Emerging Therapeutic Strategies for HPV-Related Cancers: From Gene Editing to Precision Oncology
Abstract
1. Introduction
2. Therapeutic Approaches
2.1. Genome Editing Approaches
2.2. Epigenetic Drugs
2.3. Therapeutic Vaccines
2.4. Natural Compounds & Phytochemicals
3. Drug Repurposing & Combination Therapies
4. Patient-Derived Organoids & Functional Screening
5. Precision Oncology in HPV Associated Cancers
6. Artificial Intelligence in HPV-Associated Cancers
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AAV | Adeno-Associated Virus |
CIN | Cervical Intraepithelial Neoplasia |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
Cas9 | CRISPR-associated protein 9 |
cfDNA | Circulating Cell-free DNA |
DNMTi | DNA Methyltransferase Inhibitor |
EGCG | Epigallocatechin Gallate |
FDA | U.S. Food and Drug Administration |
HDACi | Histone Deacetylase Inhibitor |
HPV | Human Papillomavirus |
HNSCC | Head and Neck Squamous Cell Carcinoma |
ML | Machine Learning |
mTOR | Mechanistic Target of Rapamycin |
NMD | Nonsense-Mediated Decay |
PDO | Patient-Derived Organoid |
pRb | Retinoblastoma Protein |
RRP | Recurrent Respiratory Papillomatosis |
ROS | Reactive Oxygen Species |
siRNA | Small Interfering RNA |
TALEN | Transcription Activator-Like Effector Nuclease |
TME | Tumour Microenvironment |
VEGF | Vascular Endothelial Growth Factor |
References
- Wei, F.; Georges, D.; Man, I.; Baussano, I.; Clifford, G.M. Causal Attribution of Human Papillomavirus Genotypes to Invasive Cervical Cancer Worldwide: A Systematic Analysis of the Global Literature. Lancet 2024, 404, 435–444. [Google Scholar] [CrossRef]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef]
- Ashrafi, G.H.; Tsirimonaki, E.; Marchetti, B.; O’Brien, P.M.; Sibbet, G.J.; Andrew, L.; Campo, M.S. Down-Regulation of MHC Class I by Bovine Papillomavirus E5 Oncoproteins. Oncogene 2002, 21, 248–259. [Google Scholar] [CrossRef]
- Lo Cigno, I.; Calati, F.; Girone, C.; Catozzo, M.; Gariglio, M. High-risk HPV Oncoproteins E6 and E7 and Their Interplay with the Innate Immune Response: Uncovering Mechanisms of Immune Evasion and Therapeutic Prospects. J. Med. Virol. 2024, 96, e29685. [Google Scholar] [CrossRef]
- Grabowska, A.K. The Invisible Enemy—How Human Papillomaviruses Avoid Recognition and Clearance by the Host Immune System. Open Virol. J. 2012, 6, 249–256. [Google Scholar] [CrossRef]
- Çuburu, N.; Graham, B.S.; Buck, C.B.; Kines, R.C.; Pang, Y.-Y.S.; Day, P.M.; Lowy, D.R.; Schiller, J.T. Intravaginal Immunization with HPV Vectors Induces Tissue-Resident CD8+ T Cell Responses. J. Clin. Investig. 2012, 122, 4606–4620. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Wentzensen, N. A Suggested Approach to Simplify and Improve Cervical Screening in the United States. J. Low. Genit. Tract Dis. 2016, 20, 1–7. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Harper, D.M.; DeMars, L.R. HPV Vaccines—A Review of the First Decade. Gynecol. Oncol. 2017, 146, 196–204, Correction in: Gynecol. Oncol. 2017, 147, 489. [Google Scholar] [CrossRef] [PubMed]
- Bae, B.K.; Cho, W.K.; Kim, B.-G.; Choi, C.H.; Kim, T.-J.; Lee, Y.-Y.; Lee, J.-W.; Park, W. Patterns and Risk Factors of Recurrence in Low-Risk Early-Stage Cervical Adenocarcinoma Treated with Surgery Alone: Implications on Risk Group Stratification. Int. J. Gynecol. Cancer 2022, 32, 1524–1530. [Google Scholar] [CrossRef]
- Chao, X.; Song, X.; Wu, H.; You, Y.; Wu, M.; Li, L. Selection of Treatment Regimens for Recurrent Cervical Cancer. Front. Oncol. 2021, 11, 618485. [Google Scholar] [CrossRef]
