Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment
Abstract
1. Introduction
Methodology
2. HRD Pathway
3. Genes and Mechanisms Involved in Homologous Recombination Deficiency in Ovarian and Breast Cancers
4. Biomarkers of HRD
- BRCA1/BRCA2 mutations and genomic scars (LOH, TAI, LST) are primary HRD biomarkers.
- Non-BRCA HRR genes (RAD51C, PALB2) and BRCA1 methylation expand HRD detection.
- m6A/m5C RNA methylation (METTL3, ALKBH5) modulates HRD via R-loop accumulation.
- Serum miR-622 and HRProfiler enhance non-invasive and precise HRD identification.
5. Prevalence of HRD in Ovarian and Breast (TNBC) Cancers
Cancer Type/Subtype | HRD Prevalence | Key Studies | Drivers/Additional Factors |
---|---|---|---|
Ovarian (HGSOC) | |||
HGSOC | ~50% | TCGA (2011) [57] | 19% germline BRCA1/BRCA2, 4–5% somatic, 15% epigenetic silencing |
HGSOC | 50–55% | Andrikopoulou et al. (2022) [58] | Germline: 13–15%, Somatic: 22% (BRCA1), 2% (BRCA2), NGS-based |
HGSOC | 50–51% | Quesada et al. (2022, 2025) [59,60] | Germline + Somatic: 20–25%, epigenetic silencing |
Chinese HGSOC | 50–52% | Min Wang et al. (2023) [61] | BRCA1/BRCA2: 20%, CNVs: 15–20%, platinum response |
HGSOC | 48–53% | Barnicle et al. (2024) [62] | Genomic instability (LOH, LST) |
HGSOC | 45–55% | Andrews et al. (2024) [63] | Variability in non-BRCA HRD detection |
HGSOC | 49–52% | Weichert et al. (2022) [64] | Optimized NGS concordance |
HGSOC | 51% | Wu et al. (2020) [65] | TAI, LOH, LST in combined HRD score |
HGSOC | ~47.5–50% | Fumagalli et al. (2022) [66] | In-house AmoyDx vs. Myriad concordance |
HGSOC | 55–60% | Capoluongo et al. (2022) [67] | Genomic + functional assays |
HGSOC | 49–53% | Christinat et al. (2023) [68] | Normalized LST, olaparib response |
HGSOC | ~50% | Fiegl et al. (2024) [6] | 11% BRCA1 methylation, 83% HRD-positive in methylated tumors |
HGSOC | 33.2% HRR alterations | Ren et al. (2025) [5] | 92.2% biallelic BRCA1/BRCA2, chromosome 8 LOH, LST, TAI |
HGSOC | 64.40% | Kang et al. (2024) [51] | 32.2% BRCA1/BRCA2 pathogenic variants, Oncomine GIM, 95.8% accuracy |
HGSOC | 63.3% (19/30) | Magadeeva et al. (2023) [14] | 36.7% BRCA1/BRCA2 mutations, TP53 mutations |
Breast Cancer | |||
TNBC | 50–70% | Lenz et al. (2023) [69], Jacobson et al. (2023) [70], Zhang et al. (2022) [71], Lim et al. (2023) [72], Xiao Liu et al. (2022) [73], Pan et al. (2024) [74], Jeon et al. (2025) [52] | BRCA1/BRCA2 mutations, replication stress, mutational signatures |
HER2-positive | 5–40% | Yndestad et al. (2023) [75], Lenz et al. (2023) [69], Jeon et al. (2025) [52] | BRCA1/BRCA2, genomic instability; 5% of non-TNBC if HRD strictly defined (mutational + methylation) [75] |
Luminal A | 5–25% | Lenz et al. (2023) [69], Engebrethsen et al. (2023) [76] | Diverse HR gene defects |
Luminal B | 20–35% | Lenz et al. (2023) [69], Jacobson et al. (2023) [70] | BRCA1/BRCA2, other HR genes |
HR+/HER2- | 15–20% | Yndestad et al. (2023) [75], Ballot et al. (2022) [77], Jeon et al. (2025) [52] | Non-BRCA HR alterations |
Male Breast Cancer | ~30% | André et al. (2020) [78] | BRCA2/RAD51C hypermethylation |
6. HRD in Serous Ovarian Cancer (HGSOC)
7. HRD in Breast Cancer (TNBC and Other Subtypes)
Mechanism | Cancer Type | Key Studies | Notes |
---|---|---|---|
Germline BRCA1/BRCA2 Mutations | Ovarian, Breast | TCGA (2011) [57], Nakamura et al. (2025) [39] | Germline mutations drive ~19% of HGSOC and 10–15% of breast cancer HRD; regional variations in Japanese cohorts [65]. |
Somatic BRCA1/BRCA2 Mutations | Ovarian, Breast | Andrikopoulou et al. (2022) [58], Batalini et al. (2023) [53] | Somatic mutations prominent in ~3.5% of sporadic TNBC; enhance PARPi response [73]. |
BRCA1 Hypermethylation | Ovarian, Breast | TCGA (2011), Panagopoulou et al. (2024) [86] | Silences BRCA1 expression; detected via liquid biopsy; prevalent in TNBC (60–65%) [74]. |
Non-BRCA HRR Genes (e.g., RAD51C/RAD51D, PALB2) | Ovarian, Breast | Torres-Esquius et al. (2024) [84], Jacobson et al. (2023) [70] | Significant in RAD51D-associated breast cancers; contribute to 9–20% of HRD [66]. |
RNA Methylation (m6A/m5C) | Ovarian, Breast | Zhao et al. (2023), Wei et al. (2021), Wu et al. (2024) [7,8,29] | Regulates HR gene expression via METTL3, ALKBH5, IGF2BP2; promotes R-loop accumulation [20]. |
CNVs and SVs | Ovarian | Min Wang et al. (2023) [61] | Contributes to HRD in HGSOC via structural variations. |
Population | Cancer Type | HRD Prevalence | Key Studies | Notes |
---|---|---|---|---|
Chinese | Ovarian | ~52% | Min Wang et al., 2023 [61] | CNVs contribute significantly |
Chinese | Breast Cancer (TNBC) | 68% | Xiao Liu et al., 2022 [73] | High burden in TNBC |
Japanese | Breast | 20% (BRCA1/2-linked) | Fujisawa et al., 2025 [65] | Broader markers increase TNBC rates |
Japanese | Breast (TNBC) | 50–60% | Kaneyasu et al. (2020) [83] | Includes PALB2, BARD1, BLM, and ATM. |
Taiwanese | Breast (TNBC) | 55% | Chien-Feng Li et al., 2022 [73] | Genome-wide LOH-based |
Malaysian | Breast (TNBC) | 32% (41/113) | Pan, JW et al., 2024 [39] | NanoString-based HRD200 Classifier |
East Asian | Breast | 12–13% | Ren et al. (2025) [5] | Biallelic BRCA1/BRCA2, RAD51C, RAD51D, PPP2R2A, TP53 alterations |
- TNBC exhibits the highest HRD prevalence (50–70%), followed by HER2-positive (30–40%) and luminal subtypes (15–35%).
