Familial hematuria: A review
Abstract
:1. Introduction
2. History
3. Glomerular basement membrane
4. Alport syndrome
4.1. Genetic background of Alport syndrome/thin basement membrane nephropathy
4.2. Clinical picture of Alport syndrome
5. Thin basement membrane nephropathy
6. Other syndromes that exhibit familial glomerular hematuria
7. Therapy for Alport syndrome and thin basement membrane nephropathy
8. Concluding remarks
Conflict of interest
Acknowledgments
R E F E R E N C E S
- Kashtan, CE. Familial hematuria. Pediatr Nephrol 2009, 24(10), 1951–8. [Google Scholar]
- Gale, DP. How benign is hematuria? Using genetics to predict prognosis. Pediatr Nephrol 2013, 28(8), 1183–94. [Google Scholar]
- Birch, DF; Fairley, KF. Haematuria: glomerular or non-glomerular? Lancet 1979, 2(8147), 845–6. [Google Scholar]
- Alport, AC. Hereditary familial congenital haemorrhagic nephritis. BMJ 1927, 1(3454), 504–6. [Google Scholar]
- Cameron, JS; Hicks, J. The introduction of renal biopsy into nephrology from 1901 to 1961: a paradigm of the forming of nephrology by technology. Am J Nephrol 1997, 17(3–4), 347–58. [Google Scholar]
- Janda, J; Dušek, J; Vondrák, K; Stejskal, J; Krejčová, S. Alport syndrome and benign familial hematuria. Cs Pediatr 1999, 54(10), 602–9. [Google Scholar]
- McConville , JM; McAdams, AJ. Familial and nonfamilial benign hematuria. J Pediatr 1966, 69(2), 207–14. [Google Scholar] [CrossRef]
- Gauthier, B; Trachtman, H; Frank, R; Valderrama, E. Familial thin basement membrane nephropathy in children with asymptomatic microhematuria. Nephron 1989, 51(4), 502–8. [Google Scholar] [CrossRef] [PubMed]
- Büscher, AK; Weber, S. The podocytopathies. Eur J Pediatr 2012, 171(8), 1151–60. [Google Scholar]
- Haraldsson, B; Nystrom, J; Deen, WN. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 2008, 88(2), 451–87. [Google Scholar] [CrossRef] [PubMed]
- Menzel, S; Moeller, MJ. Role of the podocyte in proteinuria. Pediatr Nephrol 2011, 26(10), 1775–80. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, KJ; Wassenhove-McCarthy, DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. Microsc Microanal 2012, 18(1), 3–21. [Google Scholar] [CrossRef] [PubMed]
- Miner, JH; Sanes, JR. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol 1994, 127(3), 879–91. [Google Scholar] [CrossRef]
- Sundaramoorthy, M; Meiyappan, M; Todd, P; Hudson, BG. Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem 2002, 277(34), 31142–53. [Google Scholar] [CrossRef] [PubMed]
- Sado, Y; Kagawa, M; Naito, I; Ueki, Y; Seki, T; Momota, R; et al. Organization and expression of basement membrane collagen IV genes and their roles in human disorders. J Biochem 1998, 123(5), 767–76. [Google Scholar] [CrossRef]
- Hudson, BG. The molecular basis of goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol 2004, 15(10), 2514–27. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R; Shield, CF; Todd, P; Hudson, BG; Nelson, EG. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 1997, 99(10), 2470–8. [Google Scholar] [CrossRef] [PubMed]
- Jais, JP; Knebelmann, B; Giatras, I; De Marci, M; Rizzoni, G; Renieri, A; et al. X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 2000, 11(4), 649–57. [Google Scholar]
- Heidet, L; Gubler, MC. The renal lesions of Alport syndrome. J Am Soc Nephrol 2009, 20(6), 1210–5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y; Sivakumar, V; Mohammed, M; Colville, D; Storey, H; Flinter, F; et al. Clinical and genetic features in autosomal recessive and X linked Alport syndrome. Pediatr Nephrol 2014, 29(3), 391–6. [Google Scholar] [CrossRef] [PubMed]
- Fallerini, C; Dosa, L; Tita, R; Del Prete, D; Feriozzi, S; Gai, G; et al. Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clin Genet 2014, 86(3), 252–7. [Google Scholar] [CrossRef] [PubMed]
- Deltas, C; Pierides, A; Voskarides, K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013, 28(12), 2946–60. [Google Scholar] [CrossRef] [PubMed]
