Effect of Regular Exercise and Functional Beverages on Changes in Body Weight and Waist Circumference in Healthy Japanese Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. Statistical Methods
3. Results
3.1. Subjects
3.2. Changes in Weight, BMI, and WC
3.3. Lipid-Related FOSHU Beverage Intake
3.4. Multivariable-Adjusted Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Church, T.S.; Thomas, D.M.; Tudor-Locke, C.; Katzmarzyk, P.T.; Earnest, C.P.; Rodarte, R.Q.; Martin, C.K.; Blair, S.N.; Bouchard, C. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE 2011, 6, e19657. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013–2020. Available online: http://www.who.int/nmh/events/ncd_action_plan/en/ (accessed on 13 March 2018).
- Minister of Health, Labour and Welfare. Ministerial Notification No. 430 of the Ministry of Health, Labour and Welfare. 10 July 2012. Available online: http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21.html/ (accessed on 13 March 2018).
- Regulatory Systems of Health Claims in Japan. Consumer Affairs Agency, Japan. June 2011. Available online: http://www.caa.go.jp/en/ (accessed on 13 March 2018).
- Kim, A.; Chiu, A.; Barone, M.K.; Avino, D.; Wang, F.; Coleman, C.I.; Phung, O.J. Green tea catechins decrease total and low-density lipoprotein cholesterol: A systematic review and meta-analysis. J. Am. Diet. Assoc. 2011, 111, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Moriguchi, A.; Kusumoto, A.; Nakai, M.; Ono, Y.; Abe, K.; Ohta, H.; Shibata, H.; Kiso, Y.; Egawa, K. Suppressive effect of oolong tea polymerized polyphenols-enriched oolong tea on postprandial serum triglyceride elevation. Jpn. Pharmacol. Ther. 2004, 32, 335–342. [Google Scholar]
- Kumao, T.; Fujii, S.; Asakawa, A.; Takehara, I.; Fukuhara, I. Effect of coffee drink containing mannooligosaccharides on total amount of excreted fat in healthy adults. J. Health Sci. 2006, 52, 482–485. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Oga, H.; Tagami, H.; Okuma, K.; Gordon, D.T. Suppressive effect of resistant maltodextrin on postprandial blood triacylglycerol elevation. Eur. J. Nutr. 2007, 46, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Hase, T.; Komine, Y.; Meguro, S.; Takeda, Y.; Takahshi, H.; Matsui, Y.; Inaoka, S.; Katsuragi, Y.; Tokimitsu, I.; Shimasaki, H.; et al. Anti-obesity effects of tea catechins in humans. J. Oleo Sci. 2001, 50, 599–605. [Google Scholar] [CrossRef]
- Nagao, T.; Meguro, S.; Soga, S.; Otsuka, S.; Tomonobu, K.; Fukumoto, S.; Chikama, A.; Mori, K.; Yuzawa, M.; Watanabe, H.; et al. Tea catechins suppress accumulation of body fat in humans. J. Oleo Sci. 2001, 50, 717–728. [Google Scholar] [CrossRef]
- Nagao, T.; Komine, Y.; Soga, S.; Meguro, S.; Hase, T.; Tanaka, Y.; Tokimitsu, I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am. J. Clin. Nutr. 2005, 81, 122–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Nirengi, S.; Amagasa, S.; Homma, T.; Yoneshiro, T.; Matsumiya, S.; Kurosawa, Y.; Sakane, N.; Ebi, K.; Saito, M.; Hamaoka, T. Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. SpringerPlus 2016, 5, 1363. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Teramoto, T.; Abe, K.; Ohta, H.; Kiso, Y.; Takehara, I.; Fukuhara, I.; Hirano, T. Lowering effects on visceral fat of the OTPP (oolong Tea Polymerized Polyphenols) enriched oolong tea (FOSHU “KURO-Oolong Tea OTPP”) in over weight volunteers. Jpn. Pharmacol. Ther. 2007, 35, 661–671. [Google Scholar]