- Epigenetic silencing of BRCA2/RAD51C drives ~30% HRD in male breast cancer.
- Liquid biopsy-based BRCA1/BRCA2 methylation analysis enhances TNBC detection (60–65%).
- ZNF251 haploinsufficiency may reduce HRD prevalence by 5–10% in BRCA1-mutated breast cancers.
8. HRD Detection Methodologies—Present Diagnostic Methods
8.1. HRD Estimation via Functional Assays
- RAD51 foci assays quantify real-time HRD, predicting PARPi and platinum response
- GIScar assay, integrating miR-622, achieves 85% sensitivity in HGSOC [12].
- Low RAD51 foci correlate with 66.7–70% pCR in early HER2-negative breast cancer].
- Technical variability and ~20% failure rate in low-proliferation tumors limit adoption.
8.2. HRD Detection via Genomic Features
8.2.1. Genomic Assays
Feature | Description | Association with HRD |
---|---|---|
HRD-Score (GIS/HRDsum) | Unweighted sum of LOH, TAI, LST | Predicts platinum response; limited by dynamic HRD status due to reversion mutations [91] |
SBS3 (COSMIC Signature 3) | 96 SBS types (C>A, C>G, C>T, T>A, T>C, T>G); linked to indels and rearrangements | Enriched in germline and somaticBRCA1/BRCA2 mutations [105,106] |
SBS39 | Specific SBS pattern | Stronger correlation with HRD genes than SBS3; potential HRD indicator [104] |
SBS8 | C>A, C>T, T>A substitutions | Non-canonical signature; Not HRD specific; Likely HRD-associated in BRCA1/BRCA2-deficient tumors [106] |
ID6 (Indel 6) | ≥5 bp deletions with microhomology | Correlated with SBS3 and HRD; BRCA2-type HRD [48,70] |
ID8 (Indel 8) | ≥5 bp deletions with microhomology | Linked to NHEJ, not directly HRD-specific [45] |
DBS13 (Double Base Substitution 13) | TC>NN dinucleotide mutations | Indirect HRD association with SBS3, not directly HRD-specific [45,107,108] |
CN17 (Copy Number 17) | LOH segments (copy number 2–4), heterozygous segments (copy number 3–8), 1–40 Mb | Strongly linked with HRD; Found in biallelic HR gene loss (BRCA1/BRCA2, PALB2) [45,107,108] |
SV3/RS3 (Structural Variation 3/Rearrangement Signature 3) | Tandem duplications of 1–100 kb | Enriched in BRCA1-mutated tumors; referred as “Rearrangement Signature RS3” [41] |
Method | Description | HRD Criteria | Key Features and Advantages | Limitations | ||
---|---|---|---|---|---|---|
Targeted Panels | Sequence HRR genes (2–700). | GIS ≥ 42, gLOH ≥ 16%). | Cost-effective (~USD 1000), fast, hybrid capture preferred over amplicon-based for detecting large indels; off-the-shelf or custom panels. | Limited to targeted regions; amplicon risks misdiagnosis. | ||
Shallow WGS (sWGS) | Low-pass WGS. | LGAs > 20 (shallowHRD); SeqOne score > 50%. | Broad coverage, cheaper than WGS, Detects CNAs accurately, uses tools like shallowHRD, ChosenHRDw, AcornHRD. | Low cellularity, GC bias. | ||
Whole Exome Sequencing (WES) | coding regions only. | HRDetect > 70%; CHORD > 0.5. | Balances cost, data volume, uses tools like HRDetect, CHORD. | Misses non-coding alterations; limited detection of large BRCA deletions (5–10%) [105]. | ||
Whole Genome Sequencing (WGS) | entire genome (coding + non-coding). | e.g., HRDetect > 70% (breast), >99% (ovarian); CHORD > 0.84 (ovarian). | Comprehensive detection, gold standard for mutational signatures; uses HRDetect, CHORD. | Expensive (USD 5000–USD 10,000), data-intensive, hard to implement. | ||
Commercial NGS Tests | ||||||
Test | Provider | Sample | Key Features | HRD Criteria | FDA Approval | Notes |
MyChoice® CDx | Myriad Genetics | FFPE | GIS (LOH + LST + TAI), BRCA1/2 mutations; optional 13 HRR genes. | GIS ≥ 42 or BRCA1/2 mutation. | Yes | Threshold varies (e.g., ≥33 for veliparib). |
BRACAnalysis CDx® | Myriad Genetics | Blood (EDTA) | Germline BRCA1/2 mutations only. | Deleterious BRCA1/2 mutation. | Yes | No HRD score; misses somatic mutations. |
FoundationOne® CDx | Foundation Medicine | FFPE | 324 genes, gLOH, BRCA status, MSI, TMB. | gLOH ≥ 16% or BRCA mutation. | Yes | Requires ≥ 35% tumor cells; misses some large rearrangements. |
FoundationOne® Liquid CDx | Foundation Medicine | cfDNA (plasma) | 311 genes, BRCA1/2/ATM mutations. | BRCA/ATM mutations at specific VAF thresholds. | Yes | Liquid biopsy option; VAF-based criteria. |
Tempus HRD | Tempus Labs | FFPE | gLOH, BRCA1/2 LOH; RNA model option. | gLOH ≥ 21% (breast), ≥17% (ovarian), or BRCA mutations; RNA score ≥ 50. | No | Dynamic phenotype via RNA; discrepancies with CHORD. |
CancerPrecision® | CeGaT | FFPE or blood | HRD score from LOH, LST, TAI; BRCA variants. | HRD score ≥ 30 or BRCA mutation. | No | Includes molecular tumor board suggestions. |
MI Exome™ | Caris Life Sciences | FFPE | 22,000 genes, gLOH, LST; BRCA status. | gLOH + LST high or BRCA mutation. | No | Limited to specific PARPi indications; not universally available. |
AmoyDx® HRD Focus | Amoy Diagnostics | FFPE | Genomic Scar Score (GSS) via CNVs, BRCA1/2 status. | GSS ≥ 50 or BRCA mutation. | No | High concordance with MyChoice® (87.8%), Validated by Kang et al. (2024) [40]. |
TruSight™ Oncology 500 HRD | Illumina | FFPE | 523 genes, GIS (LOH, LST, TAI), BRCA rearrangements. | GIS-based; high concordance with MyChoice®. | No | Requires ≥ 32% tumor content; not available in Japan. |
SeqOne HRD Solution | SeqOne Genomics | FFPE | BRCA status + sWGS-based score (LGAs, LPC, CCNE1/RAD51B). | Score > 50% or BRCA mutation. | No | 95% concordance with MyChoice®; flexible workflow. |
SOPHiA DDM™ HRD | SOPHiA Genetics | FFPE | 28 HRR genes + sWGS; Genomic Integrity Index (GII). | GII ≥ 0 or BRCA mutation. | No | 94.5% concordance with MyChoice®; deep learning-based, Validated by Kang et al. (2024) [40]. |
8.2.2. Companion Diagnostic Assays
8.2.3. FoundationOne CDx
8.2.4. Advanced Genomic Tools
8.2.5. Integration of Detection Methods
- Myriad myChoice CDx and FoundationOne CDx are standards, with Caris HRD offering >97% concordance via WES-based GSS.