- Volesky-Avellaneda, K.D.; Laurie, C.; Tsyruk-Romano, O.; El-Zein, M.; Franco, E.L. Human Papillomavirus Detectability and Cervical Cancer Prognosis. Obstet. Gynecol. 2023, 142, 1055–1067. [Google Scholar] [CrossRef]
- Okuma, K.; Yamashita, H.; Yokoyama, T.; Nakagawa, K.; Kawana, K. Undetected Human Papillomavirus DNA and Uterine Cervical Carcinoma. Strahlenther. Onkol. 2016, 192, 55–62. [Google Scholar] [CrossRef]
- Jubair, L.; Fallaha, S.; McMillan, N.A.J. Systemic Delivery of CRISPR/Cas9 Targeting HPV Oncogenes Is Effective at Eliminating Established Tumors. Mol. Ther. 2019, 27, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, Efficacy, and Immunogenicity of VGX-3100, a Therapeutic Synthetic DNA Vaccine Targeting Human Papillomavirus 16 and 18 E6 and E7 Proteins for Cervical Intraepithelial Neoplasia 2/3: A Randomised, Double-Blind, Placebo-Controlled Phase 2b Trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Massa, S.; Pagliarello, R.; Paolini, F.; Venuti, A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J. Clin. Med. 2022, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yu, L.; Zhu, D.; Ding, W.; Wang, X.; Zhang, C.; Wang, L.; Jiang, X.; Shen, H.; He, D.; et al. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells. Biomed. Res. Int. 2014, 2014, 612823. [Google Scholar] [CrossRef]
- Zhen, S.; Qiang, R.; Lu, J.; Tuo, X.; Yang, X.; Li, X. CRISPR/Cas9-HPV-liposome Enhances Antitumor Immunity and Treatment of HPV Infection-associated Cervical Cancer. J. Med. Virol. 2023, 95, e28144. [Google Scholar] [CrossRef]
- Khairkhah, N.; Bolhassani, A.; Najafipour, R. Current and Future Direction in Treatment of HPV-Related Cervical Disease. J. Mol. Med. 2022, 100, 829–845. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-Target Effects in CRISPR/Cas9-Mediated Genome Engineering. Mol. Ther. Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef]
- Jiang, M.; Milner, J. Selective Silencing of Viral Gene E6 and E7 Expression in HPV-Positive Human Cervical Carcinoma Cells Using Small Interfering RNAs. In DNA Viruses; Humana Press: Totowa, NJ, USA, 2005; pp. 401–420. [Google Scholar]
- Yoshinouchi, M.; Yamada, T.; Kizaki, M.; Fen, J.; Koseki, T.; Ikeda, Y.; Nishihara, T.; Yamato, K. In Vitro and in Vivo Growth Suppression of Human Papillomavirus 16-Positive Cervical Cancer Cells by E6 SiRNA. Mol. Ther. 2003, 8, 762–768. [Google Scholar] [CrossRef]
- Niu, X.Y.; Peng, Z.L.; Duan, W.Q.; Wang, H.; Wang, P. Inhibition of HPV 16 E6 Oncogene Expression by RNA Interference in Vitro and in Vivo. Int. J. Gynecol. Cancer 2006, 16, 743–751. [Google Scholar] [CrossRef]
- Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; et al. DNA Targeting Specificity of RNA-Guided Cas9 Nucleases. Nat. Biotechnol. 2013, 31, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Castro-Oropeza, R.; Piña-Sánchez, P. Epigenetic and Transcriptomic Regulation Landscape in HPV+ Cancers: Biological and Clinical Implications. Front. Genet. 2022, 13, 886613. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, N.S.; Moore, D.W.; Broker, T.R.; Chow, L.T. Vorinostat, a Pan-HDAC Inhibitor, Abrogates Productive HPV-18 DNA Amplification. Proc. Natl. Acad. Sci. USA 2018, 115, E11138–E11147. [Google Scholar] [CrossRef] [PubMed]
- Davalos, V.; Esteller, M. Cancer Epigenetics in Clinical Practice. CA Cancer J. Clin. 2023, 73, 376–424. [Google Scholar] [CrossRef]