- International Alport Mutation Consortium; Savige, J; Ars, E; Cotton, RG; Crockett, D; Dagher, H; et al.; International Alport Mutation Consortium DNA variant databases improve test accuracy and phenotype prediction in Alport syndrome. Pediatr Nephrol 2014, 29(6), 971–7. [Google Scholar] [CrossRef] [PubMed]
- Savige, J; Storey, H; Il Cheong, H; Kang, HG; Park, E; Hilbert, P; et al. X-linked and autosomal recessive Alport syndrome: pathogenic variant features and further genotypephenotype correlations. PLOS ONE 2016, 11(9), e0161802. [Google Scholar] [CrossRef] [PubMed]
- Pierides, A; Voskarides, K; Kkolou, M; Hadjigavriel, M; Deltas, C. X-linked, COL4A5 hypomorphic Alport mutations such as G624D and P628L may only exhibit thin basement membrane nephropathy with microhematuria and late onset kidney failure. Hippokratia 2013, 17(3), 207–13. [Google Scholar]
- Nakanishi, K; Yoshikawa, N; Iijima, K; Kitagawa, K; Nakamura, H; Ito, H; et al. Immunohistochemical study of alpha 1–5 chains of type IV collagen in hereditary nephritis. Kidney Int 1994, 46(5), 1413–21. [Google Scholar] [CrossRef]
- Haas, M. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis. Arch Pathol Lab Med 2009, 133(2), 224–32. [Google Scholar]
- Hashimura, Y; Nozu, K; Kaito, H; Nakanishi, K; Fu, XJ; Ohtsubo, H; et al. Milder clinical aspects of X-linked Alport syndrome in men positive for the collagen IV α5 chain. Kidney Int 2014, 85(5), 1208–13. [Google Scholar] [CrossRef] [PubMed]
- Massella, L; Gangemi, C; Giannakakis, K; Crisafi, A; Faraggiana, T; Fallerini, C; et al. Prognostic value of glomerular collagen IV immunofluorescence studies in male patients with X-linked Alport syndrome. Clin J Am Soc Nephrol 2013, 8(5), 749–55. [Google Scholar] [CrossRef]
- Gubler, MC; Knebelmann, B; Beziau, A; Broyer, M; Pirson, Y; Haddoum, F; et al. Autosomal recessive Alport syndrome: immunohistochemical study of type IV collagen chain distribution. Kidney Int 1995, 47(4), 1142–7. [Google Scholar] [CrossRef]
- Gross, O; Kashtan, CE; Rheault, MN; Flinter, F; Savige, J; Miner, JH; et al. Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrol Dial Transplant 2016. [Google Scholar] [CrossRef] [PubMed]
- Kruegel, J; Rubel, D; Gross, O. Alport syndrome–insights from basic and clinical research. Nat Rev Nephrol 2013, 9(3), 170–8. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D. Glomerular pathology in Alport syndrome: a molecular perspective. Pediatr Nephrol 2012, 27(6), 885–90. [Google Scholar] [CrossRef] [PubMed]
- Gross, O; Licht, C; Anders, HJ; Hoppe, B; Beck, B; Tönshoff, B; et al. Early angiotensin converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 2012, 81(5), 494–501. [Google Scholar] [CrossRef] [PubMed]
- Temme, J; Peters, F; Lange, K; Pirson, Y; Heidet, L; Torra, R; et al. Incidence of renal failure and nephroprotection by RAAS-inhibition in heterozygous carriers of X-chromosomal and autosomal-recessive Alport-mutations. Kidney Int 2012, 81(8), 779–83. [Google Scholar] [CrossRef]
- Smith, JM; Martz, K; Blydt-Hansen, TD. Pediatric kidney transplant practice patterns and outcome benchmarks, 1987–2010: a report of the North American Pediatric Renal Trials and Collaborative Studies. Pediatr Transplant 2013, 17(2), 149–57. [Google Scholar] [CrossRef]
- Rigden, SP; Mehls, O; Jones, EH; Valderrábano, F. Report on management of renale failure in Europe, XXVI, 1995. The child–adult interface: a report on Alport’s syndrome, 1975–1993. The ERA-EDTA Registry. Nephrol Dial Transplant 1996, 11 (Suppl. 7), 21–7. [Google Scholar] [PubMed]
- Kolvek, G; Podracka, L; Rosenberger, J; Stewart, RE; van Dijk, JP; Reijneveld, SA. Kidney diseases in Roma and non-Roma children from eastern Slovakia: are Roma children more at risk? Int J Public Health 2014, 59(6), 1023–6. [Google Scholar] [CrossRef] [PubMed]
- Kenrick, D. Historical dictionary of the gypsies (Romanies), 2nd ed.; Scarecrow Press Inc.: Lanham, 2007. [Google Scholar]