- RAD51 foci and GIScar assays assess dynamic HRD status with 85% accuracy
- Low-pass WGS (DirectHRD, AcornHRD) offers cost-effective detection (AUC 0.980–0.997).
- OGM and aCGH capture 70.8–77% of HRD signatures, enhancing sensitivity
9. Challenges in Clinical Implementation
- Assay variability (60–70% non-BRCA concordance) and high WGS costs (USD 5000–USD 10,000) limit HRD detection.
- WES misses 5–10% of large BRCA deletions, requiring GSS to enhance detection
- Liquid biopsy (cfDNA) and low-pass WGS improve accessibility, with 90% sensitivity at low tumor fractions
- Standardized thresholds, methylation analysis, and biallelic reporting are critical for equitable outcomes
10. Homologous Recombination Deficiency (HRD) as an Actionable Therapeutic
- HRD predicts 60–80% ORR to PARPi in HGSOC and 60% in TNBC, extending PFS by 12–36 months
- BRCA1 methylation and RAD51C/RAD51D mutations expand PARPi eligibility
- Caris HRD’s GSS (≥42) enhances detection in multiple cancers, predicting improved OS
- Combination therapies (e.g., PARPi with ATR inhibitors) address resistance mechanisms
11. PARP Inhibitors
- PARPi (olaparib, niraparib) extend PFS by >36 months in BRCA1/BRCA2-mutated HGSOC (SOLO1).
- GIScar and Oncomine achieve 85–95.8% accuracy for PARPi eligibility in HGSOC
- Caris HRD’s GSS predicts PARPi benefit across multiple cancers (HR = 0.27, p < 0.001)
- Combination therapies with ATR inhibitors address resistance in HRD-positive tumors
12. Discussion
- HRD drives 60–80% ORR to PARPi in HGSOC and 60% in TNBC, with resistance from BRCA reversion and SOX5 alterations.
- GIScar, HRProfiler, and low-pass WGS assays enhance non-BRCA HRD detection (AUC >0.90).
- Liquid biopsy and multi-omics approaches improve dynamic HRD assessment.
- Equitable testing addresses higher HRD prevalence in Asian and Black populations.
13. Conclusions
- ❖
- Clinical Implementation:
- ○
- Harmonize assay design, including standard definitions for genomic scars (LOH, TAI, LST), mutational signatures, and gene panels (BRCA1, BRCA2, PALB2, RAD51C, RAD51D), to reduce variability (60–70% non-BRCA concordance).
- ○
- Integrate biallelic inactivation and BRCA1/RAD51C methylation reporting to enhance PARPi response prediction, capturing >80% of responsive BRCA-associated tumors
- ○
- Expand access to cost-effective diagnostics (e.g., low-pass WGS, HRProfiler, ~USD 1000) to address disparities in Asian and Black populations.
- ○
- Implement robust validation processes with well-defined specimen requirements and neoplastic cellularity thresholds to ensure analytical and clinical validity [117].
- ○
- Implement detailed clinical reports specifying HRR genes, assay limitations, biallelic status, and methylation results to guide provider decision-making.
- ❖
- Research Priorities:
- ○
- Refine predictive thresholds and tumor-specific cutoffs (e.g., GSS ≥ 42, GIS ≥ 42) to improve clinical decision-making and treatment stratification, validating biomarkers like SBS39, miR-622, and metabolomic profiles in large-scale trials (n > 1000)
- ○
- Develop scalable, cost-effective assays like GIScar, OGM, and aCGH to enhance sensitivity (70.8–77%) and reduce costs
- ○
- Investigate methylation-based HRD markers and resistance mechanisms (e.g., BRCA reversion mutations, SETD1A/EME1, SOX5) to expand applicability
- ○
- Integrate liquid biopsy approaches (e.g., cfDNA-based DirectHRD, shallow WGS) and multi-omics (transcriptomic signatures) to enhance accessibility and monitor dynamic HRD status
- ○
- Investigate combination therapies (e.g., PARPi with ATR inhibitors, pembrolizumab) to overcome resistance mechanisms
- ○
- Extend HRD testing to non-traditional cancers (e.g., gastrointestinal, colorectal, NSCLC) and early-stage tumors to broaden PARPi indications
- ○
- Address logistical barriers through assay reimbursement, oncologist education, and cross-institutional standardization to ensure broader adoption
14. Future Challenges
14.1. Resistance Mechanisms
14.2. Standardization Issues
14.3. Broader Application
14.4. Biomarker Development
14.5. Logistical Challenges
- Resistance from BRCA reversion mutations and SOX5 overexpression requires combination therapies.
- AMP-guided standardization of gene panels and scar definitions reduces assay variability.
- HRD’s therapeutic potential extends to gastrointestinal cancers, with validation needed.
- Liquid biopsy, shallow WGS, and multi-omics enhance accessibility and dynamic HRD detection.
