Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Procedures
2.3. Socio-Demographic Data
2.4. Body Composition Assessment
2.5. Pulse Wave Velocity (PWV) Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McAloon, C.J.; Boylan, L.M.; Hamborg, T.; Stallard, N.; Osman, F.; Lim, P.B.; Hayat, S.A. The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data. Int. J. Cardiol. 2016, 224, 256–264. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Pagidipati, N.J.; Gaziano, T.A. Estimating Deaths from Cardiovascular Disease: A Review of Global Methodologies of Mortality Measurement. Circulation 2013, 127, 749–756. [Google Scholar] [CrossRef]
- Ferreira-González, I. Epidemiología de la enfermedad coronaria. Rev. Española Cardiol. 2014, 67, 139–144. [Google Scholar] [CrossRef]
- Kopeć, G.; Podolec, P.; Podolec, J.; Rubiś, P.; Żmudka, K.; Tracz, W. Atherosclerosis progression affects the relationship between endothelial function and aortic stiffness. Atherosclerosis 2009, 204, 250–254. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Liu, C. Overweightness, obesity and arterial stiffness in healthy subjects: A systematic review and meta-analysis of literature studies. Postgrad. Med. 2017, 129, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Wassertheurer, S.; Rammer, M.; Maurer, E.; Hametner, B.; Mayer, C.C.; Kropf, J.; Eber, B. Validation of a Brachial Cuff-Based Method for Estimating Central Systolic Blood Pressure. Hypertension 2011, 58, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Sun, Z. Aging, arterial stiffness, and hypertension. Hypertension 2015, 65, 252–256. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and dinstinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Recio-Rodriguez, J.I.; Gomez-Marcos, M.A.; Patino-Alonso, M.C.; Agudo-Conde, C.; Rodriguez-Sanchez, E.; Garcia-Ortiz, L. Abdominal obesity vs. general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive. BMC Cardiovasc. Disord. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, L.; Qiu, L.; Huang, L.; Zhu, W.; Yu, Y. Comparison of the ability to identify arterial stiffness between two new anthropometric indices and classical obesity indices in Chinese adults. Atherosclerosis 2017, 263, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Deepika, V.; Vijayakumar, R. Impact of Body Mass Index on Arterial Stiffness in Young Prehypertensives: A Cross Sectional Study. J. Res. Health Sci. 2017, 18, e00402. [Google Scholar] [PubMed]
- Donini, L.M.; Poggiogalle, E.; Del Balzo, V.; Lubrano, C.; Faliva, M.; Opizzi, A.; Perna, S.; Pinto, A.; Rondanelli, M. How to estimate fat mass in overweight and obese subjects. Int. J. Endocrinol. 2013, 2013, 285680. [Google Scholar] [CrossRef] [PubMed]
- Fantin, F.; Comellato, G.; Rossi, A.P.; Grison, E.; Zoico, E.; Mazzali, G.; Zamboli, M. Relationship between neck circumference, insulin resistance and arterial stiffness in overweight and obese subjects. Eur. J. Prev. Cardiol. 2017, 24, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Dervaux, N.; Wubuli, M.; Megnien, J.L.; Chironi, G.; Simon, A. Comparative associations of adiposity measures with cardiometabolic risk burden in asymptomatic subjects. Atherosclerosis 2008, 201, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Schutz, Y.; Dupertuis, Y.M.; Pichard, C. Body composition interpretation: Contributions of the fat-free mass index and the body fat mass index. Nutrition 2003, 19, 597–604. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Strobe, I. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; International Society for Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Glasgow, UK, 2011. [Google Scholar]
