Regulation and Clinical Implication of Arginine Vasopressin in Patients with Severe Aortic Stenosis Referred to Trans-Catheter Aortic Valve Implantation
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Measurement of P-AVP
3.3. Association of P-AVP with Other Baseline Clinical Parameters
3.4. Clinical Variables Following TAVI
3.5. Prognostic Implication of P-AVP Following TAVI
4. Discussion
4.1. Regulation of p-AVP: Non-Osmotic Pathway vs. Osmotic Pathway
4.2. Impact of P-AVP on Post-TAVI Outcome
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Baseline | After TAVI | p-Value | |
---|---|---|---|
Laboratory data | |||
Blood urea nitrogen (mg/dL) | 23.9 ± 9.8 | 25.8 ± 9.6 | <0.01 * |
Creatinine (mg/dL) | 1.0 ± 0.4 | 0.95 ± 0.4 | <0.01 * |
Sodium (mEq/L) | 140.2 ± 2.5 | 139.1 ± 3.1 | <0.01 * |
Glucose (mg/dL) | 113.3 ± 35.2 | 98.7 ± 29.2 | <0.01 * |
B-type natriuretic peptide (pg/mL) | 377.6 ± 370.0 | 174.8 ± 193.3 | <0.01 * |
plasma osmolality (mOsm/L) | 290.1 ± 6.3 | 288.3 ± 7.3 | <0.01 * |
Arginine vasopressin (pg/mL) | 1.45 ± 1.13 | 1.29 ± 0.93 | <0.01 * |
Urine data | |||
Urine osmolality (mOsm/L) | 435.4 ± 123.0 | 434.6 ± 138.8 | 0.97 |
Urine sodium (mEq/L) | 80.2 ± 29.6 | 75.6 ± 27.3 | 0.06 |
Urine creatinine (mg/dL) | 67.6 ± 37.6 | 67.4 ± 34.5 | 0.78 |
Urine aquaporin-2 (ng/mL) | 3.4 ± 4.0 | 4.2 ± 4.9 | 0.17 |
Echocardiogram | |||
Left ventricular diastolic diameter (mm) | 45.8 ± 6.6 | 45.5 ± 6.3 | 0.15 |
Left ventricular ejection fraction (%) | 62.9 ± 11.7 | 65.1 ± 10.7 | <0.01 * |
Peak velocity of aortic valve flow (m/s) | 4.51 ± 0.73 | 2.10 ± 0.47 | <0.01 * |
Mean pressure gradient through aortic valve (mmHg) | 50.0 ± 17.2 | 10.3 ± 5.0 | <0.01 * |
Aortic valve area (cm2) | 0.58 ± 0.15 | 1.47 ± 0.30 | <0.01 * |
References
- Robertson, G.L. Antidiuretic hormone. Normal and disordered function. Endocrinol. Metab. Clin. N. Am. 2001, 30, 671–694. [Google Scholar] [CrossRef]
- Robertson, G.L.; Mahr, E.A.; Athar, S.; Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Investig. 1973, 52, 2340–2352. [Google Scholar] [CrossRef] [PubMed]
- Funayama, H.; Nakamura, T.; Saito, T.; Yoshimura, A.; Saito, M.; Kawakami, M.; Ishikawa, S.E. Urinary excretion of aquaporin-2 water channel exaggerated dependent upon vasopressin in congestive heart failure. Kidney Int. 2004, 66, 1387–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Ishikawa, S.E.; Sasaki, S.; Nakamura, T.; Rokkaku, K.; Kawakami, A.; Honda, K.; Marumo, F.; Saito, T. Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J. Clin. Endocrinol. Metab. 1997, 82, 1823–1827. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.R.; Francis, G.S.; Cowley, A.W., Jr.; Goldenberg, I.F.; Cohn, J.N. Hemodynamic effects of infused arginine vasopressin in congestive heart failure. J. Am. Coll. Cardiol. 1986, 8, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Szatalowicz, V.L.; Arnold, P.E.; Chaimovitz, C.; Bichet, D.; Berl, T.; Schrier, R.W. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N. Engl. J. Med. 1981, 305, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Kinugawa, K.; Hatano, M.; Fujino, T.; Inaba, T.; Maki, H.; Kinoshita, O.; Nawata, K.; Kyo, S.; Ono, M.; et al. Low cardiac output stimulates vasopressin release in patients with stage d heart failure. Circ. J. 2014, 78, 2259–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2485–2491. [Google Scholar] [CrossRef]