- Stich, M.; Ganss, L.; Puschhof, J.; Prigge, E.-S.; Reuschenbach, M.; Guiterrez, A.; Vinokurova, S.; von Knebel Doeberitz, M. 5-Aza-2′-Deoxycytidine (DAC) Treatment Downregulates the HPV E6 and E7 Oncogene Expression and Blocks Neoplastic Growth of HPV-Associated Cancer Cells. Oncotarget 2017, 8, 52104–52117. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, J.; Zhang, H.; Shen, J.; Chen, J.; Hong, J.; Xu, Y.; Qian, C. Prophylactic and Therapeutic HPV Vaccines: Current Scenario and Perspectives. Front. Cell Infect. Microbiol. 2022, 12, 909223. [Google Scholar] [CrossRef]
- Teffera, Z.; Yihunie, W.; Tegegne, B.; Misganaw, B.; Abebaw, D.; Belayineh, M.; Akelew, Y.; Dilnesa, T.; Adugna, A.; Silabat, B.; et al. Efficacy of a Novel High-risk HPV-16/18 Therapeutic Vaccine in Treating Cervical Intraepithelial Neoplasia and Cervical Cancer in a Clinical Trial: A Systematic Review and Meta-analysis. World Acad. Sci. J. 2024, 6, 52. [Google Scholar] [CrossRef]
- Bagarazzi, M.L.; Yan, J.; Morrow, M.P.; Shen, X.; Parker, R.L.; Lee, J.C.; Giffear, M.; Pankhong, P.; Khan, A.S.; Broderick, K.E.; et al. Immunotherapy Against HPV16/18 Generates Potent TH1 and Cytotoxic Cellular Immune Responses. Sci. Transl. Med. 2012, 4, 155ra138. [Google Scholar] [CrossRef]
- Smalley Rumfield, C.; Roller, N.; Pellom, S.T.; Schlom, J.; Jochems, C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther. 2020, 9, 167–200. [Google Scholar] [CrossRef]
- Norberg, S.; Gulley, J.L.; Schlom, J.; Lankford, A.; Semnani, R.; Shah, R.R.; Brough, D.E.; Sabzevari, H.; Allen, C. PRGN-2012, a Novel Gorilla Adenovirus-Based Immunotherapy, Provides the First Treatment That Leads to Complete and Durable Responses in Recurrent Respiratory Papillomatosis Patients. J. Clin. Oncol. 2024, 42, LBA6015. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Yang, W.; Hou, F.; Feng, X. Precision Therapeutic Targets for HPV-Positive Cancers: An Overview and New Insights. Infect. Agents Cancer 2025, 20, 17. [Google Scholar] [CrossRef] [PubMed]
- Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine Modulates AP-1 Activity to Suppress HPV Transcription and Downstream Signaling to Induce Growth Arrest and Apoptosis in Cervical Cancer Cells. Mol. Cancer 2011, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Ramniwas, S.; Pandey, S.; Lakhanpal, S.; Ballal, S.; Kumar, S.; Bhat, M.; Sharma, S.; Kumar, M.R.; Khan, F. Elucidating the Anticancerous Efficacy of Genistein via Modulating HPV (E7 and E6) Oncogenes Expression and Apoptotic Induction in Cervical Cancer Cells. Biotechnol. Appl. Biochem. 2025, 72, 709–717. [Google Scholar] [CrossRef]
- Nadile, M.; Kornel, A.; Sze, N.S.K.; Tsiani, E. A Comprehensive Review of Genistein’s Effects in Preclinical Models of Cervical Cancer. Cancers 2023, 16, 35. [Google Scholar] [CrossRef]
- Munagala, R.; Kausar, H.; Munjal, C.; Gupta, R.C. Withaferin A Induces P53-Dependent Apoptosis by Repression of HPV Oncogenes and Upregulation of Tumor Suppressor Proteins in Human Cervical Cancer Cells. Carcinogenesis 2011, 32, 1697–1705. [Google Scholar] [CrossRef]
- Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol Inhibits the Progression of Cervical Cancer by Suppressing the Transcription and Expression of HPV E6 and E7 Genes. Int. J. Mol. Med. 2020, 47, 335–345. [Google Scholar] [CrossRef]
- Ahn, W.-S.; Yoo, J.; Huh, S.-W.; Kim, C.-K.; Lee, J.-M.; Namkoong, S.-E.; Bae, S.-M.; Lee, I.P. Protective Effects of Green Tea Extracts (Polyphenon E and EGCG) on Human Cervical Lesions. Eur. J. Cancer Prev. 2003, 12, 383–390. [Google Scholar] [CrossRef]
- Maher, D.M.; Bell, M.C.; O’Donnell, E.A.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Curcumin Suppresses Human Papillomavirus Oncoproteins, Restores P53, Rb, and Ptpn13 Proteins and Inhibits Benzo[a]Pyrene-induced Upregulation of HPV E7. Mol. Carcinog. 2011, 50, 47–57. [Google Scholar] [CrossRef]
