Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Assessment and Behavior Rating Scales
2.3. DNA Extraction and Genotyping
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, M.J.; Park, I.; Lim, M.H.; Paik, K.C.; Cho, S.; Kwon, H.J.; Lee, S.G.; Yoo, S.J.; Ha, M. Prevalence of Attention-Deficit/Hyperactivity Disorder and its Comorbidity among Korean Children in a Community Population. J. Korean Med. Sci. 2017, 32, 401–406. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association Committee on Nomenclature and Statistics. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th ed.; American Psychiatric Association Press: Washington, DC, USA, 1994. [Google Scholar]
- Tarver, J.; Daley, D.; Sayal, K. Attention-deficit hyperactivity disorder (ADHD): An updated review of the essential facts. Child Care Health 2014, 40, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V. Genetics of adult attention-deficit/hyperactivity disorder. Psychiatr. Clin. North 2004, 27, 303–321. [Google Scholar] [CrossRef]
- Franke, B.; Neale, B.M.; Faraone, S.V. Genome-wide association studies in ADHD. Hum. Genet. 2009, 126, 13–50. [Google Scholar] [CrossRef] [PubMed]
- Schachar, R. Genetics of Attention Deficit Hyperactivity Disorder (ADHD): Recent Updates and Future Prospects. Curr. Dev. Disord. Rep. 2014, 1, 41–49. [Google Scholar] [CrossRef]
- Akutagava-Martins, G.C.; Rohde, L.A.; Hutz, M.H. Genetics of attention-deficit/hyperactivity disorder: An update. Expert Rev. Neurother. 2016, 16, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Kirley, A.; Lowe, N.; Hawi, Z.; Mullins, C.; Daly, G.; Waldman, I.; McCarron, M.; O’Donnell, D.; Fitzgerald, M.; Gill, M. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 121, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Ickowicz, A.; Feng, Y.; Wigg, K.; Quist, J.; Pathare, T.; Roberts, W.; Malone, M.; Schachar, R.; Tannock, R.; Kennedy, J.L.; et al. The serotonin receptor HTR1B: Gene polymorphisms in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Kim, Y.K. Association of norepinephrine transporter gene polymorphisms in attention-deficit/hyperactivity disorder in Korean population. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 73, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guan, L.L.; Chen, Y.; Ji, N.; Li, H.M.; Li, Z.H.; Qian, Q.J.; Yang, L.; Glatt, S.J.; Faraone, S.V.; et al. Association analyses of MAOA in Chinese Han subjects with attention-deficit/hyperactivity disorder: Family-based association test, case-control study, and quantitative traits of impulsivity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.T.; Meng, H.Q.; Song, C.; Xiu, M.H.; Zhu, F.Y.; Wu, G.Y.; Kosten, T.A.; Kosten, T.R.; Zhang, X.Y. Association between monoamine oxidase (MAO)-A gene variants and schizophrenia in a Chinese population. Brain Res. 2009, 1287, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.J.; Liu, J.; Wang, Y.F.; Yang, L.; Guan, L.L.; Faraone, S.V. Attention Deficit Hyperactivity Disorder comorbid oppositional defiant disorder and its predominately inattentive type: Evidence for an association with COMT but not MAOA in a Chinese sample. Behav. Brain Funct. 2009, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Park, H.J.; Seok, H.; Jeon, H.S.; Chung, J.H.; Kang, W.S.; Kim, J.W.; Im Yu, G.; Shin, D.H. Association study between monoamine oxidase A (MAOA) gene polymorphisms and schizophrenia: Lack of association with schizophrenia and possible association with affective disturbances of schizophrenia. Mol. Biol. Rep. 2014, 41, 3457–3464. [Google Scholar] [CrossRef] [PubMed]