- Ramirez-Gil, J.F.; Drobinski, G.; Carayon, A.; Isnard, R.; Hoffman, O.; Sotirov, I.; Chanton, E.; Montalescot, G.; Thomas, D. [Neurohormonal profile in aortic valve stenosis]. Arch. Mal. Coeur Vaiss. 1993, 86, 1001–1007. [Google Scholar] [PubMed]
- Jensen, L.W.; Bagger, J.P.; Pedersen, E.B. Twenty-four-hour ambulatory blood pressure and vasoactive hormones in valvular aortic disease. Blood Press 1996, 5, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III.; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: Executive summary: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 2014, 129, 2440–2492. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoghbi, W.A.; Farmer, K.L.; Soto, J.G.; Nelson, J.G.; Quinones, M.A. Accurate noninvasive quantification of stenotic aortic valve area by Doppler echocardiography. Circulation 1986, 73, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrier, R.W.; Abraham, W.T. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 1999, 341, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Rasokat, U.; Renker, M.; Liebetrau, C.; van Linden, A.; Arsalan, M.; Weferling, M.; Rolf, A.; Doss, M.; Möllmann, H.; Walther, T.; et al. 1-year survival after TAVR of patients with low-flow, low-gradient and high-gradient aortic valve stenosis in matched study populations. JACC Cardiovasc. Interv. 2019, 12, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Fujiki, H.; Yamamura, Y.; Nakamura, S.; Mori, T. Tolvaptan, an orally active vasopressin V(2)-receptor antagonist—Pharmacology and clinical trials. Cardiovasc. Drug Rev. 2007, 25, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, M.; Kataoka, A.; Nara, Y.; Nagura, F.; Kawashima, H.; Hioki, H.; Nakashima, M.; Watanabe, Y.; Yokoyama, N.; Kozuma, K. Clinical safety and efficacy of tolvaptan for acute phase therapy in patients with low-flow and normal-flow severe aortic stenosis. Heart Vessel. 2019, 34, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, D.E.; Sabbah, H.N.; Goldsmith, S.R.; Greene, S.J.; Ambrosy, A.P.; Fought, A.J.; Kwasny, M.J.; Swedberg, K.; Yancy, C.W.; Konstam, M.A.; et al. Association of arginine vasopressin levels with outcomes and the effect of V2 blockade in patients hospitalized for heart failure with reduced ejection fraction: Insights from the EVEREST trial. Circ. Heart Fail. 2013, 6, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N = 155 | |
---|---|
Demographics | |
Age (years) | 85.4 ± 4.6 |
Male | 38 (24%) |
Body surface area (m2) | 1.40 ± 0.17 |
NYHA functional class | I (3), II (75), III (74), IV (3) |
STS score (%) | 6.7 ± 3.4 |
Hypertension | 115 (74%) |
Diabetes mellitus | 24 (15%) |
Medication | |
ACE inhibitor/ARB | 87 (56%) |