- Ghanbari, A.; Le Gresley, A.; Naughton, D.; Kuhnert, N.; Sirbu, D.; Ashrafi, G.H. Biological Activities of Ficus Carica Latex for Potential Therapeutics in Human Papillomavirus (HPV) Related Cervical Cancers. Sci. Rep. 2019, 9, 1013. [Google Scholar] [CrossRef]
- Cakir, M.; Bilge, U.; Ghanbari, A.; Ashrafi, G. Regulatory Effect of Ficus Carica Latex on Cell Cycle Progression in Human Papillomavirus-Positive Cervical Cancer Cell Lines: Insights from Gene Expression Analysis. Pharmaceuticals 2023, 16, 1723. [Google Scholar] [CrossRef]
- Cakir, M.O.; Bilge, U.; Naughton, D.; Ashrafi, G.H. Ficus Carica Latex Modulates Immunity-Linked Gene Expression in Human Papillomavirus Positive Cervical Cancer Cell Lines: Evidence from RNA Seq Transcriptome Analysis. Int. J. Mol. Sci. 2023, 24, 13646. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.A.R.; Cornelison, T.; Nuño, T.; Greenspan, D.L.; Byron, J.W.; Hsu, C.-H.; Alberts, D.S.; Chow, H.-H.S. Results of a Phase II Randomized, Double-Blind, Placebo-Controlled Trial of Polyphenon E in Women with Persistent High-Risk HPV Infection and Low-Grade Cervical Intraepithelial Neoplasia. Gynecol. Oncol. 2014, 132, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Pięta, E.; Chrabąszcz, K.; Pogoda, K.; Suchy, K.; Paluszkiewicz, C.; Kwiatek, W.M. Adaptogenic Activity of Withaferin A on Human Cervical Carcinoma Cells Using High-Definition Vibrational Spectroscopic Imaging. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2023, 1869, 166615. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Khuda-Bukhsh, A.R. Berberine Alters Epigenetic Modifications, Disrupts Microtubule Network, and Modulates HPV-18 E6–E7 Oncoproteins by Targeting P53 in Cervical Cancer Cell HeLa: A Mechanistic Study Including Molecular Docking. Eur. J. Pharmacol. 2014, 744, 132–146. [Google Scholar] [CrossRef]
- El Fawal, G.; Sobhy, S.E.; Hafez, E.E. Biological Activities of Fig Latex -Loaded Cellulose Acetate/Poly(Ethylene Oxide) Nanofiber for Potential Therapeutics: Anticancer and Antioxidant Material. Int. J. Biol. Macromol. 2024, 270, 132176. [Google Scholar] [CrossRef]
- Pantziarka, P.; Bouche, G.; André, N. “Hard” Drug Repurposing for Precision Oncology: The Missing Link? Front. Pharmacol. 2018, 9, 637. [Google Scholar] [CrossRef]
- Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Capistrano, R.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.; Meheus, L.; Sukhatme, V.P.; et al. ReDO_DB: The Repurposing Drugs in Oncology Database. Ecancermedicalscience 2018, 12, 886. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Shen, H.; Lin, H.; Li, D. Anthelminthic Drug Niclosamide Sensitizes the Responsiveness of Cervical Cancer Cells to Paclitaxel via Oxidative Stress-Mediated MTOR Inhibition. Biochem. Biophys. Res. Commun. 2017, 484, 416–421. [Google Scholar] [CrossRef]
- Hampson, L.; Maranga, I.O.; Masinde, M.S.; Oliver, A.W.; Batman, G.; He, X.; Desai, M.; Okemwa, P.M.; Stringfellow, H.; Martin-Hirsch, P.; et al. A Single-Arm, Proof-Of-Concept Trial of Lopimune (Lopinavir/Ritonavir) as a Treatment for HPV-Related Pre-Invasive Cervical Disease. PLoS ONE 2016, 11, e0147917. [Google Scholar] [CrossRef]