Author Contributions
Funding
Conflicts of Interest
References
- Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Tutt, A.N.; Ashworth, A. Synthetic lethality and cancer therapy: Lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 2015, 66, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 2016, 16, 110–120. [Google Scholar] [CrossRef]
- Ren, L.; Yao, R.; Hou, T.; Liu, C.; Zhao, F.; Chen, X.; Zhang, Z.; Huang, Y. Pan-cancer analysis of homologous recombination deficiency and homologous recombination repair-associated gene alterations in solid tumors from a large Asian cohort. BMC Cancer 2025, 25, 946. [Google Scholar] [CrossRef]
- Fiegl, H.; Schnaiter, S.; Reimer, D.U.; Leitner, K.; Nardelli, P.; Tsibulak, I.; Wieser, V.; Wimmer, K.; Schamschula, E.; Marth, C.; et al. BRCA loss of function including BRCA1 DNA-methylation, but not BRCA-unrelated homologous recombination deficiency, is associated with platinum hypersensitivity in high-grade ovarian cancer. Clin. Epigenetics 2024, 16, 171. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, M.; Zhu, X.; Xing, J.; Zhou, J.; Yin, X. The potential regulatory role of RNA methylation in ovarian cancer. RNA Biol. 2023, 20, 207–218. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, D.; Liu, X.; Zhao, H.; Yang, Y.; Xu, J.; Liu, T.; Yi, P. Exploration of the Role of m6A RNA Methylation Regulators in Malignant Progression and Clinical Prognosis of Ovarian Cancer. Front. Genet. 2021, 12, 650554. [Google Scholar] [CrossRef]
- Murai, J.; Pommier, Y. BRCAness, Homologous Recombination Deficiencies, and Synthetic Lethality. Cancer Res. 2023, 83, 1173–1174. [Google Scholar] [CrossRef]
- Abbasi, A.; Steele, C.D.; Bergstrom, E.N.; Khandekar, A.; Farswan, A.; McKay, R.R.; Pillay, N.; Alexandrov, L.B. HRProfiler Detects Homologous Recombination Deficiency in Breast and Ovarian Cancers Using Whole-Genome and Whole-Exome Sequencing Data. Cancer Res. 2025, 85, 2504–2513. [Google Scholar] [CrossRef]
- Lim, S.; Ju, Y.S. Leveraging whole-exome sequencing and mutational signatures to detect homologous recombination deficiency in cancer. Cancer Res. 2025, 85, 2348–2350. [Google Scholar] [CrossRef] [PubMed]
- Leman, R.; Cherifi, F.; Leheurteur, M.; Theret, P.; Pasquesoone, C.; Saint-Ghislain, M.; Bresson, L.; Denoyelle, C.; Vigneron, N.; Poulain, L.; et al. Homologous recombination deficiency (HRD) tests for ovarian cancer: A multicenter French phase II study (HERO). BMC Cancer 2025, 25, 1075. [Google Scholar] [CrossRef] [PubMed]
- Sahajpal, N.S.; Mondal, A.K.; Vashisht, A.; Singh, H.; Pang, A.W.C.; Saul, D.; Nivin, O.; Hilton, B.; DuPont, B.R.; Kota, V.; et al. Optical Genome Mapping: Integrating Structural Variations for Precise Homologous Recombination Deficiency Score Calculation. Genes. 2023, 14, 1683. [Google Scholar] [CrossRef] [PubMed]
- Magadeeva, S.; Qian, X.; Korff, N.; Flörkemeier, I.; Hedemann, N.; Rogmans, C.; Forster, M.; Arnold, N.; Maass, N.; Bauerschlag, D.O.; et al. Assessing the phenotype of a homologous recombination deficiency using high resolution array-based comparative genome hybridization in ovarian cancer. Int. J. Mol. Sci. 2023, 24, 17467. [Google Scholar] [CrossRef]
- Marconato, N.; Tommasi, O.; Paladin, D.; Boscarino, D.; Spagnol, G.; Saccardi, C.; Maggino, T.; Tozzi, R.; Noventa, M.; Marchetti, M. Unraveling Homologous Recombination Deficiency in Ovarian Cancer: A Review of Currently Available Testing Platforms. Cancers 2025, 17, 1771. [Google Scholar] [CrossRef]
- Archer™ VARIANTPlex, H.R.D. Assay for HRD Detection Using Allele-Specific Copy Number Entropy and NHEJ Metrics. Available online: https://www.idtdna.com/pages/products/next-generation-sequencing/archer-ngs-assay-solutions/solid-tumor-research/variantplex-hrd-module (accessed on 7 July 2025).
- Affymetrix OncoScan. High-Resolution SNP Array for CNA/LOH Detection in HRD Assessment. Available online: https://www.bioconductor.org/packages/release/bioc/vignettes/oncoscanR/inst/doc/oncoscanR.html (accessed on 7 July 2025).
- Sweatman, E.; Bayley, R.; Selemane, R.; Higgs, M.R. SETD1A-dependent EME1 transcription drives PARPi sensitivity in HR deficient tumour cells. Br. J. Cancer 2025, 132, 690–702. [Google Scholar] [CrossRef]
- Ghosh, M.; Kang, M.S.; Katuwal, N.B.; Hong, S.D.; Park, S.M.; Kim, S.-G.; Lee, S.R.; Moon, Y.W. SOX5 inhibition overcomes PARP inhibitor resistance in BRCA-mutated breast and ovarian cancer. Cell Death Dis. 2025, 16, 333. [Google Scholar] [CrossRef]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef]
- Kowalczykowski, S.C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 2015, 7, a016410. [Google Scholar] [CrossRef]
- San Filippo, J.; Sung, P.; Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77, 229–257. [Google Scholar] [CrossRef]
- Wright, W.D.; Shah, S.S.; Heyer, W.D. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 2018, 293, 10524–10535. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Heyer, W.D.; Ehmsen, K.T.; Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 2010, 44, 113–139. [Google Scholar] [CrossRef] [PubMed]
- Pâques, F.; Haber, J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 1999, 63, 349–404. [Google Scholar] [CrossRef] [PubMed]
- Zapotoczny, G.; Sekelsky, J. Human cell lines as tools to study mitotic recombination pathways. Methods Mol. Biol. 2017, 1641, 103–116. [Google Scholar] [CrossRef]
