ABCC Gene Variants and Their Effects on Non-Response and Relapse in Pediatric Patients with Central Nervous System Tumors: A Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DNA Extraction
2.3. SNV Genotyping
2.4. Outcome: Evaluation of Response to Treatment and Relapse
2.5. Statistical Analysis
2.5.1. Variable Definition
2.5.2. Comparison of Proportions with χ2 Test
2.5.3. Survival Curves for Each Genotype Under the Heritability Models
2.5.4. Multivariate Cox Regression Analysis
3. Results
3.1. Clinical Epidemiology of the Central Nervous System Tumor Cohort
3.2. Survival Analysis
3.3. Correlation Between SNVs ABCC1 r.5540 G>C, ABCC2 c. 3972 C>T and Clinical Response and Relapse
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MDR | multidrug resistance |
| ABC | Adenosine triphosphate-binding cassette |
| SNV | Single-nucleotide variants |
| ICE | Ifosfamide, Carboplatin, Etoposide. |
| MAF | Minor allele frequencies |
| RANO | Response Assessment in Neuro-Oncology |
| CR | Complete response |
| PR | Partial response |
| SD | Stable disease |
| PD | Progression disease |
| SD | Standard deviation |
| HR | Hazard ratio |
| CI | Confidence interval |
| PNET | Primitive neuroectodermal tumor |
References
- Ehrlich, B.S.; McNeil, M.; Pham, L.T.D.; Chen, Y.; Rivera, J.; Acuna, C.; Sniderman, L.; Sakaan, F.M.; Aceituno, A.M.; Villegas, C.A.; et al. Treatment-related mortality in children with cancer in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Oncol. 2023, 24, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Kumar, R.; Narra, L.R.; Sherwani, Z.; Parikh, R.R. Neurological sequalae in pediatric patients with CNS tumors after radiation treatment: A comprehensive review. Semin. Pediatr. Neurol. 2025, 53, 101181. [Google Scholar] [CrossRef]
- Metzger, S.; Weiser, A.; Gerber, N.U.; Otth, M.; Scheinemann, K.; Krayenbühl, N.; Grotzer, M.A.; Guerreiro, S.A.S. Central nervous system tumors in children under 5 years of age: A report on treatment burden, survival and long-term outcomes. J. Neurooncol. 2022, 157, 307–317, Correction in J. Neurooncol. 2022, 157, 319. [Google Scholar] [CrossRef]
- Pote, M.S.; Gacche, R.N. ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov. Today 2023, 28, 103537. [Google Scholar] [CrossRef]
- Sajid, A.; Rahman, H.; Ambudkar, S.V. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat. Rev. Cancer 2023, 23, 762–779. [Google Scholar] [CrossRef] [PubMed]
- Kadioglu, O.; Saeed, M.E.M.; Munder, M.; Spuller, A.; Greten, H.J.; Efferth, T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed. Pharmacother. 2020, 131, 110718. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, J. Multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphism: From discovery to clinical application. J. Cent. South Univ. 2011, 36, 927–938. [Google Scholar]
- Conrad, S.; Kauffmann, H.-M.; Ito, K.; Deeley, R.G.; Cole, S.P.C.; Schrenk, D. Identification of human multidrug resistance protein 1 (MRP1) mutations and characterization of a G671V substitution. J. Hum. Genet. 2001, 46, 656–663. [Google Scholar] [CrossRef]
- Chen, P.; Yan, Q.; Xu, H.; Lu, A.; Zhao, P. The effects of ABCC2 G1249A polymorphism on the risk of resistance to antiepileptic drugs: A meta-analysis of the literature. Genet. Test. Mol. Biomark. 2014, 18, 106–111. [Google Scholar] [CrossRef]