- Calista, D. Topical Cidofovir for Severe Cutaneous Human Papillomavirus and Molluscum Contagiosum Infections in Patients with HIV/AIDS. A pilot study. J. Eur. Acad. Dermatol. Venereol. 2000, 14, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Van Pachterbeke, C.; Bucella, D.; Rozenberg, S.; Manigart, Y.; Gilles, C.; Larsimont, D.; Vanden Houte, K.; Reynders, M.; Snoeck, R.; Bossens, M. Topical Treatment of CIN 2+ by Cidofovir: Results of a Phase II, Double-Blind, Prospective, Placebo-Controlled Study. Gynecol. Oncol. 2009, 115, 69–74. [Google Scholar] [CrossRef]
- Wolfgang, G.H.I.; Shibata, R.; Wang, J.; Ray, A.S.; Wu, S.; Doerrfler, E.; Reiser, H.; Lee, W.A.; Birkus, G.; Christensen, N.D.; et al. GS-9191 Is a Novel Topical Prodrug of the Nucleotide Analog 9-(2-Phosphonylmethoxyethyl)Guanine with Antiproliferative Activity and Possible Utility in the Treatment of Human Papillomavirus Lesions. Antimicrob. Agents Chemother. 2009, 53, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Drost, J.; Clevers, H. Organoids in Cancer Research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Maru, Y.; Tanaka, N.; Itami, M.; Hippo, Y. Efficient Use of Patient-Derived Organoids as a Preclinical Model for Gynecologic Tumors. Gynecol. Oncol. 2019, 154, 189–198. [Google Scholar] [CrossRef]
- Driehuis, E.; Kretzschmar, K.; Clevers, H. Establishment of Patient-Derived Cancer Organoids for Drug-Screening Applications. Nat. Protoc. 2020, 15, 3380–3409. [Google Scholar] [CrossRef]
- Zhou, Y.; Dai, Q.; Xu, Y.; Wu, S.; Cheng, M.; Zhao, B. PharmaFormer Predicts Clinical Drug Responses through Transfer Learning Guided by Patient Derived Organoid. npj Precis. Oncol. 2025, 9, 282. [Google Scholar] [CrossRef]
- Sammut, S.-J.; Crispin-Ortuzar, M.; Chin, S.-F.; Provenzano, E.; Bardwell, H.A.; Ma, W.; Cope, W.; Dariush, A.; Dawson, S.-J.; Abraham, J.E.; et al. Multi-Omic Machine Learning Predictor of Breast Cancer Therapy Response. Nature 2022, 601, 623–629. [Google Scholar] [CrossRef]
- Yan, H.H.N.; Siu, H.C.; Law, S.; Ho, S.L.; Yue, S.S.K.; Tsui, W.Y.; Chan, D.; Chan, A.S.; Ma, S.; Lam, K.O.; et al. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening. Cell Stem Cell 2018, 23, 882–897.e11. [Google Scholar] [CrossRef]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef]
- Driehuis, E. Correction: Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2020, 10, 476. [Google Scholar] [CrossRef]
- Brassard, J.A.; Lutolf, M.P. Engineering Stem Cell Self-Organization to Build Better Organoids. Cell Stem Cell 2019, 24, 860–876. [Google Scholar] [CrossRef]
- Paderno, A.; Petrelli, F.; Lorini, L.; Capriotti, V.; Gurizzan, C.; Bossi, P. The Predictive Role of PD-L1 in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Oral Oncol. 2024, 153, 106799. [Google Scholar] [CrossRef]
- Faden, D.L.; Ding, F.; Lin, Y.; Zhai, S.; Kuo, F.; Chan, T.A.; Morris, L.G.; Ferris, R.L. APOBEC Mutagenesis Is Tightly Linked to the Immune Landscape and Immunotherapy Biomarkers in Head and Neck Squamous Cell Carcinoma. Oral Oncol. 2019, 96, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Akagi, K.; Li, J.; Broutian, T.R.; Padilla-Nash, H.; Xiao, W.; Jiang, B.; Rocco, J.W.; Teknos, T.N.; Kumar, B.; Wangsa, D.; et al. Genome-Wide Analysis of HPV Integration in Human Cancers Reveals Recurrent, Focal Genomic Instability. Genome Res. 2014, 24, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Parfenov, M.; Pedamallu, C.S.; Gehlenborg, N.; Freeman, S.S.; Danilova, L.; Bristow, C.A.; Lee, S.; Hadjipanayis, A.G.; Ivanova, E.V.; Wilkerson, M.D.; et al. Characterization of HPV and Host Genome Interactions in Primary Head and Neck Cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 15544–15549. [Google Scholar] [CrossRef] [PubMed]