- Asano, I.; Fujii, S.; Ozaki, K.; Takahara, I.; Yano, Y.; Fukuhara, I. Effects of coffee beverage containing mannooligosaceharicles from coffee on human abdominal fat by long term ingestion. Jpn. J. Food Eng. 2005, 6, 133–141. [Google Scholar]
- Kumao, T.; Fujii, S.; Takehara, I.; Fukuhara, I. Effect of soluble coffee containing mannooligosaccharides on human body fat by long-term ingestion. Jpn. Pharmacol. Ther. 2007, 35, 673–679. [Google Scholar]
- St-Onge, M.P.; Salinardi, T.; Herron-Rubin, K.; Black, R.M. A weight-loss diet including coffee-derived mannooligosaccharides enhances adipose tissue loss in overweight men but not women. Obesity 2012, 20, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Wakabayashi, S.; Tokunaga, K. Effects of long-term administration of indigestible dextrin on visceral fat accumulation. J. Jpn. Assoc. Diet. Fiber Res. 2000, 4, 9–65. [Google Scholar]
- Yoshimura, M.; Maeda, A.; Takehara, I.; Abe, K.; Ohta, H.; Kiso, Y.; Fukuhara, I.; Sakane, N. Body fat reducing effect and safety of the beverage containing polyphenols derived from Japanese pagoda tree (enzymatically modified isoquercitrin) in overweight and obese subjects. Jpn. Pharmacol. Ther. 2008, 36, 919–930. [Google Scholar]
- Saito, K.; Tanaka, T.; Obata, H.; Nakamura, J.; Fukui, N.; Tonozuka, N. Body fat reducing effect and safety evaluation of long-term consumption of tea containing quercetin glucosides in obese subjects. Jpn. Pharmacol. Ther. 2015, 43, 181–194. [Google Scholar]
- Yoshimura, M.; Maeda, A.; Nakamura, J.; Kitagawa, Y.; Shibata, H.; Fukuhara, I. Body fat reducing effect of continuous consumption of the beverage containing quercetin glucosides (enzymatically modified isoquercitrin) in obese subjects. Jpn. Pharmacol. Ther. 2012, 40, 901–914. [Google Scholar]
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016, 60, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Han, L.K.; Takaku, T.; Li, J.; Kimura, Y.; Okuda, H. Anti-obesity action of oolong tea. Int. J. Obes. 1999, 23, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Nakai, M.; Fukui, Y.; Asami, S.; Toyoda-Ono, Y.; Iwashita, T.; Shibata, H.; Mitsunaga, T.; Hashimoto, F.; Kiso, Y. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 2005, 53, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.F.; Kusumoto, A.; Abe, K.; Hosoda, K.; Kiso, Y.; Wang, M.F.; Yamamoto, S. Polyphenol-enriched oolong tea increases fecal lipid excretion. Eur. J. Clin. Nutr. 2006, 60, 1330–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.; Lee, H.; Kim, S.; Park, J.; Ha, T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Biophys. Res. Commun. 2008, 373, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.H.; Cho, I.; Ahn, J.; Jeon, T.I.; Ha, T.Y. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother. Res. 2013, 27, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Yoshikawa, Y.; Miyazato, S.; Oga, H.; Yamada, T.; Tagami, H.; Hashizume, C.; Yamamoto, K. Effect of resistant maltodextrin on digestion and absorption of lipids. J. Health Sci. 2009, 55, 838–844. [Google Scholar] [CrossRef]