- Leandro, K.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. ABC transporters in drug-resistant epilepsy: Mechanisms of upregulation and therapeutic approaches. Pharmacol. Res. 2019, 144, 357–376. [Google Scholar] [CrossRef]
- Kiyotani, K.; Mushiroda, T.; Imamura, C.K.; Hosono, N.; Tsunoda, T.; Kubo, M.; Tanigawara, Y.; Flockhart, D.A.; Desta, Z.; Skaar, T.C.; et al. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J. Clin. Oncol. 2010, 28, 1287–1293. [Google Scholar] [CrossRef]
- Gentiluomo, M.; García, P.P.; Galeotti, A.A.; Talar-Wojnarowska, R.; Tjaden, C.; Tavano, F.; Strobel, O.; Kupcinskas, J.; Neoptolemos, J.; Hegyi, P.; et al. Genetic variability of the ABCC2 gene and clinical outcomes in pancreatic cancer patients. Carcinogenesis 2019, 40, 544–550. [Google Scholar] [CrossRef]
- Campa, D.; Müller, P.; Edler, L.; Knoefel, L.; Barale, R.; Heussel, C.P.; Thomas, M.; Canzian, F.; Risch, A. A comprehensive study of polymorphisms in ABCB1, ABCC2 and ABCG2 and lung cancer chemotherapy response and prognosis. Int. J. Cancer 2012, 131, 2920–2928. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016, 37, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Zhou, Y.; Lauschke, V.M. Impact of variants in ATP-binding cassette transporters on breast cancer treatment. Pharmacogenomics 2020, 21, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Herrero, M.J.; Rodríguez-Veiga, R.; Solana-Altabella, A.; Boluda, B.; Ballesta-López, O.; Cano, I.; Acuña-Cruz, E.; Cervera, J.; et al. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk. Lymphoma 2021, 62, 659–668. [Google Scholar] [CrossRef]
- Butler, E.; Ludwig, K.; Pacenta, H.L.; Klesse, L.J.; Watt, T.C.; Laetsch, T.W. Recent progress in the treatment of cancer in children. CA Cancer J. Clin. 2021, 7, 315–332. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, N.; Sharma, S. Genetic variations in ABC transporter genes as a predictive biomarker for toxicity in North Indian lung cancer patients undergoing platinum-based doublet chemotherapy. J. Biochem. Mol. Toxicol. 2023, 37, e23269. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Ambrosone, C.B.; Darcy, K.M.; Krivak, T.C.; Armstrong, D.K.; Bookman, M.A.; Davis, W.; Zhao, H.; Moysich, K.; Gallion, H.; et al. Common variants in ABCB1, ABCC2 and ABCG2 genes and clinical outcomes among women with advanced stage ovarian cancer treated with platinum and taxane-based chemotherapy: A Gynecologic Oncology Group study. Gynecol. Oncol. 2012, 12483, 575–581. [Google Scholar] [CrossRef]
- Rivera, R. Protocols of Seguro Popular Whichare Based on Children’s Oncology Group Guidelines, 1st ed.; Editores de Textos Mexicanos, S.A de CV.: Ciudad de México, Mexico, 2010. [Google Scholar]
- Chukwueke, U.N.; Wen, P.Y. Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019, 8, CNS28. [Google Scholar] [CrossRef]
- Leschziner, G.; Zabaneh, D.; Pirmohamed, M.; Owen, A.; Rogers, J.; Coffey, A.J.; Balding, D.J.; Bentley, D.B.; Johnson, M.R. Exon sequencing and high-resolution haplotype analysis of ABC transporter genes implicated in drug resistance. Pharmacogenet. Genom. 2006, 16, 439–450. [Google Scholar] [CrossRef]