- Sano, T.; Oyama, T.; Kashiwabara, K.; Fukuda, T.; Nakajima, T. Expression Status of P16 Protein Is Associated with Human Papillomavirus Oncogenic Potential in Cervical and Genital Lesions. Am. J. Pathol. 1998, 153, 1741–1748. [Google Scholar] [CrossRef]
- Jeannot, E.; Latouche, A.; Bonneau, C.; Calméjane, M.-A.; Beaufort, C.; Ruigrok-Ritstier, K.; Bataillon, G.; Larbi Chérif, L.; Dupain, C.; Lecerf, C.; et al. Circulating HPV DNA as a Marker for Early Detection of Relapse in Patients with Cervical Cancer. Clin. Cancer Res. 2021, 27, 5869–5877. [Google Scholar] [CrossRef]
- Wang, R.; Khurram, S.A.; Walsh, H.; Young, L.S.; Rajpoot, N. A Novel Deep Learning Algorithm for Human Papillomavirus Infection Prediction in Head and Neck Cancers Using Routine Histology Images. Mod. Pathol. 2023, 36, 100320. [Google Scholar] [CrossRef]
- Wang, W.; Huang, C.; Bi, S.; Liang, H.; Li, S.; Lu, T.; Liu, B.; Tang, Y.; Wang, Q. A Predictive Model for the Transformation from Cervical Inflammation to Cancer Based on Tumor Immune-Related Factors. Front. Immunol. 2025, 16, 1532048. [Google Scholar] [CrossRef]
- Cha, J.; Kim, D.H.; Kim, G.; Cho, J.-W.; Sung, E.; Baek, S.; Hong, M.H.; Kim, C.G.; Sim, N.S.; Hong, H.J.; et al. Single-Cell Analysis Reveals Cellular and Molecular Factors Counteracting HPV-Positive Oropharyngeal Cancer Immunotherapy Outcomes. J. Immunother. Cancer 2024, 12, e008667. [Google Scholar] [CrossRef]
- Chera, B.S.; Kumar, S.; Shen, C.; Amdur, R.; Dagan, R.; Green, R.; Goldman, E.; Weiss, J.; Grilley-Olson, J.; Patel, S.; et al. Plasma Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in HPV-Associated Oropharyngeal Cancer. J. Clin. Oncol. 2020, 38, 1050–1058, Erratum in: J. Clin. Oncol. 2020, 38, 3579. [Google Scholar] [CrossRef] [PubMed]
- Inturi, R.; Jemth, P. CRISPR/Cas9-Based Inactivation of Human Papillomavirus Oncogenes E6 or E7 Induces Senescence in Cervical Cancer Cells. Virology 2021, 562, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Lu, J.; Liu, Y.-H.; Chen, W.; Li, X. Synergistic Antitumor Effect on Cervical Cancer by Rational Combination of PD1 Blockade and CRISPR-Cas9-Mediated HPV Knockout. Cancer Gene Ther. 2020, 27, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Naumann, R.W.; Hollebecque, A.; Meyer, T.; Devlin, M.-J.; Oaknin, A.; Kerger, J.; López-Picazo, J.M.; Machiels, J.-P.; Delord, J.-P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef]
- Krsek, A.; Baticic, L.; Sotosek, V.; Braut, T. The Role of Biomarkers in HPV-Positive Head and Neck Squamous Cell Carcinoma: Towards Precision Medicine. Diagnostics 2024, 14, 1448. [Google Scholar] [CrossRef]
- Lõhmussaar, K.; Oka, R.; Espejo Valle-Inclan, J.; Smits, M.H.H.; Wardak, H.; Korving, J.; Begthel, H.; Proost, N.; van de Ven, M.; Kranenburg, O.W.; et al. Patient-Derived Organoids Model Cervical Tissue Dynamics and Viral Oncogenesis in Cervical Cancer. Cell Stem Cell 2021, 28, 1380–1396. [Google Scholar] [CrossRef]
- Issing, C.; Menche, C.; Richter, M.R.; Mosa, M.H.; von der Grün, J.; Fleischmann, M.; Thoenissen, P.; Winkelmann, R.; Darvishi, T.; Loth, A.G.; et al. Head and Neck Tumor Organoid Biobank for Modelling Individual Responses to Radiation Therapy According to the TP53/HPV Status. J. Exp. Clin. Cancer Res. 2025, 44, 85. [Google Scholar] [CrossRef]
- Hu, B.; Wang, R.; Wu, D.; Long, R.; Fan, J.; Hu, Z.; Hu, X.; Ma, D.; Li, F.; Sun, C.; et al. A Promising New Model: Establishment of Patient-Derived Organoid Models Covering HPV-Related Cervical Pre-Cancerous Lesions and Their Cancers. Adv. Sci. 2024, 11, 2302340. [Google Scholar] [CrossRef]