Beta-blocker | 49 (32%) |
Aldosterone antagonist | 43 (28%) |
Diuretics | 83 (54%) |
Laboratory data | |
Blood urea nitrogen (mg/dL) | 23.9 ± 9.8 |
Creatinine (mg/dL) | 1.0 ± 0.4 |
Sodium (mEq/L) | 140.2 ± 2.5 |
Glucose (mg/dL) | 113.3 ± 35.2 |
B-type natriuretic peptide (pg/mL) | 377.6 ± 370.0 |
Plasma osmolality (mOsm/L) | 290.1 ± 6.3 |
Plasma arginine vasopressin (pg/mL) | 1.45 ± 1.13 |
Urine data | |
Urine osmolality (mOsm/L) | 435.4 ± 123.0 |
Urine sodium (mEq/L) | 80.2 ± 29.6 |
Urine creatinine (mg/dL) | 67.6 ± 37.6 |
Urine aquaporin-2 (ng/mL) | 3.35 ± 4.00 |
Echocardiogram | |
Left ventricular diastolic diameter (mm) | 45.8 ± 6.6 |
Left ventricular ejection fraction (%) | 62.9 ± 11.7 |
Left atrial diameter, mm | 42 ± 9 |
Peak velocity of aortic valve flow (m/sec) | 4.51 ± 0.73 |
Mean pressure gradient through aortic valve (mmHg) | 50.0 ± 17.2 |
Aortic valve area (cm2) | 0.58 ± 0.15 |
Hemodynamics | |
Right atrial pressure (mmHg) | 5.4 ± 2.7 |
Mean pulmonary artery pressure (mmHg) | 19.6 ± 5.6 |
Pulmonary artery wedge pressure (mmHg) | 12.3 ± 5.0 |
Cardiac index (L/min/m2) | 2.76 ± 0.54 |
r Value | p-Value | |
---|---|---|
Hemodynamics | ||
Right atrial pressure (mmHg) | −0.06 | 0.41 |
Pulmonary artery wedge pressure (mmHg) | 0.00 | 0.98 |
Cardiac index (L/min/m2) | −0.13 | 0.10 |
Echocardiography data | ||
Left atrial diameter (mm) | 0.12 | 0.32 |
Peak velocity (m/s) | −0.02 | 0.84 |
Mean pressure gradient (mmHg) | 0.01 | 0.94 |
Aortic valve area (cm2) | −0.02 | 0.84 |
Laboratory data | ||
B-type natriuretic peptide (pg/mL) | 0.13 | 0.12 |
r Value | p-Value | |
---|---|---|
Plasma osmolality (mOsm/L) | 0.35 | <0.01 * |
Sodium (mEq/L) | 0.07 | 0.36 |
Blood urea nitrogen (mg/dL) | 0.27 | <0.01 * |
Glucose (mg/dL) | −0.07 | 0.34 |
Urine aquaporin-2 (ng/mL) | 0.48 | <0.01 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuwahara, H.; Imamura, T.; Sobajima, M.; Ueno, H.; Kinugawa, K. Regulation and Clinical Implication of Arginine Vasopressin in Patients with Severe Aortic Stenosis Referred to Trans-Catheter Aortic Valve Implantation. Medicina 2020, 56, 165. https://doi.org/10.3390/medicina56040165
Kuwahara H, Imamura T, Sobajima M, Ueno H, Kinugawa K. Regulation and Clinical Implication of Arginine Vasopressin in Patients with Severe Aortic Stenosis Referred to Trans-Catheter Aortic Valve Implantation. Medicina. 2020; 56(4):165. https://doi.org/10.3390/medicina56040165
Chicago/Turabian StyleKuwahara, Hiroyuki, Teruhiko Imamura, Mitsuo Sobajima, Hiroshi Ueno, and Koichiro Kinugawa. 2020. "Regulation and Clinical Implication of Arginine Vasopressin in Patients with Severe Aortic Stenosis Referred to Trans-Catheter Aortic Valve Implantation" Medicina 56, no. 4: 165. https://doi.org/10.3390/medicina56040165
APA StyleKuwahara, H., Imamura, T., Sobajima, M., Ueno, H., & Kinugawa, K. (2020). Regulation and Clinical Implication of Arginine Vasopressin in Patients with Severe Aortic Stenosis Referred to Trans-Catheter Aortic Valve Implantation. Medicina, 56(4), 165. https://doi.org/10.3390/medicina56040165