- Von Diezmann, L.; Rog, O. Let’s get physical—mechanisms of crossover interference. J Cell Sci. 2021, 134, jcs255745. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, S.; Chen, H.; Zheng, X. Cross-regulation of RNA methylation modifications and R-loops: From molecular mechanisms to clinical implications. Cell Mol. Life Sci. 2024, 82, 1. [Google Scholar] [CrossRef]
- D’Andrea, A.D.; Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 2003, 3, 23–34. [Google Scholar] [CrossRef]
- Dianov, G.L.; Hübscher, U. Mammalian base excision repair: The forgotten archangel. Nucleic Acids Res. 2013, 41, 3483–3490. [Google Scholar] [CrossRef]
- Fousteri, M.; Mullenders, L.H. Transcription-coupled nucleotide excision repair in mammalian cells: Molecular mechanisms and biological effects. Cell Res. 2008, 18, 73–84. [Google Scholar] [CrossRef]
- Waters, L.S.; Minesinger, B.K.; Wiltrout, M.E.; D’SOuza, S.; Woodruff, R.V.; Walker, G.C. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 2009, 73, 134–154. [Google Scholar] [CrossRef]
- Heeke, A.L.; Pishvaian, M.J.; Lynce, F.; Xiu, J.; Brody, J.R.; Chen, W.-J.; Baker, T.M.; Marshall, J.L.; Isaacs, C. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis. Oncol. 2018, 2, PO.17–00286. [Google Scholar] [CrossRef] [PubMed]
- Symington, L.S.; Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011, 45, 247–271. [Google Scholar] [CrossRef]
- Bizard, A.; Hickson, I.D. The dissolution of double Holliday junctions. Cold Spring Harb. Perspect. Biol. 2014, 6, a016477. [Google Scholar] [CrossRef]
- West, S.C.; Blanco, M.G.; Chan, Y.L.; Matos, J.; Sarbajna, S.; Wyatt, H.D. Resolution of recombination intermediates: Mechanisms and regulation. Cold Spring Harb. Symp. Quant. Biol. 2015, 80, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Shiloh, Y.; Ziv, Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 2013, 14, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Kojima, Y.; Takeuchi, S. Causative genes of homologous recombination deficiency (HRD)-related breast cancer and specific strategies at present. Curr. Oncol. 2025, 32, 90. [Google Scholar] [CrossRef]
- Pae, S.; Sedukhina, A.S.; Sugiyama, R.; Atanacio, S.J.; Ohara, T.; Ishii, M.; Minagawa, K.; Akichjev, R.; Go, F.; Chandankeri, Z.; et al. PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition. Sci. Rep. 2024, 14, 31276. [Google Scholar] [CrossRef]
- Popova, T.; Manié, E.; Rieunier, G.; Caux-Moncoutier, V.; Tirapo, C.; Dubois, T.; Delattre, O.; Sigal-Zafrani, B.; Bollet, M.; Longy, M.; et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012, 72, 5454–5462. [Google Scholar] [CrossRef]
- Abkevich, V.; Timms, K.M.; Hennessy, B.T.; Potter, J.; Carey, M.S.; Meyer, L.A.; Smith-McCune, K.; Broaddus, R.; Lu, K.H.; Chen, J.; et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian carcinoma. Br. J. Cancer 2012, 107, 1776–1782. [Google Scholar] [CrossRef]
- Birkbak, N.J.; Wang, Z.C.; Kim, J.Y.; Eklund, A.C.; Li, Q.; Tian, R.; Bowman-Colin, C.; Li, Y.; Greene-Colozzi, A.; Iglehart, J.D.; et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012, 2, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Al Assaad, M.; Hadi, K.; Levine, M.F.; Guevara, D.; Patel, M.; Tranquille, M.; King, A.; Otilano, J.; Semaan, A.; Gundem, G.; et al. Whole genome landscape analysis of homologous recombination deficiency in a pan-cancer cohort. medRxiv. 2024. [Google Scholar] [CrossRef]
- COSMIC Mutational Signatures. SBS3: Defective Homologous Recombination-Based DNA Damage Repair. Catalogue of Somatic Mutations in Cancer (COSMIC), v3.4. 2023. Available online: https://cancer.sanger.ac.uk/signatures/sbs/sbs3/ (accessed on 24 July 2025).
- Glodzik, D.; Bosch, A.; Hartman, J.; Aine, M.; Vallon-Christersson, J.; Reuterswärd, C.; Karlsson, A.; Mitra, S.; Niméus, E.; Holm, K.; et al. Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers. Nat. Commun. 2020, 11, 3747. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.L.; Jaradi, B.; Stone, N.; Sanker, B.; Zhang, F.; Dobrovic, A.; Kirschner, S.; Hadfield, J.; Kondrashova, O.; Waring, P.M.; et al. Validation and performance of quantitative BRCA1 and RAD51C promoter hypermethylation testing in breast and ovarian cancers. J. Mol. Diagn. 2025, 27, 139–153. [Google Scholar] [CrossRef]
- Liu, R.; Roberts, E.; Parsons, H.A.; Stover, E.H.; Choudhury, A.D.; Rhoades, J.; Blewett, T.; Yang, D.D.; Liu, J.F.; Mayer, E.L.; et al. DirectHRD enables sensitive scar-based classification of homologous recombination deficiency. Nucleic Acids Res. 2025, 53, gkaf313. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, X.; Leng, Y.; Chen, D.; Wang, J.; Ma, Y.; Zhang, M.-Z.; Han, B.-W.; Li, Y. A deep-learning-based genomic status estimating framework for homologous recombination deficiency detection from low-pass whole genome sequencing. Heliyon 2024, 10, e26121. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhang, M.Z.; Chen, D.; Leng, Y.; Wang, J.; Han, B.-W.; Wang, J. Homologous recombination deficiency prediction using low-pass whole genome sequencing in breast cancer. Cancer Genet. 2023, 272, 35–40. [Google Scholar] [CrossRef]
- Kang, J.; Na, K.; Kang, H.; Cho, U.; Kwon, S.Y.; Hwang, S.; Lee, A.; Galli, A. Prediction of homologous recombination deficiency from Oncomine Comprehensive Assay Plus correlating with SOPHiA DDM HRD Solution. PLoS ONE 2024, 19, e0298128. [Google Scholar] [CrossRef]
- Jeon, J.E.; Chen, K.T.; Madison, R.; Schrock, A.B.; Sokol, E.; Levy, M.A.; Rozenblit, M.; Huang, R.S.P.; Pusztai, L. Genomic landscape and homologous recombination repair deficiency signature in stage I-III and de novo stage IV primary breast cancers. Oncologist 2025, 30, oyaf089. [Google Scholar] [CrossRef]