- Warren, R.B.; Smith, R.L.; Campalani, E.; Eyre, S.; Smith, C.H.; Barker, J.N.; Worthington, J.; Griffiths, C.E. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J. Investig. Dermatol. 2008, 128, 1925–1929. [Google Scholar] [CrossRef]
- Kunická, T.; Souček, P. Importance of ABCC1 for cancer therapy and prognosis. Drug Metab. Rev. 2024, 46, 325–342. [Google Scholar] [CrossRef]
- Qu, J.; Zhou, B.; Yin, J.; Xu, X.; Zhao, Y.; Lei, G.; Tang, Q.; Zhou, H.; Liu, Z. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci. Ther. 2012, 18, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Escalante-Santiago, D.; Feria-Romero, I.A.; Ribas-Aparicio, R.M.; Rayo-Mares, D.; Fagiolino, P.; Vázquez, M.; Escamilla-Núñez, C.; Grijalva-Otero, I.; López-García, M.A.; Orozco-Suárez, S. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures. Front. Neurol. 2014, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Haenisch, S.; May, K.; Wegner, D.; Caliebe, A.; Cascorbi, I.; Siegmund, W. Influence of genetic polymorphisms on intestinal expression and rifampicin-type induction of ABCC2 and on bioavailability of talinolol. Pharmacogenet. Genom. 2008, 18, 357–365. [Google Scholar] [CrossRef]
- Haenisch, S.; Zimmermann, U.; Dazert, E.; Wruck, C.J.; Dazert, P.; Siegmund, W.; Kroemer, H.K.; Warzok, R.W.; Cascorbi, I. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenom. J. 2006, 7, 56–65, Erratum in Pharmacogenom. J. 2007, 7, 74. [Google Scholar] [CrossRef]
- Cecchin, E.; D’Andrea, M.; Lonardi, S.; Zanusso, C.; Pella, N.; Errante, D. A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharmacogenom. J. 2013, 13, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, M.; Arany, A.; Semsei, A.F.; Csordas, K.; Eipel, O.; Gezsi, A.; Kutszegi, N.; Csoka, M.; Muller, J.; Erdelyi, D.J.; et al. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget 2017, 8, 9388–9398. [Google Scholar] [CrossRef]
- Manrique, A.C.V.; Salazar, J.; Arranz, M.J.; Bagué, S.; Orellana, R.; López-Pousa, A.; Cerdà, P.; Gracia, I.; Majercakova, K.; Peiró, A.; et al. Pharmacogenetic Profiling in High-Risk Soft Tissue Sarcomas Treated with Neoadjuvant Chemotherapy. J. Pers. Med. 2022, 12, 618. [Google Scholar] [CrossRef]
- Thishya, K.; Sreenu, B.; Raju, S.B.; Kutala, V.K. Impact of Pharmacogenetic Determinants of Tacrolimus and Mycophenolate on Adverse Events in Renal Transplant Patients. Curr. Drug Metab. 2021, 22, 342–352. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Solana-Altabella, A.; Poveda, J.L.; Montesinos, P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022, 14, 878. [Google Scholar] [CrossRef] [PubMed]
- Conseil, G.; Deeley, R.G.; Cole, S.P.C. Polymorphisms of MRP1(ABCC1) and related ATP-dependent drug transporters. Pharmacogenet. Genom. 2005, 15, 523–533. [Google Scholar] [CrossRef]
- Tanaka, M.; Okazaki, T.; Suzuki, H.; Abbruzzese, J.L.; Li, D. Association of multi-drug resistance gene polymorphisms with pancreatic cancer outcome. Cancer 2011, 117, 744–751. [Google Scholar] [CrossRef]