- Lung, F.W.; Tzeng, D.S.; Huang, M.F.; Lee, M.B. Association of the MAOA promoter uVNTR polymorphism with suicide attempts in patients with major depressive disorder. BMC Med. Genet. 2011, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Reif, A.; Weber, H.; Domschke, K.; Klauke, B.; Baumann, C.; Jacob, C.P.; Ströhle, A.; Gerlach, A.L.; Alpers, G.W.; Pauli, P.; et al. Meta-analysis argues for a female-specific role of MAOA-uVNTR in panic disorder in four European populations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Holschneider, D.P.; Wu, W.; Rebrin, I.; Shih, J.C. A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J. Biol. Chem. 2004, 279, 39645–39652. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, J.V.; Herzing, L.B.; Cook, E.H.; Lebailly, S.A.; Gouze, K.R.; Hopkins, J.; Bryant, F.B. Gene × environment effects of serotonin transporter, dopamine receptor D4, and monoamine oxidase A genes with contextual and parenting risk factors on symptoms of oppositional defiant disorder, anxiety, and depression in a community sample of 4-year-old children. Dev. Psychopathol. 2013, 25, 555–575. [Google Scholar] [PubMed]
- Voltas, N.; Aparicio, E.; Arija, V.; Canals, J. Association study of monoamine oxidase-A gene promoter polymorphism (MAOA-uVNTR) with self-reported anxiety and other psychopathological symptoms in a community sample of early adolescents. J. Anxiety Disord. 2015, 31, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Naoi, M.; Riederer, P.; Maruyama, W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: Genetic and environmental factors involved in type A MAO expression. J. Neural Transm. 2016, 123, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Kinnally, E.L.; Huang, Y.Y.; Haverly, R.; Burke, A.K.; Galfalvy, H.; Brent, D.P.; Oquendo, M.A.; Mann, J.J. Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women. Psychiatr. Genet. 2009, 19, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.C. Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biol. Psychiatry 2014, 75, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Fowler, T.; Langley, K.; Rice, F.; van den Bree, M.B.; Ross, K.; Wilkinson, L.S.; Owen, M.J.; O’donovan, M.C.; Thapar, A. Psychopathy trait scores in adolescents with childhood ADHD: The contribution of genotypes affecting MAOA, 5HTT and COMT activity. Psychiatr. Genet. 2009, 19, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Brookes, K.; Chen, C.K.; Huang, Y.S.; Wu, Y.Y.; Asherson, P. Association study between the monoamine oxidase A gene and attention deficit hyperactivity disorder in Taiwanese samples. BMC Psychiatry 2007, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, A.; Goswami, R.; Saha, T.; Maitra, S.; Roychowdhury, A.; Panda, C.K.; Sinha, S.; Ray, A.; Mohanakumar, K.P.; Rajamma, U.; et al. Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. BMC Med. Genet. 2017, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Breakefield, X.O. Human monoamine oxidase A gene determines levels of enzyme activity. Am. J. Hum. Genet. 1991, 49, 383–392. [Google Scholar] [PubMed]
- Sabol, S.Z.; Hu, S.; Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 1998, 103, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Das Bhowmik, A.; Sinha, S.; Chattopadhyay, A.; Chaudhuri, K.; Singh, M.; Mukhopadhyay, K. MAOA promoter polymorphism and attention deficit hyperactivity disorder (ADHD) in Indian children. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Hawi, Z.; Matthews, N.; Barry, E.; Kirley, A.; Wagner, J.; Wallace, R.H.; Heussler, H.S.; Vance, A.; Gill, M.; Bellgrove, M.A. A high density linkage disequilibrium mapping in 14 noradrenergic genes: Evidence of association between SLC6A2, ADRA1B and ADHD. Psychopharmacology 2013, 225, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Lawson, D.C.; Turic, D.; Langley, K.; Pay, H.M.; Govan, C.F.; Norton, N.; Hamshere, M.L.; Owen, M.J.; O’Donovan, M.C.; Thapar, A. Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 116, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Manor, I.; Tyano, S.; Mel, E.; Eisenberg, J.; Bachner-Melman, R.; Kotler, M.; Ebstein, R.P. Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): Preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol. Psychiatry 2002, 7, 626–632. [Google Scholar] [PubMed]