- Batalini, F.; Madison, R.W.; Sokol, E.S.; Jin, D.X.; Chen, K.T.; Decker, B.; Pavlick, D.C.; Frampton, G.M.; Wulf, G.M.; Garber, J.E.; et al. Homologous recombination deficiency landscape of breast cancers and real-world effectiveness of poly ADP-ribose polymerase inhibitors in patients with somatic BRCA1/2, germline PALB2, or homologous recombination deficiency signature. JCO Precis. Oncol. 2023, 7, e2300091. [Google Scholar] [CrossRef]
- Sokol, E.S.; Pavlick, D.; Khiabanian, H.; Frampton, G.M.; Ross, J.S.; Gregg, J.P.; Lara, P.N.; Oesterreich, S.; Agarwal, N.; Necchi, A.; et al. Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis. Oncol. 2020, 4, 442–465. [Google Scholar] [CrossRef]
- Li, W.; Gao, L.; Yi, X.; Shi, S.; Huang, J.; Shi, L.; Zhou, X.; Wu, L.; Ying, J. Patient assessment and therapy planning based on homologous recombination repair deficiency. Genom. Proteom. Bioinform. 2023, 21, 962–975. [Google Scholar] [CrossRef]
- Galland, L.; Roussot, N.; Desmoulins, I.; Mayeur, D.; Kaderbhai, C.; Ilie, S.; Hennequin, A.; Reda, M.; Albuisson, J.; Arnould, L.; et al. Clinical utility of genomic tests evaluating homologous recombination repair deficiency (HRD) for treatment decisions in early and metastatic breast cancer. Cancers 2023, 15, 1299. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulou, A.; Zografos, E.; Apostolidou, K.; Kyriazoglou, A.; Papatheodoridi, A.M.; Kaparelou, M.; Koutsoukos, K.; Liontos, M.; Dimopoulos, M.A.; Zagouri, F.; et al. Germline and somatic variants in ovarian carcinoma: A next-generation sequencing (NGS) analysis. Front. Oncol. 2022, 12, 1030786. [Google Scholar] [CrossRef] [PubMed]
- Quesada, S.; Fabbro, M.; Solassol, J. Toward more comprehensive homologous recombination deficiency assays in ovarian cancer part 2: Medical perspectives. Cancers 2022, 14, 1098. [Google Scholar] [CrossRef]
- Quesada, S.; Penault-Llorca, F.; Matias-Guiu, X.; Banerjee, S.; Barberis, M.; Coleman, R.L.; Colombo, N.; DeFazio, A.; McNeish, I.A.; Nogueira-Rodrigues, A.; et al. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. Eur. J. Cancer. 2025, 215, 115169. [Google Scholar] [CrossRef]
- Wang, M.; Nguyen Thi, P.A.; Ding, S.; Ye, L.; Fei, L.; He, H.; Luo, P. Analysis of multiple genomic-factors affecting the homologous recombination deficiency (HRD) in Chinese ovarian cancer. JCO Glob. Oncol. 2023, 9, 88. [Google Scholar] [CrossRef]
- Barnicle, A.; Ray-Coquard, I.; Rouleau, E.; Cadoo, K.; Simpkins, F.; Aghajanian, C.; Leary, A.; Poveda, A.; Lheureux, S.; Pujade-Lauraine, E.; et al. Patterns of genomic instability in > 2000 patients with ovarian cancer across six clinical trials evaluating olaparib. Genome Med. 2024, 16, 145. [Google Scholar] [CrossRef]
- Andrews, H.S.; McShane, L.M.; Kohn, E.C.; Arend, R.; Karlovich, C.; Kincaid, K.; Laird, A.D.; Li, M.-C.; Sokol, E.S.; Starks, E.R.; et al. Analysis of 20 independently performed assays to measure homologous recombination deficiency (HRD) in ovarian cancer: Findings from the Friends’ HRD Harmonization Project. JCO Oncol. Pract. 2024, 1, e2400042. [Google Scholar] [CrossRef]
- Weichert, W.; Qiu, P.; Lunceford, J.; Wehn, A.; Yarunin, A.; Cristescu, R.; Liu, L.; Roessler, K.; Timms, K.; Marton, M.J. Assessing homologous recombination deficiency (HRD) in ovarian cancer: Optimizing concordance of the regulatory-approved companion diagnostic and a next-generation sequencing (NGS) assay kit. J. Clin. Oncol. 2022, 40 (Suppl. S16), e17571. [Google Scholar] [CrossRef]
- Wu, X.; Wen, H.; Feng, Z.; Shao, L.; Liu, C.; Liu, H.; Zhang, L.; Mao, X.; Guan, X.; Hou, T.; et al. The development of a homologous recombination deficiency (HRD) score to identify HR-deficient tumors. J. Clin. Oncol. 2020, 38 (Suppl. S15), e18085. [Google Scholar] [CrossRef]
- Fumagalli, C.; Betella, I.; Ranghiero, A.; Guerini-Rocco, E.; Bonaldo, G.; Rappa, A.; Vacirca, D.; Colombo, N.; Barberis, M. In-house testing for homologous recombination repair deficiency (HRD) testing in ovarian carcinoma: A feasibility study comparing AmoyDx HRD Focus panel with Myriad myChoiceCDx assay. Pathologica. 2022, 114, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Capoluongo, E.D.; Pellegrino, B.; Arenare, L.; Califano, D.; Scambia, G.; Beltrame, L.; Serra, V.; Scaglione, G.L.; Spina, A.; Cecere, S.C.; et al. Alternative academic approaches for testing homologous recombination deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open. 2022, 7, 100585. [Google Scholar] [CrossRef] [PubMed]
- Christinat, Y.; Ho, L.; Clément, S.; Genestie, C.; Sehouli, J.; Cinieri, S.; Gonzalez Martin, A.; Denison, U.; Fujiwara, K.; Vergote, I.; et al. Normalized LST Is an Efficient Biomarker for Homologous Recombination Deficiency and Olaparib Response in Ovarian Carcinoma. JCO Precis. Oncol. 2023, 7, e2200555. [Google Scholar] [CrossRef] [PubMed]
- Lenz, L.; Neff, C.; Solimeno, C.; Cogan, E.S.; Abramson, V.G.; Boughey, J.C.; Falkson, C.; Goetz, M.P.; Ford, J.M.; Gradishar, W.J.; et al. Identifying homologous recombination deficiency in breast cancer: Genomic instability score distributions differ among breast cancer subtypes. Breast Cancer Res. Treat. 2023, 202, 191–201. [Google Scholar] [CrossRef]
- Jacobson, D.H.; Pan, S.; Fisher, J.; Secrier, M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med. 2023, 15, 90. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Cheng, M.-Y.; Zhuang, X.; Zou, J.; Wei, D.; Lin, Y.-Y.; Zhang, Y.; Wang, K. Homologous recombination deficiency predicts the response to platinum-based neoadjuvant chemotherapy in early-stage triple-negative breast cancer patients: A systematic review and meta-analysis. Ther. Adv. Med. Oncol. 2022, 14, 17588359221096253. [Google Scholar] [CrossRef]