- Hlaváč, V.; Václavíková, R.; Brynychová, V.; Koževnikovová, R.; Kopečková, K.; Vrána, D.; Gatěk, J.; Souček, P. Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response. Int. J. Mol. Sci. 2020, 21, 9556. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zheng, Y.; Ma, L.; Tian, L.; Sun, Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front. Pharmacol. 2021, 12, 648407. [Google Scholar] [CrossRef] [PubMed]
- Baltira, C.; Aronica, E.; Elmquist, W.F.; Langer, O.; Löscher, W.; Sarkaria, J.N.; Wesseling, P.; de Gooijer, M.C.; van Tellingen, O. The impact of ATP-binding cassette transporters in the diseased brain: Context matters. Cell Rep. Med. 2024, 5, 101609. [Google Scholar] [CrossRef]
- Møllgård, K.; Dziegielewska, K.M.; Holst, C.B.; Habgood, M.D.; Saunders, N.R. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci. Rep. 2017, 7, 11603. [Google Scholar] [CrossRef]
- Ek, C.J.; Wong, A.; Liddelow, S.A.; Johansson, P.A.; Dziegielewska, K.M.; Saunders, N.R. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol. Lett. 2010, 197, 51–59. [Google Scholar] [CrossRef]
- Sone, K.; Oguri, T.; Uemura, T.; Takeuchi, A.; Fukuda, S.; Takakuwa, O. Genetic variation in the ATP binding cassette transporter ABCC10 is associated with neutropenia for docetaxel in Japanese lung cancer patient’s cohort. BMC Cancer 2019, 19, 246. [Google Scholar] [CrossRef]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of efflux pumps in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Afifah, N.N.; Diantini, A.; Intania, R.; Abdulah, R.; Barliana, M.I. Genetic Polymorphisms and the Efficacy of Platinum-Based Chemotherapy: Review. Pharmgenom. Pers. Med. 2020, 13, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.; Srinivasamurthy, S.K.; Chowta, M.N.; Ullal, S.D.; Daali, Y.; Rao, U.S.C. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals 2022, 15, 990. [Google Scholar] [CrossRef] [PubMed]
- Hansson, P.; Blacker, C.; Uvdal, H.; Wadelius, M.; Green, H.; Ljungman, G. Pharmacogenomics in pediatric oncology patients with solid tumors related to chemotherapy-induced toxicity: A systematic review. Crit. Rev. Oncol. Hematol. 2025, 211, 104720. [Google Scholar] [CrossRef]



| Characteristic | N (%) |
|---|---|
| Sex | |
| Men | 61 (55) |
| Women | 50 (45) |
| Age at diagnosis (years) | |
| Median | 12 |
| Embryonic | 10 |
| Glioma | 8 |
| Germinal | 14 |
| Histologic lineage | |
| Glioma | 61 (55.0) |
| High-grade | 21 (18.9) |
| Low-grade | 40 (36.1) |
| Embryonic | 39 (35.1) |
| Medulloblastoma | 31 (27.9) |
| PNET | 4 (3.6) |
| Pineoblastoma | 3 (2.7) |
| Atypical teratoid/rhabdoid | 1 (0.9) |
| Germinal | 8 (7.2) |
| Other | 3 (2.7) |
| Clinical response | |
| Complete response | 22 (19.8) |
| Partial response | 14 (12.6) |
| Stable disease | 24 (21.6) |
| Progression | 51 (45.9) |
| Treatment scheme | |
| ICE | 48 (43.2) |
| No ICE | 63 (56.8) |
| Relapse | |
| Present | 21 (18.9) |
| Absent | 90 (81.1) |
| Gene | Codominant | Dominant | Recessive | |||||
|---|---|---|---|---|---|---|---|---|
| HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
| ABCC1 | ||||||||
| r.5540 G>C | 1.778 (0.918–3.44) | 0.088 | 2.095 (1.202–3.650) | 0.009 * | 2.02 (1.199–3.421) | 0.008 * | 1.22 (0.656–1.919) | 0.678 |
| Age | 0.962 (0.908–1.019) | 0.190 | 0.928 (0.882–0.977) | 0.004 | 0.931 (0.892–0.972) | 0.001 | 0.928 (0.886–0.971) | 0.001 |