- Taylor, J; Flinter, F. Familial haematuria: when to consider genetic testing. Arch Dis Child 2014, 99(9), 857–61. [Google Scholar] [CrossRef] [PubMed]
- Savige, J; Liu, J; DeBuc, DC; Handa, JT; Hageman, GS; Wang, YY; et al. Retinal basement membrane abnormalities and the retinopathy of alport syndrome. Invest Ophthalmol Vis Sci 2010, 51(3), 1621–7. [Google Scholar] [CrossRef] [PubMed]
- Thomas, AS; Baynham, JT; Flaxel, CJ. Macular holes, vitelliform lesions, and midperipheral retinoschisis in Alport syndrome. Retin Cases Brief Rep 2016, 10(2), 109–11. [Google Scholar] [CrossRef] [PubMed]
- Flinter, FA; Cameron, JS; Chantler, C; Houston, I; Bobrow, M. Genetics of classic Alport’s syndrome. Lancet 1988, 2(8618), 1005–7. [Google Scholar] [CrossRef]
- Rheault, MN. Women and Alport syndrome. Pediatr Nephrol 2012, 27(1), 41–6. [Google Scholar] [CrossRef] [PubMed]
- Antignac, C; Heidet, L. Mutations in Alport syndrome associated with diffuse esophageal leiomyomatosis. Contrib Nephrol 1996, 117, 172–82. [Google Scholar] [PubMed]
- Savige, J; Gregory, M; Gross, O; Kashtan, C; Ding, J; Flinter, F. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 2013, 24(3), 364–75. [Google Scholar] [CrossRef] [PubMed]
- Lemmink, HH; Nillesen, WN; Mochizuki, T; Schröder, CH; Brunner, HG; van Oost, BA; et al. Benign familial hematuria due to mutation of the type IV collagen alpha 4 gene. J Clin Invest 1996, 98(5), 1114–8. [Google Scholar] [CrossRef] [PubMed]
- Liapis, H; Gaut, JP. The renal biopsy in the genomic era. Pediatr Nephrol 2013, 28(8), 1207–19. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, CE. Alport syndrome and thin basement membrane nephropathy: diseases arising from mutations in type IV collagen. Saudi J Kidney Dis Transpl 2003, 14(3), 276–89. [Google Scholar]
- Voskarides, K; Damianou, L; Neocleous, V; Zouvani, I; Christodoulidou, S; Hadjiconstantinou, V; et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thinbasement membrane nephropathy. J Am Soc Nephrol 2007, 18(11), 3004–16. [Google Scholar] [CrossRef]
- Dische, FE. Measurement of GBM thickness and its application to the diagnosis of thin-membrane nephropathy. Arch Pathol Lab Med 1992, 116(1), 43–9. [Google Scholar]
- Marcocci, E; Uliana, V; Bruttini, M; Artuso, R; Silengo, MC; Zerial, M; et al. Autosomal dominant Alport syndrome: molecular analysis of the COL4A4 gene and clinical outcome. Nephrol Dial Transplant 2009, 24(5), 1464–71. [Google Scholar] [CrossRef] [PubMed]
- Papazachariou, L; Demosthenous, P; Pieri, M; Papagregoriou, G; Savva, I; Stavrou, C; et al. Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. PLOS ONE 2014, 9(12), e115015. [Google Scholar] [CrossRef] [PubMed]
- Moriniére V, V; Dahan, K; Hilbert, P; Lison, M; Lebbah, S; Topa, A; et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J Am Soc Nephrol 2014, 25(12), 2740–51. [Google Scholar]
- Deltas, C; Savva, I; Voskarides, K; Papazachariou, L; Pierides, A. Carriers of autosomal recessive Alport syndrome with thin basement membrane nephropathy presenting as focal segmental glomerulosclerosis in later life. Nephron 2015, 130(4), 271–80. [Google Scholar] [CrossRef] [PubMed]
- Voskarides, K; Arsali, M; Athanasiou, Y; Elia, A; Pierides, A; Deltas, C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr Nephrol 2012, 27(4), 675–9. [Google Scholar] [CrossRef] [PubMed]
- Stefanou, C; Pieri, M; Savva, I; Georgiou, G; Pierides, A; Voskarides, K; et al. Co-inheritance of functional podocin variants with heterozygous collagen IV mutations predisposes to renal failure. Nephron 2015, 130(3), 200–12. [Google Scholar] [CrossRef] [PubMed]
- Deltas, C; Pieridis, A; Voskarides, K. The role of molecular genetics in diagnosing familial hematuria(s). Pediatr Nephrol 2012, 27(8), 1221–31. [Google Scholar] [CrossRef] [PubMed]
- Stratta, P; Musetti, C; Barreca, A; Mazzucco, G. New trends of an old disease: the acute post infectious glomerulonephritis at the beginning of the new millenium. J Nephrol 2014, 27(3), 229–39. [Google Scholar] [CrossRef]