- Migliorelli, A.; Manuelli, M.; Ciorba, A.; Stomeo, F.; Pelucchi, S.; Bianchini, C. Role of Artificial Intelligence in Human Papillomavirus Status Prediction for Oropharyngeal Cancer: A Scoping Review. Cancers 2024, 16, 4040. [Google Scholar] [CrossRef]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-Associated Oropharyngeal Cancer: Epidemiology, Molecular Biology and Clinical Management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
Approach | Mechanism | Advantages | Challenges |
---|---|---|---|
CRISPR/TALEN | E6/E7 gene disruption → p53/pRb reactivation | Durable effect, tumour suppression | Vector delivery, off-target effects, safety concerns |
RNAi | Suppression of E6/E7 mRNA | Transient, no genomic alteration | Short-lived effects, delivery difficulties |
Therapeutic Vaccines | Induction of T cell immune response | Immune activation, long-term protection | Limited Phase III data |
Small Molecules | Inhibition of oncoprotein complexes | Targeted, direct molecular intervention | Potential off-target effects on normal cellular functions |
Nano-therapy | Targeted drug delivery | Increased efficacy, reduced toxicity | Complex manufacturing, safety uncertainties |
Organoids + AI | Personalized drug response modelling | Precision medicine, biomarker discovery | Lack of standardization, limited datasets |
Feature | [16] | [13] |
Model | In vitro (SiHa, CaSki cell lines) | In vivo (HPV16+ tumour-bearing mice) |
Target | E7 oncogene only | Primarily E7, but also systems targeting both E6 and E7 |
Delivery Method | Plasmid-based transfection | Systemic delivery via PEGylated liposomes |
Outcome | Apoptosis induction, pRb restoration, growth arrest | Tumour regression, prolonged survival, efficient genome editing |
Challenges | Limited to in vitro application | Need for metastatic targeting, off-target risks, vector optimization |
Compound | Natural Source | Mechanism of Action | HPV-Related Effect | References |
---|---|---|---|---|
Curcumin | Curcuma longa | ↓ E6/E7 transcription; restores p53/Rb; anti-proliferative | Suppresses HPV oncogenes; growth/migration ↓ (in vitro/in vivo) | [40] |
EGCG | Green tea | Antioxidant; epigenetic effects; cell-cycle arrest | Lesion responses in small studies; mixed RCT results | [39,44] |
Resveratrol | Grapes/berries | ↓ E6/E7 transcription; anti-proliferative | Inhibits cervical cancer growth (in vitro/in vivo) | [38] |
Withaferin A | Withania somnifera | ↓ E6/E7; p53 restoration; G2/M arrest; apoptosis | Tumour growth ↓ in mice; pro-apoptotic signalling | [37,45] |
Berberine | Berberis spp. | Mitochondrial dysfunction; ↑ ROS; apoptosis; ↓ E6/E7 | Triggers apoptosis in HPV-transformed cells | [34,46] |
Genistein | Soy isoflavone | Antiproliferative; pathway modulation; (new) ↓ E6/E7 | Reduces proliferation; emerging E6/E7 data | [35,36] |
Fig latex | Ficus carica | ↓ E6/E7; re-activates p53/Rb; cell-cycle arrest; ↑ antigen presentation | Selective cytotoxicity vs. HPV+ cells; migration/invasion ↓; immunogenicity ↑ | [41,42,43,47] |
Drug/Therapy | Type | Target/Mechanism | Clinical Phase |
---|---|---|---|
Nivolumab | Immune Checkpoint Inhibitor | PD-1 | Approved for recurrent/metastatic HNSCC (FDA 2016) |
Decitabine | Epigenetic Drug | DNMT inhibition | Phase II window trial in HPV + HNSCC (NCT05317000) |
VGX-3100 | DNA Therapeutic Vaccine | E6/E7-specific immune response | Phase III (REVEAL program) |
CRISPR-E7 (preclin) | Gene Editing | E7 knockout via Cas9 | Preclinical |
Curcumin | Natural Compound | NF-κB inhibition, apoptosis induction | Preclinical |
Drug | Mechanism of Action |
---|---|