- Sae-Tan, S.; Rogers, C.J.; Lambert, J.D. Voluntary exercise and green tea enhance the expression of genes related to energy utilization and attenuate metabolic syndrome in high fat fed mice. Mol. Nutr. Food Res. 2014, 58, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
All | Age (years) | p for Trend | ||||
---|---|---|---|---|---|---|
20–29 | 30–39 | 40–49 | ≥50 | |||
Men | (n = 2497) | (n = 384) | (n = 952) | (n = 736) | (n = 425) | |
BW, kg | 68.6 (62.4, 75.7) | 66.4 (60.5, 73.4) | 69.1 (69.1, 77.2) | 69.7 (63.9, 76.2) | 67.6 (61.8, 73.5) | 0.373 |
WC, cm | 83.0 (77.0, 89.0) | 78.0 (74.0, 83.9) | 82.5 (77.0, 89.0) | 84.5 (79.0, 90.0) | 84.0 (79.1, 90.0) | <0.001 |
Regular exercise frequency | ||||||
<1/month | 783 (32.9) | 95 (25.3) | 294 (31.7) | 270 (39.1) | 124 (31.8) | 0.036 |
1/month–1/week | 1053 (44.2) | 188 (50.1) | 438 (47.3) | 274 (39.7) | 153 (39.2) | <0.001 |
2–4/week | 489 (20.5) | 80 (21.3) | 179 (19.3) | 136 (19.7) | 94 (24.1) | 0.651 |
≥5/week | 58 (2.4) | 12 (3.2) | 16 (1.7) | 11 (1.6) | 19 (4.9) | 0.208 |
Lipid-related FOSHU beverage intake, bottle/week | ||||||
<1 | 1493 (59.8) | 251 (65.4) | 544 (57.1) | 421 (57.2) | 277 (65.2) | 0.830 |
1–2 | 438 (17.5) | 70 (18.2) | 196 (20.6) | 119 (16.2) | 53 (12.5) | 0.002 |
3–4 | 304 (12.2) | 37 (9.6) | 119 (12.5) | 99 (13.5) | 49 (11.5) | 0.384 |
≥5 | 262 (10.5) | 26 (6.8) | 93 (9.8) | 97 (13.2) | 46 (10.8) | 0.012 |
Women | (n = 505) | (n = 163) | (n = 118) | (n = 132) | (n = 92) | |
BW, kg | 51.0 (46.5, 56.0) | 50.7 (47.4, 54.4) | 50.8 (45.5, 56.1) | 52.4 (46.5, 57.2) | 51.6 (46.1, 55.4) | 0.641 |
WC, cm | 73.5 (68.5, 79.5) | 70.8 (66.5, 75.4) | 73.0 (68.8, 78.5) | 76.0 (71.0, 82.3) | 76.7 (71.6, 85.2) | <0.001 |
Regular exercise frequency | ||||||
<1/months | 210 (45.3) | 60 (36.8) | 48 (40.7) | 60 (45.5) | 42 (45.7) | 0.103 |
1/month–1/week | 181 (39.0) | 65 (39.9) | 48 (40.7) | 43 (32.6) | 25 (27.2) | 0.026 |
2–4/week | 72 (15.5) | 31 (19.0) | 16 (13.6) | 14 (10.6) | 11 (12.0) | 0.057 |
≥5/week | 1 (0.2) | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.505 |
Lipid-related FOSHU beverage intake, bottle/week | ||||||
<1 | 300 (59.4) | 93 (57.1) | 72 (61.0) | 78 (59.1) | 57 (62.0) | 0.513 |
1–2 | 78 (15.5) | 39 (23.9) | 17 (14.4) | 16 (12.1) | 6 (6.5) | <0.001 |
3–4 | 49 (9.7) | 18 (11.0) | 15 (12.7) | 11 (8.3) | 5 (5.4) | 0.118 |
≥5 | 37 (7.3) | 7 (4.3) | 8 (6.8) | 12 (9.1) | 10 (10.9) | 0.037 |
Age (years) | p for Trend | ||||
---|---|---|---|---|---|
20–29 | 30–39 | 40–49 | ≥50 | ||
Men (n = 2497) | |||||
BW, kg/year | 0.86 (0.15) | 0.35 (0.08) | 0.10 (0.09) | 0.15 (0.10) | <0.001 |
WC, cm/year | 1.09 (0.20) | 0.19 (0.12) | −0.10 (0.15) | 0.29 (0.21) | <0.001 |
Women (n = 505) | |||||
BW, kg/year | 0.31 (0.17) | 0.13 (0.18) | 0.72 (0.13) | 0.03 (0.17) | 0.753 |
WC, cm/year | 0.86 (0.38) | −0.04 (0.40) | 0.38 (0.43) | 0.22 (0.60) | 0.982 |
Regular Exercise Frequencies | p for Trend | ||||
---|---|---|---|---|---|
<1/mo | 1/mo–1/wk | ≥5/wk | 2–4/wk | ||
Men (n = 2497) | |||||
BW, kg/year | 0.43 (0.10) | 0.37 (0.08) | 0.24 (0.11) | −0.61 (0.33) | 0.012 |
WC, cm/year | 0.35 (0.12) | 0.35 (0.10) | 0.35 (0.15) | −0.79 (0.40) | 0.192 |
Women (n = 505) | |||||
BW, kg/year | 0.63 (0.13) | 0.19 (0.13) | −0.04 (0.28) | −1.1 (0.0) | 0.044 |
WC, cm/year | 0.66 (0.23) | 0.66 (0.31) | −0.05 (0.45) | −6.5 (0.0) | 0.555 |