- Kwon, H.J.; Jin, H.J.; Lim, M.H. Association between monoamine oxidase gene polymorphisms and attention deficit hyperactivity disorder in Korean children. Genet. Test. Mol. Biomark. 2014, 18, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; So, Y.K.; Noh, J.S.; Ko, S.G.; Koh, Y.J. The reliability and validity of Korean parent and teacher ADHD Rating Scale. J. Korean Neuropsychiatr. Assoc. 2002, 41, 283–289. [Google Scholar]
- DuPaul, G.J.; Anastopoulos, A.D.; McGoey, K.E.; Power, T.J.; Reid, R.; Ikeda, M.J. Teacher ratings of attention deficit hyperactivity disorder symptoms: Factor structure and normative data. Psychol. Assess. 1997, 9, 436–444. [Google Scholar] [CrossRef]
- Reynolds, C.R.; Kamphaus, R.W. Behavior Assessment for Children, (BASC-2); American Guidance Service: Circle Pines, MN, USA; Circle Pines: Anoka, MI, USA, 2004. [Google Scholar]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [PubMed]
- Ogus, A.C.; Yoldas, B.; Ozdemir, T.; Uguz, A.; Olcen, S.; Keser, I.; Coskun, M.; Cilli, A.; Yegin, O. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 2004, 23, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, L.; Luo, X.J.; Wu, L.; Li, M. MAOA Variants and Genetic Susceptibility to Major Psychiatric Disorders. Mol. Neurobiol. 2016, 53, 4319–4327. [Google Scholar] [CrossRef] [PubMed]
- Domschke, K.; Sheehan, K.; Lowe, N.; Kirley, A.; Mullins, C.; O’Sullivan, R.; Freitag, C.; Becker, T.; Conroy, J.; Fitzgerald, M.; et al. Association analysis of the monoamine oxidase A and B genes with attention deficit hyperactivity disorder (ADHD) in an Irish sample: Preferential transmission of the MAO-A 941G allele to affected children. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 134, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Zill, P.; Büttner, A.; Eisenmenger, W.; Möller, H.J.; Bondy, B.; Ackenheil, M. Single nucleotide polymorphism and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene in suicide victims. Biol. Psychiatry 2004, 56, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Deckert, J.; Catalano, M.; Syagailo, Y.V.; Bosi, M.; Okladnova, O.; Di Bella, D.; Nöthen, M.M.; Maffei, P.; Franke, P.; Fritze, J.; et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet. 1999, 8, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Manuck, S.B.; Flory, J.D.; Ferrell, R.E.; Mann, J.J.; Muldoon, M.F.A. regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res. 2000, 95, 9–23. [Google Scholar] [CrossRef]
- Brookes, K.; Xu, X.; Chen, W.; Zhou, K.; Neale, B.; Lowe, N.; Aneey, R.; Franke, B.; Gill, M.; Ebstein, R.; et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: Association signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry. 2006, 11, 934–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, L.; Wang, B.; Chen, Y.; Yang, L.; Li, J.; Qian, Q.; Wang, Z.; Faraone, S.V.; Wang, Y. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: Suggesting multiple susceptibility genes among Chinese Han population. Mol. Psychiatry 2009, 14, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.Y.; Gau, S.S.; Liu, C.M.; Hwu, H.G. Association between the dopamine transporter gene and the inattentive subtype of attention deficit hyperactivity disorder in Taiwan. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Merrell, K.W. Behavioral, Social, and Emotional Assessment of Children and Adolescents, 3rd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 2008. [Google Scholar]