VGX-3100 | DNA vaccine inducing E6/E7-specific T-cell responses; phase IIb efficacy in CIN2/3; phase III ongoing |
Lopinavir/Ritonavir | HIV protease inhibitor: topical application showed regression/HPV clearance signal in CIN2/3 |
Niclosamide | Downregulates E6/E7; induces autophagy, ROS-mediated mitochondrial stress; inhibits Wnt/β-catenin and mTOR signalling |
Cidofovir | Viral DNA polymerase inhibitor; topical/intralesional use for HPV-related lesions and papillomatosis |
PRGN-2012 | Gorilla adenovirus vaccine; induces HPV-6/11-specific T cells; durable responses in RRP; FDA-approved in 2025 as first immunotherapy for RRP |
GS-9191 | Topical nucleotide analogue (PMEG prodrug); inhibits viral DNA synthesis; early clinical testing (NCT00499967) |
Biomarker | Cancer Type | Clinical Application | Reference |
---|---|---|---|
PD-L1 expression | Cervical, HNSCC | Predictive for ICI response | [64] |
Tumour mutational burden (TMB) | Cervical, HNSCC | Immunotherapy stratification | [65] |
APOBEC signature | HPV + HNSCC | Prognosis, immunotherapy sensitivity | [65] |
HPV DNA integration | Cervical, HNSCC | Prognosis, oncogene activation | [66,67] |
p16^INK4a^ | Cervical, HNSCC | Surrogate marker for oncogenic HPV | [68] |
Circulating HPV DNA | Cervical, HNSCC | MRD monitoring, relapse detection | [69] |
AI Approach | Input Data | Application | Reference |
---|---|---|---|
Deep learning on histology | H&E slides (HNSCC) | HPV status classification, survival strat. | [70] |
ML (Random Forest) | Transcriptome + immune data | Lesion progression, ICI response prediction | [71] |
Single-cell immune profiling | HPV + HNSCC tumours | Predict immunotherapy response | [72] |
AI on cfDNA kinetics | Plasma HPV DNA | MRD monitoring, early recurrence detection | [73] |
Trial/NCT | Intervention | Indication | Status/Key Notes |
---|---|---|---|
CheckMate-358 (NCT02488759) | Nivolumab (PD-1) | R/M cervical, vulvar | Completed; ORR ~26% in cervical cohort [76] |
REVEAL-1 (NCT03185013) | VGX-3100 (E6/E7 DNA vaccine) + EP | Cervical HSIL (CIN2/3) | Completed phase 3; built on effective phase 2b [14] |
REVEAL-2 (NCT03721978) | VGX-3100 (E6/E7) + EP | Cervical HSIL | Completed phase 3; pending publication outcomes |
NCT03057912 | TALEN/CRISPR-Cas9 targeting E6/E7 | Persistent HPV, CIN I | Withdrawn pre-enrolment—underscores delivery/safety limitations |
NCT05334004 | Lopinavir/ritonavir (intra-anal) | HGAIN/AIN 2–3 | Ongoing phase I safety trial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakir, M.O.; Kayhan, G.; Yilmaz, B.; Ozdogan, M.; Ashrafi, G.H. Emerging Therapeutic Strategies for HPV-Related Cancers: From Gene Editing to Precision Oncology. Curr. Issues Mol. Biol. 2025, 47, 759. https://doi.org/10.3390/cimb47090759
Cakir MO, Kayhan G, Yilmaz B, Ozdogan M, Ashrafi GH. Emerging Therapeutic Strategies for HPV-Related Cancers: From Gene Editing to Precision Oncology. Current Issues in Molecular Biology. 2025; 47(9):759. https://doi.org/10.3390/cimb47090759
Chicago/Turabian StyleCakir, Muharrem Okan, Guldide Kayhan, Betul Yilmaz, Mustafa Ozdogan, and G. Hossein Ashrafi. 2025. "Emerging Therapeutic Strategies for HPV-Related Cancers: From Gene Editing to Precision Oncology" Current Issues in Molecular Biology 47, no. 9: 759. https://doi.org/10.3390/cimb47090759
APA StyleCakir, M. O., Kayhan, G., Yilmaz, B., Ozdogan, M., & Ashrafi, G. H. (2025). Emerging Therapeutic Strategies for HPV-Related Cancers: From Gene Editing to Precision Oncology. Current Issues in Molecular Biology, 47(9), 759. https://doi.org/10.3390/cimb47090759