Lipid-Related FOSHU Beverage Intake | p for Trend | ||||
---|---|---|---|---|---|
<1/wk | 1–2/wk | 3–4/wk | ≥5/wk | ||
All (n = 3002) | (n = 1793) | (n = 516) | (n = 353) | (n = 299) | |
BW, kg/year | 0.35 (0.05) | 0.44 (0.11) | 0.29 (0.15) | 0.01 (0.17) | 0.731 |
WC, cm/year | 0.35 (0.10) | 0.34 (0.15) | 0.37 (0.20) | −0.16 (0.20) | 0.269 |
Lipid-Related FOSHU Beverage Intake | p for Trend | ||||
---|---|---|---|---|---|
<1/wk | 1–2/wk | 3–4/wk | ≥5/wk | ||
Regular exercise (+) (n = 774) | (n = 439) | (n = 136) | (n = 79) | (n = 80) | |
BW, kg/year | −0.05 (0.09) | 0.53 (0.21) | 0.67 (0.32) | −0.44 (0.34) | 0.042 |
WC, cm/year | −0.18 (0.29) | 0.64 (0.29) | 0.69 (0.44) | −0.84 (0.43) | 0.473 |
Regular exercise (−) (n = 2227) | (n = 1354) | (n = 380) | (n = 274) | (n = 219) | |
BW, kg/year | 0.48 (0.06) | 0.41 (0.12) | 0.19 (0.17) | 0.17 (0.19) | 0.067 |
WC, cm/year | 0.53 (0.09) | 0.24 (0.18) | 0.28 (0.22) | 0.09 (0.23) | 0.075 |
Sex- and Age-Adjusted * | Multivariable-Adjusted † | |||||
---|---|---|---|---|---|---|
β | (95% CI) | p-Value | β | (95% CI) | p-Value | |
Changes in BW, kg/year | ||||||
Men vs. women | 0.10 | (−0.11, 0.32) | 0.340 | 0.36 | (0.07, 0.64) | 0.015 |
Age, years | −0.17 | (−0.26, −0.09) | <0.001 | −0.16 | (−0.25, −0.08) | <0.001 |
Baseline BW, kg | 0.00 | (−0.01, 0.00) | 0.157 | −0.01 | (−0.02, −0.01) | <0.001 |
Baseline body mass index, kg/m2 | −0.01 | (−0.02, 0.00) | 0.016 | −0.01 | (−0.02, 0.00) | 0.012 |
Regular exercise | −0.31 | (−0.51, −0.11) | 0.002 | −0.20 | (−0.39, −0.02) | 0.032 |
Lipid-related FOSHU beverage intake | −0.07 | (−0.15, 0.01) | 0.097 | 0.01 | (−0.06, 0.08) | 0.760 |
Changes in WC, cm/year | ||||||
Men vs. women | 0.20 | (−0.16, 0.57) | 0.277 | 1.21 | (0.79, 1.63) | <0.001 |
Age, years | 0.07 | (−0.37, −0.08) | 0.003 | −0.01 | (−0.17, 0.13) | 0.823 |
Baseline WC, cm | −0.07 | (−0.08, −0.06) | <0.001 | −0.16 | (−0.18, −0.14) | <0.001 |
Baseline body mass index, kg/m2 | −0.02 | (−0.03, −0.01) | <0.001 | 0.1 | (0.08, 0.12) | <0.001 |
Regular exercise | −0.46 | (−0.80, −0.12) | 0.008 | 0.02 | (−0.56, 0.06) | 0.117 |
Lipid-related FOSHU beverage intake | −0.08 | (−0.22, 0.07) | 0.287 | −0.04 | (−0.20, 0.02) | 0.116 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ide, K.; Takeuchi, M.; Seki, T.; Kawakami, K. Effect of Regular Exercise and Functional Beverages on Changes in Body Weight and Waist Circumference in Healthy Japanese Subjects. Medicina 2018, 54, 64. https://doi.org/10.3390/medicina54040064
Ide K, Takeuchi M, Seki T, Kawakami K. Effect of Regular Exercise and Functional Beverages on Changes in Body Weight and Waist Circumference in Healthy Japanese Subjects. Medicina. 2018; 54(4):64. https://doi.org/10.3390/medicina54040064
Chicago/Turabian StyleIde, Kazuki, Masato Takeuchi, Tomotsugu Seki, and Koji Kawakami. 2018. "Effect of Regular Exercise and Functional Beverages on Changes in Body Weight and Waist Circumference in Healthy Japanese Subjects" Medicina 54, no. 4: 64. https://doi.org/10.3390/medicina54040064
APA StyleIde, K., Takeuchi, M., Seki, T., & Kawakami, K. (2018). Effect of Regular Exercise and Functional Beverages on Changes in Body Weight and Waist Circumference in Healthy Japanese Subjects. Medicina, 54(4), 64. https://doi.org/10.3390/medicina54040064