- Gale, DP; de Jorge, EG; Cook, HT; Martinez-Barricarte, R; Hadjisavvas, A; McLean, AG; et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 2010, 376(9743), 794–801. [Google Scholar] [CrossRef]
- Besbas, N; Gulhan, B; Gucer, S; Korkmaz, E; Ozaltin, F. A novel CFHR5 mutation associated with C3 glomerulonephritis in a Turkish girl. J Nephrol 2014, 27(4), 457–60. [Google Scholar] [CrossRef] [PubMed]
- Servais, A; Noël, LH; Frémeaux-Bacchi, V; Lesavre, P. C3 glomerulopathy. Contrib Nephrol 2013, 181, 185–93. [Google Scholar] [PubMed]
- Athanasiou, Y; Voskarides, K; Gale, DP; Damianou, L; Patsias, C; Zavros, M; et al. Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol 2011, 6(6), 1436–46. [Google Scholar] [CrossRef]
- Saposnik, B; Binard, S; Fenneteau, O; Nurden, A; Nurden, P; Hurtaud-Roux, MF; et al. Mutation spectrum and genotype-phenotype correlations in a large French cohort of MYH9-Related Disorders. Mol Genet Genomic Me 2014, 2(4), 297–312. [Google Scholar] [CrossRef] [PubMed]
- Savva, I; Pierides, A; Deltas, C. RAAS inhibition and the course of Alport syndrome. Pharmacol Res 2016, 107, 205–10. [Google Scholar] [CrossRef] [PubMed]
- Palmer, SC; Mavridis, D; Navarese, E; Craig, JC; Tonelli, M; Salanti, G; et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 2015, 385(9982), 2047–56. [Google Scholar] [CrossRef]
- Zhang, Y; Wang, F; Ding, J; Zhang, H; Liu, X; Wang, S; et al. Long-term treatment by ACE inhibitors and angiotensin receptor blockers in children with Alport syndrome. Pediatr Nephrol 2016, 31(1), 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, CE; Ding, J; Gregory, M; Gross, O; Heidet, L; Knebelmann, B; et al. Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 2013, 28(1), 5–11. [Google Scholar] [CrossRef] [PubMed]
- Noone, D; Licht, CH. An update on the pathomechanism and future therapies of Alport syndrome. Pediatr Nephrol 2013, 28(7), 1025–36. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, OK; Kliem, V; Offner, G; Oldhafer, K; Fangmann, J; Pichlmay, R; et al. Assessment of long-term risks for living related kidney donors by 24-h blood pressure monitoring and testing for microalbuminuria. Clin Transplant 1997, 11 Pt 1, 415–9. [Google Scholar]
- Gross, O; Weber, M; Fries, JW; Müller, GA. Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport syndrome: long-term risk, benefit and outcome. Nephrol Dial Transplant 2009, 24(5), 1626–30. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, CE. Women with Alport syndrome: risks and rewards of kidney donation. Nephrol Dial Transplant 2009, 24(5), 1369–70. [Google Scholar] [CrossRef] [PubMed]
Gene | Chromosome locus | α-chain of collagen IV encoded by the gene | Disease caused by mutation of the gene | |
---|---|---|---|---|
COL4A1 | 13q34 | α1 | Hereditary angiopathy with nephropathy, aneurysms, and muscle cramps; porencephaly | |
COL4A2 | 13q34 | α2 | Porencephaly | |
COL4A3 | 2q36.3 | α3 | ARAS, ADAS? TBMN | |
COL4A4 | 2q36.3 | α4 | ARAS, ADAS? TBMN | |
COL4A5 | Xq22.3 | α5 | XLAS | |
COL4A6 | Xq22.3 | α6 | ? X-linked deafness | |
ARAS, autosomal recessive Alport syndrome; ADAS, autosomal dominant Alport syndrome; TBMN, thin basement membrane nephropathy; XLAS, X-linked Alport syndrome. |
© 2017 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Plevová, P.; Gut, J.; Janda, J. Familial hematuria: A review. Medicina 2017, 53, 1-10. https://doi.org/10.1016/j.medici.2017.01.002
Plevová P, Gut J, Janda J. Familial hematuria: A review. Medicina. 2017; 53(1):1-10. https://doi.org/10.1016/j.medici.2017.01.002
Chicago/Turabian StylePlevová, Pavlína, Josef Gut, and Jan Janda. 2017. "Familial hematuria: A review" Medicina 53, no. 1: 1-10. https://doi.org/10.1016/j.medici.2017.01.002
APA StylePlevová, P., Gut, J., & Janda, J. (2017). Familial hematuria: A review. Medicina, 53(1), 1-10. https://doi.org/10.1016/j.medici.2017.01.002