- Papaioannou, T.G.; Argyris, A.; Protogerou, A.D.; Vrachatis, D.; Nasothimiou, E.G.; Sfikakis, P.P.; Stergiou, G.S.; Stefanadis, C.I. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: The first feasibility and reproducibility study. Int. J. Cardiol. 2013, 169, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Wassertheurer, S.; Kropf, J.; Weber, T.; van der Giet, M.; Baulmann, J.; Ammer, M.; Hametner, B.; Mayer, C.C.; Eber, B.; Magometschnigg, D.; et al. A new oscillometric method for pulse wave analysis: Comparison with a common tonometric method. J. Hum. Hypertens. 2010, 24, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.; Gohlisch, C.; Harsch-Gladisch, C.; Tölle, M.; Zidek, W.; van der Giet, M. Oscillometric estimation of central blood pressure: Validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press. Monit. 2012, 17, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Tölle, M.; Zidek, W.; van der Giet, M. Validation of the mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press. Monit. 2010, 15, 225–228. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Elsevier Science: New York, NY, USA, 1985. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Yang, L.; Samarasinghe, Y.; Kane, P.; Amiel, S.; Aylwin, S. Visceral adiposity is closely correlated with neck circumference and represents a significant indicator of insulin resistance in WHO grade III obesity. Clin. Endocrinol. 2009, 73, 197–200. [Google Scholar] [CrossRef]
- Fitch, K.V.; Stanley, T.L.; Looby, S.E.; Rope, A.M.; Grinspoon, S.K. Relationship Between Neck Circumference and Cardiometabolic Parameters in HIV-Infected and non-HIV-Infected Adults. Diabetes Care 2011, 34, 1026–1031. [Google Scholar] [CrossRef]
- Corrigan, F.E.; Kelli, H.M.; Dhindsa, D.S.; Heinl, R.E.; Al Mheid, I.; Hammadah, M.; Hayek, S.S.; Sher, S.; Eapen, D.J.; Martin, G.S.; et al. Changes in truncal obesity and fat distribution predict arterial health. J. Clin. Lipidol. 2017, 11, 1354–1360. [Google Scholar] [CrossRef]
- Preis, S.R.; Pencina, M.J.; D’Agostino, R.B.; Meigs, J.B.; Vasan, R.S.; Fox, C.S. Neck Circumference and the Development of Cardiovascular Disease Risk Factors in the Framingham Heart Study. Diabetes Care 2013, 36, e3. [Google Scholar] [CrossRef]
- Canepa, M.; AlGhatrif, M.; Pestelli, G.; Kankaria, R.; Makrogiannis, S.; Strait, J.B.; Brunelli, C.; Lakatta, E.G.; Ferrucci, L. Impact of central obesity on the estimation of carotid-femoral pulse wave velocity. Am. J. Hypertens. 2014, 27, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Sun, D.; Li, X.; Zheng, Q.; Li, L.; Gu, C.; Feng, B. Neck circumference is a valuable tool for identifying metabolic syndrome and obesity in Chinese elder subjects: A community-based study. Diabetes Metab. Res. Rev. 2014, 30, 3069–3076. [Google Scholar] [CrossRef] [PubMed]
- LaBerge, R.C.; Vaccani, J.P.; Gow, R.M.; Gaboury, I.; Hoey, L.; Katz, S.L. Inter-and intra-rater reliability of neck circumference measurements in children. Pediatr. Pulmonol. 2009, 44, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Ataie-Jafari, A.; Namazi, N.; Djalalinia, S.; Chaghamirzayi, P.; Abdar, M.E.; Zadehe, S.S.; Asayesh, H.; Zarei, M.; Gorabi, A.M.; Mansourian, M.; et al. Neck circumference and its association with cardiometabolic risk factors: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2018, 10, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Santosa, S.; Jensen, M.D. Why are we shaped differently, and why does it matter? Am. J. Physiol. Metab. 2008, 295, E531–E535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.D. Gender differences in regional fatty acid metabolism before and after meal ingestion. J. Clin. Investig. 