- Kamphaus, R.W. Assessment of adaptive behavior. In Handbook of Psychological and Educational Assessment of Children, 2nd ed.; Reynold, C.R., Kamphaus, R.W., Eds.; Guilford: New York, NY, USA, 2003; pp. 455–472. [Google Scholar]
- Harrison, J.R.; Vannest, K.J.; Reynolds, C.R. Behaviors that discriminate ADHD in children and adolescents, primary symptoms, symptoms of comorbid conditions, or indicators of functional impairment? J. Atten. Disord. 2011, 15, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.W.; Hong, J.H.; Kwon, B.N.; Kim, H.J.; Lee, N.R.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of mitochondrial DNA 10398 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2017, 630, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, R.L.; Nilsson, K.W.; Wargelius, H.L.; Leppert, J.; Lindström, L.; Oreland, L. Adolescent girls and criminal activity: Role of MAOA-LPR genotype and psychosocial factors. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Buckholtz, J.W.; Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 2008, 31, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Ficks, C.A.; Waldman, I.D. Candidate genes for aggression and antisocial behavior: A meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behav. Genet. 2014, 44, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; He, A.; Zhu, F.; Ding, M.; Hao, J.; Fan, Q.; Li, P.; Liu, L.; Du, Y.; Liang, X.; et al. Integrating genome-wide association study and expression quantitative trait locus study identifies multiple genes and gene sets associated with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 81, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.; Chandrashekara, S. Sample size estimation and power analysis for clinical research studies. J. Hum. Reprod. Sci. 2012, 5, 7–13. [Google Scholar] [CrossRef] [PubMed]
Characteristics | ADHD (n = 150) a | Control (n = 322) | F or χ2 | p-value | |
---|---|---|---|---|---|
Age b | 8.05 ± 1.04 | 8.22 ± 1.48 | 46.61 | 0.13 b | |
Gender | Boys | 97 (64.7%) | 191 (59.3%) | 1.23 | 0.27 c |
Girls | 53 (35.3%) | 131 (40.7%) | |||
Nationality | Republic of Korea | Republic of Korea |
Allele/Genotype | ADHD-Boys | Control-Boys | p-Value a | OR (95% CI) | |
---|---|---|---|---|---|
Rs6323 | G | 62 (63.9%) | 102 (53.4%) | 0.088 | 0.64 (0.391–1.069) |
T | 35 (36.1%) | 89 (46.6%) | |||
uVNTR | 3.5R | 64 (66.0%) | 109 (58.0%) | 0.190 | 0.71 (0.427–1.185) |
4.5R | 33 (34.0%) | 79 (42.0%) | |||
Allele/genotype | ADHD-girls | Control-girls | p-value a | OR (95% CI) | |
Rs6323 | G | 65 (61.3%) | 152 (58.0%) | 0.559 | 0.87 (0.549–1.393) |
T | 41 (38.7%) | 110 (42.0%) | |||
G/G | 16 (30.2%) | 48 (36.7%) | - | Reference | |
G/T | 33 (62.3%) | 56 (42.7%) | 0.114 | 1.77 (0.869–3.598) | |
T/T | 4 (7.5%) | 27 (20.6%) | 0.175 | 0.44 (0.135–1.465) | |
p-value b | 0.023 * | 0.161 | |||
Dominant | G/G | 16 (30.2%) | 48 (36.6%) | 0.400 | 0.75 (0.380–1.480) |
G/T+T/T | 37 (69.8%) | 83 (63.4%) | |||
Recessive | G/G+G/T | 49 (92.5%) | 104 (79.4%) | 0.022 * | 0.31 (0.100–0.950) |
T/T | 4 (7.5%) | 27 (20.6%) | |||
Over-dominant | G/G+T/T | 20 (37.7%) | 75 (57.2%) | 0.016 * | 2.21 (1.150–4.250) |
G/T | 33 (62.3%) | 56 (42.8%) | |||
uVNTR | 3.5R | 62 (60.8%) | 150 (59.5%) | 0.826 | 1.05 (0.658–1.687) |
4.5R | 40 (39.2%) | 102 (40.5%) | |||
3.5R/3.5R | 17 (33.3%) | 48 (38.1%) | - | Reference | |
3.5R/4.5R | 28 (54.9%) | 54 (42.9%) | 0.296 | 0.68 (0.330–1.400) | |
4.5R/4.5R | 6 (11.8%) | 24 (19.0%) | 0.515 | 1.42 (0.490–4.060) | |
p-value b | 0.279 | 0.214 | |||
Dominant | 3.5R/3.5R | 17 (33.3%) | 48 (38.1%) | 0.550 | 0.81 (0.410–1.610) |
3.5R/4.5R+4.5R/4.5R | 34 (66.7%) | 78 (61.9%) | |||
Recessive | 3.5R/3.5R+3.5R/4.5R | 45 (88.2%) | 102 (81.5%) | 0.230 | 1.76 (0.680–4.610) |
4.5R/4.5R | 6 (11.8%) | 24 (19.1%) | |||