- Lim, E.; Park, S.; Kim, R.; Oh, B.-L.; Lee, S.; Lee, J.S.; Ryu, J.M.; Lee, S.-K.; Chae, B.-J.; Lee, J.; et al. Comprehensive profiling of mutational signatures and machine learning and subtypes of homologous recombination deficiency. J. Clin. Oncol. 2023, 41 (Suppl. S16), 568. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Lou, F.; Cao, S.; Wang, H. Characterization of mutational signatures of homologous recombination deficiency (HRD) in Chinese breast cancer. J. Clin. Oncol. 2022, 40, e15129. [Google Scholar] [CrossRef]
- Pan, J.N.; Li, P.C.; Wang, M.; Li, M.-W.; Ding, X.-W.; Zhou, T.; Wang, H.-N.; Wang, Y.-K.; Chen, L.-B.; Wang, R.; et al. AcornHRD: An HRD algorithm highly associated with anthracycline-based neoadjuvant chemotherapy in breast cancer in China. Eur. J. Med. Res. 2024, 29, 366. [Google Scholar] [CrossRef]
- Yndestad, S.; Engebrethsen, C.; Herencia-Ropero, A.; Nikolaienko, O.; Vintermyr, O.K.; Lillestøl, R.K.; Minsaas, L.; Leirvaag, B.; Iversen, G.T.; Gilje, B.; et al. Homologous Recombination Deficiency Across Subtypes of Primary Breast Cancer. JCO Precis. Oncol. 2023, 7, e2300338. [Google Scholar] [CrossRef] [PubMed]
- Engebrethsen, C.; Yndestad, S.; Herencia-Ropero, A.; Nikolaienko, O.; Vintermyr, O.K.; Lillestøl, R.K.; Minsaas, L.; Leirvaag, B.; Iversen, G.; Gilje, B.; et al. Abstract P6-10-04: Homologous recombination deficiency across subtypes of primary breast cancer. Cancer Res. 2023, 83 (Suppl. S5), P6-10-04. [Google Scholar] [CrossRef]
- Ballot, E.; Galland, L.; Mananet, H.; Boidot, R.; Arnould, L.; Desmoulins, I.; Mayeur, D.; Kaderbhai, C.; Ilie, S.; Hennequin, A.; et al. Molecular intrinsic subtypes, genomic, and immune landscapes of BRCA-proficient but HRD-high ER-positive/HER2-negative early breast cancers. Breast Cancer Res. 2022, 24, 80. [Google Scholar] [CrossRef] [PubMed]
- André, S.; PNunes, S.; Silva, F.; Henrique, R.; Félix, A.; Jerónimo, C. Analysis of epigenetic alterations in homologous recombination DNA repair genes in male breast cancer. Int. J. Mol. Sci. 2020, 21, 2715. [Google Scholar] [CrossRef]
- Sullivan, M.W.; Graves, S.; Adkoli, A.; Zhou, Q.; Iasonos, A.; Ellenson, L.H.; Chi, D.S.; Aghajanian, C.; Liu, Y.L.; Sonoda, Y.; et al. Factors associated with an inconclusive result from commercial homologous recombination deficiency testing in ovarian cancer. Cancer 2025, 131, e35523. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Cai, H.; Wang, F. Homologous recombination deficiency among patients with germline or somatic non-BRCA1/2 homologous recombination repair gene variations. npj Precis. Oncol. 2025, 9, 192. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, Y.; Wu, F.; Li, J.; Liu, M.; Lv, W.; Li, C.; Wang, W.; Tan, Q.; Xue, X.; et al. Relationship between homologous recombination deficiency and clinical features of breast cancer based on genomic scar score. Breast 2023, 69, 392–400. [Google Scholar] [CrossRef]
- Fujisawa, F.; Tamaki, Y.; Inoue, T.; Nakayama, T.; Yagi, T.; Kittaka, N.; Yoshinami, T.; Nishio, M.; Matsui, S.; Kusama, H.; et al. Prevalence of BRCA1 and BRCA2 mutations in Japanese patients with triple-negative breast cancer: A single institute retrospective study. Mol. Clin. Oncol. 2021, 14, 96. [Google Scholar] [CrossRef]
- Kaneyasu, T.; Mori, S.; Yamauchi, H.; Ohsumi, S.; Ohno, S.; Aoki, D.; Baba, S.; Kawano, J.; Miki, Y.; Matsumoto, N.; et al. Prevalence of disease-causing genes in Japanese patients with BRCA1/2-wildtype hereditary breast and ovarian cancer syndrome. npj Breast Cancer 2020, 6, 25. [Google Scholar] [CrossRef]
- Torres-Esquius, S.; Llop-Guevara, A.; Gutiérrez-Enríquez, S.; Romey, M.; Teulé, À.; Llort, G.; Herrero, A.; Sánchez-Henarejos, P.; Vallmajó, A.; González-Santiago, S.; et al. Prevalence of Homologous Recombination Deficiency Among Patients with Germline RAD51C/D Breast or Ovarian Cancer. JAMA Netw. Open 2024, 7, e247811. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, S.; Tan, K.T.; Tse, K.; Wang, W. Performance and clinical utility of homologous recombination deficiency (HRD) determined by genome-wide loss of heterozygosity (LOH). JCO 2022, 40 (Suppl. S16), e15025. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Panou, T.; Gkountakos, A.; Tarapatzi, G.; Karaglani, M.; Tsamardinos, I.; Chatzaki, E. BRCA1 & BRCA2 methylation as a prognostic and predictive biomarker in cancer: Implementation in liquid biopsy in the era of precision medicine. Clin. Epigenetics 2024, 16, 178. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chatla, S.; Liu, X.; Tian, Z.; Vekariya, U.; Wang, P.; Kim, D.; Octaviani, S.; Lian, Z.; Morton, G.; et al. ZNF251 haploinsufficiency confers PARP inhibitors resistance in BRCA1-mutated cancer cells through activation of homologous recombination. Cancer Discov. 2025, 15, 89–97. [Google Scholar] [CrossRef]
- Walens, A.; Van Alsten, S.C.; Olsson, L.T.; Smith, M.A.; Lockhart, A.; Gao, X.; Hamilton, A.M.; Kirk, E.L.; Love, M.I.; Gupta, G.P.; et al. RNA-Based Classification of Homologous Recombination Deficiency in Racially Diverse Patients with Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2022, 31, 2136–2147. [Google Scholar] [CrossRef]