1995, 96, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G.; Mazzone, T. Adipose Tissue and Atherosclerosis: Exploring the Connection. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Shaper, A.G.; Durrington, P.N.; Perry, I.J. Hypertension, serum insulin, obesity and the metabolic syndrome. J. Hum. Hypertens. 1998, 12, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isobe, Y.; Sakurai, M.; Kita, Y.; Takeshita, Y.; Misu, H.; Kaneko, S.; Takamura, T. Fat-free mass and calf circumference as body composition indices to determine non-exercise activity thermogenesis in patients with diabetes. J. Diabetes Investig. 2016, 7, 352–358. [Google Scholar] [CrossRef]
- Gracia-Marco, L.; Moreno, L.A.; Ruiz, J.R.; Ortega, F.B.; de Moraes, A.C.F.; Gottrand, F.; Roccaldo, R.; Marcos, A.; Gómez-Martínez, S.; Dallongeville, J.; et al. Body Composition Indices and Single and Clustered Cardiovascular Disease Risk Factors in Adolescents: Providing Clinical-Based Cut-Points. Prog. Cardiovasc. Dis. 2016, 58, 555–564. [Google Scholar] [CrossRef]
- Julius, S.; Majahalme, S.; Nesbitt, S.; Grant, E.; Kaciroti, N.; Ombao, H.; Gleiberman, L. A “gender blind” relationship of lean body mass and blood pressure in the Tecumseh study. Am. J. Hypertens. 2002, 15, 258–263. [Google Scholar] [CrossRef]
- Brion, M.A.; Ness, A.R.; Davey Smith, G.; Leary, S.D. Association between body composition and blood pressure in a contemporary cohort of 9-year-old children. J. Hum. Hypertens. 2007, 21, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahs, C.A.; Thiebaud, R.S.; Rossow, L.M.; Loenneke, J.P.; Bemben, D.A.; Bemben, M.G. Relationships between central arterial stiffness, lean body mass, and absolute and relative strength in young and older men and women. Clin. Physiol. Funct. Imaging 2018, 38, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Sui, X.; Lavie, C.J.; Blair, S.N. Body Mass Index, the Most Widely Used but also Widely Criticized Index. Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Kimball, T.R.; Khoury, P.; Witt, S.; Morrison, J.A. Correlates of the hemodynamic determinants of blood pressure. Hypertension 1996, 28, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Oterdoom, L.H.; Gansevoort, R.T.; Schouten, J.P.; de Jong, P.E.; Gans, R.O.B.; Bakker, S.J.L. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 2009, 207, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, B359–B365. [Google Scholar] [CrossRef]
- Chin, S.O.; Rhee, S.Y.; Chon, S.; Hwang, Y.C.; Jeong, I.K.; Oh, S.; Ahn, K.J.; Chung, H.Y.; Woo, J.T.; Kim, S.W.; et al. Sarcopenia Is Independently Associated with Cardiovascular Disease in Older Korean Adults: The Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS ONE 2013, 8, e60119. [Google Scholar] [CrossRef]
- Neels, J.G.; Olefsky, J.M. Inflamed fat: What starts the fire? J. Clin. Investig. 2005, 116, 33–35. [Google Scholar] [CrossRef]
- Rodríguez, A.J.; Karim, M.N.; Srikanth, V.; Ebeling, P.R.; Scott, D. Lower muscle tissue is associated with higher pulse wave velocity: A systematic review and meta-analysis of observational study data. Clin. Exp. Pharmacol. Physiol. 2017, 44, 980–992. [Google Scholar] [CrossRef]
- Hercberg, S.; Preziosi, P.; Briançon, S.; Galan, P.; Triol, I.; Malvy, D.; Roussel, A.M.; Favier, A. A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: The SU.VI.MAX study-design, methods, and participant characteristics. SUpplementation en VItamines et. Minéraux AntioXydants. Control. Clin. Trials 1998, 19, 336–351. [Google Scholar] [PubMed]
- Hercberg, S.; Galan, P.; Preziosi, P.; Bertrais, S.; Mennen, L.; Malvy, D.; Roussel, A.M.; Favier, A.; Briançon, S. The SU.VI.MAX Study. Arch. Intern. Med. 2004, 164, 2335. [Google Scholar] [CrossRef] [PubMed]