| Sex | 0.590 (0.297–1.171) | 0.132 | 0.640 (0.392–1.044) | 0.074 | 0.692 (0.433–1.05) | 0.082 | 0.678 (0.440–1.044) | 0.078 |
| ABCC2 | ||||||||
| c. 3972 C>T | 0.710 (0.317–1.588) | 0.404 | 0.907 (0.565–1.456) | 0.685 | 0.895 (0.554–1.384) | 0.568 | 0.845 (0.401–1.782) | 0.658 |
| Age | 1.026 (0.531–1.982) | 0.939 | 0.733 (0.459–1.171) | 0.194 | 0.941 (0.901–0.963) | 0.007 | 0.939 (0.900–0.9809) | 0.004 |
| Sex | 0.953 (0.900–1.009) | 0.097 | 0.941 (0.898–0.986) | 0.011 | 0.734 (0.472–1.142) | 0.170 | 0.728 (0.468–1.131) | 0.158 |
| Gene | Codominant | Dominant | Recessive | |||||
|---|---|---|---|---|---|---|---|---|
| HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
| ABCC1 | ||||||||
| r.5540 G>C | 9.09 (1.04–78.85) | 0.04 * | 8.161 (0.909–73.29) | 0.06 | 3.912 (1.139–13.436) | 0.03 * | 2.69 (0.89–8.11) | 0.07 |
| Age | 0.53 (0.09–2.66) | 0.42 | 0.432 (0.114–1.629) | 0.21 | 0.924 (0.847–1.007) | 0.07 | 0.98 (0.88–1.08) | 0.70 |
| Sex | 1.01 (0.87–1.17) | 0.88 | 0.942 (0.803–1.104) | 0.45 | 1.18 (0.502–2.773) | 0.70 | 0.60 (0.20–1.76) | 0.35 |
| ABCC2 | ||||||||
| c. 3972 C>T | 0.37 (0.08–1.56) | 0.17 | 1.26 (0.36–4.42) | 0.71 | 1.06 (0.35–3.19) | 0.91 | 3.5 (1.02–12.17) | 0.04 * |
| Age | 0.99 (0.86–1.14) | 0.93 | 0.97 (0.85–1.14) | 0.66 | 0.99 (0.89–1.119 | 0.93 | 0.98 (0.87–1.10) | 0.76 |
| Sex | 0.46 (0.09–2.38) | 0.35 | 2.36 (0.65–8.57) | 0.19 | 1.58 (0.54–4.57) | 0.39 | 1.03 (0.32–3.30) | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Torres-Espíndola, L.M.; Pérez-De Marcos, J.C.; Castillejos-López, M.d.J.; Aquino-Gálvez, A.; Velasco-Hidalgo, L.; Cárdenas-Cardós, R.; De Uña-Flores, A.; Zapata-Tarrés, M.; Higuera-Iglesias, A. ABCC Gene Variants and Their Effects on Non-Response and Relapse in Pediatric Patients with Central Nervous System Tumors: A Cohort Study. Curr. Issues Mol. Biol. 2026, 48, 205. https://doi.org/10.3390/cimb48020205
Torres-Espíndola LM, Pérez-De Marcos JC, Castillejos-López MdJ, Aquino-Gálvez A, Velasco-Hidalgo L, Cárdenas-Cardós R, De Uña-Flores A, Zapata-Tarrés M, Higuera-Iglesias A. ABCC Gene Variants and Their Effects on Non-Response and Relapse in Pediatric Patients with Central Nervous System Tumors: A Cohort Study. Current Issues in Molecular Biology. 2026; 48(2):205. https://doi.org/10.3390/cimb48020205
Chicago/Turabian StyleTorres-Espíndola, Luz María, Juan Carlos Pérez-De Marcos, Manuel de Jesús Castillejos-López, Arnoldo Aquino-Gálvez, Liliana Velasco-Hidalgo, Rocío Cárdenas-Cardós, Armando De Uña-Flores, Marta Zapata-Tarrés, and Anjartah Higuera-Iglesias. 2026. "ABCC Gene Variants and Their Effects on Non-Response and Relapse in Pediatric Patients with Central Nervous System Tumors: A Cohort Study" Current Issues in Molecular Biology 48, no. 2: 205. https://doi.org/10.3390/cimb48020205
APA StyleTorres-Espíndola, L. M., Pérez-De Marcos, J. C., Castillejos-López, M. d. J., Aquino-Gálvez, A., Velasco-Hidalgo, L., Cárdenas-Cardós, R., De Uña-Flores, A., Zapata-Tarrés, M., & Higuera-Iglesias, A. (2026). ABCC Gene Variants and Their Effects on Non-Response and Relapse in Pediatric Patients with Central Nervous System Tumors: A Cohort Study. Current Issues in Molecular Biology, 48(2), 205. https://doi.org/10.3390/cimb48020205