Over-dominant | 3.5R/3.5R+4.5R/4.5R | 23 (45.1%) | 72 (57.1%) | 0.150 | 0.62 (0.320–1.190) |
3.5R/4.5R | 28 (54.9%) | 54 (42.9%) |
Allele/Genotype | ADHD-C a Boys (n = 52) | Control Boys (n = 191) | p-Value b | OR (95% CI) | |
---|---|---|---|---|---|
Rs6323 | G | 34 (65.4%) | 102 (53.4%) | 0.123 | 0.61 (0.321–1.149) |
T | 18 (34.6%) | 89 (46.6%) | |||
uVNTR | 3.5R | 34 (65.4%) | 109 (58.0%) | 0.335 | 0.73 (0.385–1.386) |
4.5R | 18 (34.6%) | 79 (42.0%) | |||
Allele/genotype | ADHD-C a girls (n = 26) | Control girls (n = 131) | p-value b | OR (95% CI) | |
Rs6323 | G | 30 (57.7%) | 152 (58.0%) | 1.000 | 1.01 (0.555–1.851) |
T | 22 (42.3%) | 110 (42.0%) | |||
G/G | 6 (23.1%) | 48 (36.7%) | - | Reference | |
G/T | 18 (69.2%) | 56 (42.7%) | 0.058 | 2.57 (0.945–6.998) | |
T/T | 2 (7.7%) | 27 (20.6%) | 0.535 | 0.59 (0.112–3.143) | |
p-value b | 0.033 * | 0.161 | |||
Dominant | G/G | 6 (23.1%) | 48 (36.6%) | 0.183 | 0.52 (0.195–1.381) |
G/T+T/T | 20 (76.9%) | 83 (63.4%) | |||
Recessive | G/G+G/T | 24 (92.3%) | 104 (79.4%) | 0.121 | 0.32 (0.071–1.443) |
T/T | 2 (7.7%) | 27 (20.6%) | |||
Over-dominant | G/G+T/T | 8 (31.8%) | 75 (57.2%) | 0.013 * | 3.01 (1.223–7.426) |
G/T | 18 (69.2%) | 56 (42.8%) | |||
uVNTR | 3.5R | 22 (44.0%) | 150 (59.5%) | 0.031 * | 1.87 (1.014–3.453) |
4.5R | 28 (56.0%) | 102 (40.5%) | |||
3.5R/3.5R | 3 (12.0%) | 48 (38.1%) | - | Reference | |
3.5R/4.5R | 16 (64.0%) | 54 (42.9%) | 0.009 * | 4.74 (1.301–17.273) | |
4.5R/4.5R | 6 (24.0%) | 24 (19.0%) | 0.050 | 4.00 (0.920–17.397) | |
p-value b | 0.135 | 0.214 | |||
Dominant | 3.5R/3.5R | 3 (12.0%) | 48 (38.1%) | 0.011 * | 4.51 (1.282–15.889) |
3.5R/4.5R+4.5R/4.5R | 22 (88.0%) | 78 (61.9%) | |||
Recessive | 3.5R/3.5R+3.5R/4.5R | 19 (76.0%) | 102 (81.5%) | 0.571 | 1.34 (0.484–3.721) |
4.5R/4.5R | 6 (24.0%) | 24 (19.1%) | |||
Over-dominant | 3.5R/3.5R+4.5R/4.5R | 9 (36.0%) | 72 (57.1%) | 0.053 | 2.37 (0.974–5.770) |
3.5R/4.5R | 16 (64.0%) | 54 (42.9%) |
Gender | Haplotype | Overall | Case | Control | p-Value |
---|---|---|---|---|---|
Boys | 3.5-G | 0.530 | 0.608 | 0.489 | 0.043 * |
3.5-T | 0.354 | 0.309 | 0.378 | 0.246 | |
4.5-G | 0.077 | 0.052 | 0.090 | 0.258 | |
4.5-T | 0.039 | 0.031 | 0.043 | 0.528 | |
Girls | 3.5-G | 0.536 | 0.531 | 0.537 | 0.900 |
3.5-T | 0.063 | 0.077 | 0.058 | 0.377 | |
4.5-G | 0.060 | 0.087 | 0.050 | 0.468 | |
4.5-T | 0.341 | 0.305 | 0.355 | 0.189 |
BASC-2 a | Category | MAOA uVNTR | p-Value b | |
---|---|---|---|---|
Clinical Scale | 3.5R (n = 56) | 4.5R (n = 22) | ||
Hyperactivity | 7.25 ± 3.38 | 7.55 ± 3.64 | 0.734 | |
Aggression | 5.11 ± 3.32 | 5.14 ± 3.50 | 0.973 | |
Anxiety | 9.23 ± 4.33 | 10.05 ± 6.47 | 0.591 | |
Depression | 5.39 ± 4.04 | 6.23 ± 3.01 | 0.384 | |
Somatization | 3.35 ± 3.12 | 3.32 ± 3.21 | 0.973 | |
Atypicality | 4.20 ± 3.87 | 4.36 ± 2.87 | 0.858 | |
Conduct Problems | 4.13 ± 2.89 | 5.00 ± 2.90 | 0.232 | |
Attention Problems | 8.27 ± 3.32 | 9.45 ± 3.17 | 0.154 | |
Withdrawal | 7.29 ± 3.85 | 7.05 ± 3.80 | 0.804 | |
Adaptive Scale | ||||
Adaptability | 13.68 ± 4.44 | 12.09 ± 3.32 | 0.134 | |
Social Skills | 10.88 ± 3.71 | 10.18 ± 4.26 | 0.479 | |
Leadership | 10.39 ± 4.00 | 8.77 ± 4.87 | 0.135 | |
Activities of Daily Living | 13.18 ± 3.36 | 11.14 ± 3.24 | 0.017 * | |
Functional Communication | 23.40 ± 6.04 | 22.05 ± 5.44 | 0.364 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children. Medicina 2018, 54, 32. https://doi.org/10.3390/medicina54030032
Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children. Medicina. 2018; 54(3):32. https://doi.org/10.3390/medicina54030032
Chicago/Turabian StyleHwang, In Wook, Myung Ho Lim, Ho Jang Kwon, and Han Jun Jin. 2018. "Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children" Medicina 54, no. 3: 32. https://doi.org/10.3390/medicina54030032