, I. Assessment of Selected Anthropometric Parameters Influence on Balance Parameters in Children. Medicina 2020, 56, 176. https://doi.org/10.3390/medicina56040176
Turon-Skrzypinska A, Uździcki A, Przybylski T, Szylinska A, Marchelek-Myśliwiec M, Rył A, Rotter I. Assessment of Selected Anthropometric Parameters Influence on Balance Parameters in Children. Medicina. 2020; 56(4):176. https://doi.org/10.3390/medicina56040176
Chicago/Turabian StyleTuron-Skrzypinska, Agnieszka, Artur Uździcki, Tomasz Przybylski, Aleksandra Szylinska, Małgorzata Marchelek-Myśliwiec, Aleksandra Rył, and Iwona Rotter. 2020. "Assessment of Selected Anthropometric Parameters Influence on Balance Parameters in Children" Medicina 56, no. 4: 176. https://doi.org/10.3390/medicina56040176
APA StyleTuron-Skrzypinska, A., Uździcki, A., Przybylski, T., Szylinska, A., Marchelek-Myśliwiec, M., Rył, A., & Rotter, I. (2020). Assessment of Selected Anthropometric Parameters Influence on Balance Parameters in Children. Medicina, 56(4), 176. https://doi.org/10.3390/medicina56040176