All (n = 186) | Women (n = 85) | Men (n = 101) | Effect size of differences gHedges (95% CI) | |
---|---|---|---|---|
Age (year) | 42.2 ± 13.0 | 41.4 ± 13.5 | 42.8 ± 12.6 | 0.16 (−0.18; −0.39) |
Weight (kg) | 74.4 ± 14.2 | 65.4 ± 10.5 | 82.0 ± 12.4 | 1.43 (1.10; 1.75) |
Neck circumference (cm) | 36.9 ± 4.2 | 33.6 ± 2.8 | 39.6 ± 3.0 | 2.07 (1.71–2.42) |
Waist circumference (cm) | 86.2 ± 12.66 | 79.4 ± 10.7 | 91.9 ± 11.3 | 1.13 (0.82; 1.44) |
Hip circumference (cm) | 103.5 ± 7.5 | 102.4 ± 7.6 | 104.5 ± 7.2 | 0.27 (−0.01; −0.56) |
WHtr (cm) | 0.50 ± 0.07 | 0.48 ± 0.07 | 0.52 ± 0.07 | 0.55 (0.25; −0.84) |
BMI (kg/m2) | 25.5 ± 4.0 | 24.4 ± 4.2 | 26.3 ± 3.6 | 0.49 (0.19; 0.78) |
FMI (kg/m2) | 6.97 ± 3.13 | 7.92 ± 3.33 | 6.17 ± 2.72 | −0.58 (−0.87; −0.28) |
FFMI (kg/m2) | 18.5 ± 2.5 | 16.4 ± 1.7 | 20.2 ± 1.6 | 2.25 (1.89; 2.62) |
%BF (%) | 26.8 ± 8.9 | 31.5 ± 8.2 | 22.8 ± 7.4 | −1.12 (−1.43; −0.81) |
PWV (m/s) | 6.40 ± 1.30 | 6.12 ± 1.29 | 6.64 ± 1.25 | 0.41 (0.12; −0.70) |
PWV | Age | Weight | Neck | Waist | Hip | WHtr | BMI | PBF | FFMI | FMI | |
---|---|---|---|---|---|---|---|---|---|---|---|
PWV | - | ||||||||||
Age | 0.923 *** | - | |||||||||
Weight | 0.316 *** | 0.161 *** | - | ||||||||
Neck | 0.487 *** | 0.332 *** | 0.850 *** | - | |||||||
Waist | 0.548 *** | 0.433 *** | 0.866 *** | 0.822 ** | - | ||||||
Hip | 0.260 *** | 0.146 * | 0.796 *** | 0.578 *** | 0.737 *** | - | |||||
WHtr | 0.605 *** | 0.522 *** | 0.688 *** | 0.752 *** | 0.936 *** | 0.692 *** | - | ||||
BMI | 0.439 *** | 0.326 *** | 0.811 *** | 0.713 *** | 0.851 *** | 0.810 *** | 0.876 *** | - | |||
%BF | 0.303 *** | 0.354 *** | 0.141 | 0.046 * | 0.343 *** | 0.526 *** | 0.570 *** | 0.567 *** | - | ||
FFMI | 0.274 *** | 0.083 | 0.822 *** | 0.811 *** | 0.693 *** | 0.479 *** | 0.510 *** | 0.551 *** | −0.246 *** | - | |
FMI | 0.359 *** | 0.335 *** | 0.404 *** | 0.294 *** | 0.559 *** | 0.687 *** | 0.734 *** | 0.807 *** | 0.916 *** | −0.009 | - |
F | R2 | B (β) | SE B | t | p | |
---|---|---|---|---|---|---|
Model 1 (Anthropometry) | 731.307 | 0.889 | <0.001 | |||
Age | 0.085 (0.855) | 0.003 | 32.736 | <0.001 | ||
Neck circumference | 0.063 (0.204) | 0.008 | 7.802 | <0.001 | ||
Model 2 (Bioimpedance) | 749.885 | 0.891 | <0.001 | |||
Age | 0.090 (0.906) | 0.002 | 37.056 | <0.001 | ||
FFMI | 0.103 (0.199) | 0.013 | 8.147 | <0.001 | ||
Model 3 (Anthropometry + Bio-impedance) | 509.557 | 0.894 | <0.001 | |||
Age | 0.088 (0.882) | 0.003 | 32.393 | <0.001 | ||
FFMI | 0.065 (0.126) | 0.023 | 2.870 | 0.005 | ||
Neck circumference | 0.029 (0.093) | 0.014 | 2.009 | 0.046 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Martinez, A.; Martinez-Rosales, E.; Alcaraz-Ibañez, M.; Soriano-Maldonado, A.; Artero, E.G. Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study. Medicina 2019, 55, 334. https://doi.org/10.3390/medicina55070334
Hernandez-Martinez A, Martinez-Rosales E, Alcaraz-Ibañez M, Soriano-Maldonado A, Artero EG. Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study. Medicina. 2019; 55(7):334. https://doi.org/10.3390/medicina55070334
Chicago/Turabian StyleHernandez-Martinez, Alba, Elena Martinez-Rosales, Manuel Alcaraz-Ibañez, Alberto Soriano-Maldonado, and Enrique G. Artero. 2019. "Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study" Medicina 55, no. 7: 334. https://doi.org/10.3390/medicina55070334
APA StyleHernandez-Martinez, A., Martinez-Rosales, E., Alcaraz-Ibañez, M., Soriano-Maldonado, A., & Artero, E. G. (2019). Influence of Body Composition on Arterial Stiffness in Middle-Aged Adults: Healthy UAL Cross-Sectional Study. Medicina, 55(7), 334. https://doi.org/10.3390/medicina55070334