- Furlanetto, J.; Marmé, F.; Loibl, S. Sacituzumab govitecan: Past, present and future of a new antibody-drug conjugate and future horizon. Future Oncol. 2022, 18, 3199–3215. [Google Scholar] [CrossRef]
- Bergstrom, E.N.; Abbasi, A.; Díaz-Gay, M.; Galland, L.; Ladoire, S.; Lippman, S.M.; Alexandrov, L.B. Deep learning artificial intelligence predicts homologous recombination deficiency and platinum response from histologic slides. J. Clin. Oncol. 2024, 42, 3550–3560. [Google Scholar] [CrossRef]
- Dong, L.; Li, L.; Zhu, L.; Xu, F.; Zhang, R.; Li, Q.; Zhu, Y.; Zeng, Z.; Ding, K. Multiomics analysis of homologous recombination deficiency across cancer types. Biomol. Biomed. 2024, 25, 71–81. [Google Scholar] [CrossRef]
- Castroviejo-Bermejo, M.; Cruz, C.; Llop-Guevara, A.; Gutiérrez-Enríquez, S.; Ducy, M.; Ibrahim, Y.H.; Gris-Oliver, A.; Pellegrino, B.; Bruna, A.; Guzmán, M.; et al. A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol. Med. 2018, 12, e9172. [Google Scholar] [CrossRef]
- Compadre, A.J.; van Biljon, L.N.; Valentine, M.C.; Llop-Guevara, A.; Graham, E.; Fashemi, B.; Herencia-Ropero, A.; Kotnik, E.N.; Cooper, I.; Harrington, S.P.; et al. RAD51 foci as a biomarker predictive of platinum chemotherapy response in ovarian cancer. Clin. Cancer Res. 2023, 29, 2466–2479. [Google Scholar] [CrossRef]
- Villacampa, G.; Llop-Guevara, A.; Filmann, N.; Herencia-Ropero, A.; Fasching, P.A.; Karn, T.; Marmé, F.; Klare, P.; Müller, V.; Stefek, A.; et al. RAD51 Testing in Patients with Early HER2-Negative Breast Cancer and Homologous Recombination Deficiency: A Post Hoc Analysis of the GeparOLA Trial. Clin. Cancer Res. 2025, 31, 808–814. [Google Scholar] [CrossRef]
- Llop-Guevara, A.; Loibl, S.; Villacampa, G.; Vladimirova, V.; Schneeweiss, A.; Karn, T.; Zahm, D.-M.; Herencia-Ropero, A.; Jank, P.; van Mackelenbergh, M.; et al. Association of RAD51 with homologous recombination deficiency (HRD) and clinical outcomes in untreated triple-negative breast cancer (TNBC): Analysis of the GeparSixto randomized clinical trial. Ann. Oncol. 2021, 32, 1590–1596. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Giunta, S.; Fenech, M.; Neri, M.; Bonassi, S. γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 2013, 753, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; de Lange, T. 53BP1: Pro choice in DNA repair. Trends Cell Biol. 2014, 24, 108–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bártová, E.; Legartová, S.; Dundr, M.; Suchánková, J. A role of the 53BP1 protein in genome protection: Structural and functional characteristics of 53BP1-dependent DNA repair. Aging 2019, 11, 2488–2511. [Google Scholar] [CrossRef] [PubMed]
- Talens, F.; Teixeira, V.O.N.; Kok, Y.P.; Chen, M.; Rosenberg, E.H.; Debipersad, R.; Duiker, E.W.; van den Tempel, N.; Janatova, M.; Zemankova, P.; et al. RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models. NAR Cancer 2024, 6, zcae044. [Google Scholar] [CrossRef]
- Orhan, E.; Velazquez, C.; Tabet, I.; Sardet, C.; Theillet, C. Regulation of RAD51 at the Transcriptional and Functional Levels: What Prospects for Cancer Therapy? Cancers 2021, 13, 2930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.Y.; Cheng, W.F.; Lin, P.H.; Chen, Y.-L.; Huang, S.-H.; Lei, K.-H.; Chang, K.-Y.; Ko, M.-Y.; Chi, P. An activity-based functional test for identifying homologous recombination deficiencies across cancer types in real time. Cell Rep. Med. 2023, 4, 101247. [Google Scholar] [CrossRef]
- Doig, K.D.; Fellowes, A.P.; Fox, S.B. Homologous Recombination Repair Deficiency: An Overview for Pathologists. Mod. Pathol. 2023, 36, 100049. [Google Scholar] [CrossRef]
- De Luca, X.M.; Newell, F.; Kazakoff, S.H.; Hartel, G.; Reed, A.E.M.; Holmes, O.; Xu, Q.; Wood, S.; Leonard, C.; Pearson, J.V.; et al. Using whole-genome sequencing data to derive the homologous recombination deficiency scores. NPJ Breast Cancer 2020, 6, 33. [Google Scholar] [CrossRef]
- Ding, Y.C.; Tao, S.; Mao, A.; Ziv, E.; Neuhausen, S.L. Cosmic signature SBS39 is associated with homologous recombination deficiency. medRxiv 2024. [Google Scholar] [CrossRef]
- Davies, H.; Glodzik, D.; Morganella, S.; Yates, L.R.; Staaf, J.; Zou, X.; Ramakrishna, M.; Martin, S.; Boyault, S.; Sieuwerts, A.M.; et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 2017, 23, 517–525. [Google Scholar] [CrossRef]
- Setton, J.; Reis-Filho, J.S.; Powell, S.N. Homologous recombination deficiency: How genomic signatures are generated. Curr. Opin. Genet. Dev. 2021, 66, 93–100. [Google Scholar] [CrossRef]
- Witz, A.; Dardare, J.; Betz, M.; Michel, C.; Husson, M.; Gilson, P.; Merlin, J.-L.; Harlé, A. A Homologous recombination deficiency (HRD) testing landscape: Clinical applications and technical validation for routine diagnostics. Biomark. Res. 2025, 13, 31. [Google Scholar] [CrossRef]
- Kim, Y.N.; Gulhan, D.C.; Jin, H.; Glodzik, D.; Park, P.J. Recent Advances in Genomic Approaches for the Detection of Homologous Recombination Deficiency. Cancer Res. Treat. 2024, 56, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Timms, K.M.; Mills, G.B.; Perry, M.; Gutin, A.; Lanchbury, J.; Brown, R. Comparison of genomic instability test scores used for predicting PARP activity in ovarian cancer. J. Clin. Oncol. 2020, 38 (Suppl. S15), 1586. [Google Scholar] [CrossRef]
- Pfarr, N.; von Schwarzenberg, K.; Zocholl, D.; Merkelbach-Bruse, S.; Siemanowski, J.; Mayr, E.M.; Herold, S.; Kleo, K.; Heukamp, L.C.; Willing, E.M.; et al. High concordance of different assays in the determination of homologous recombination deficiency–associated genomic instability in ovarian cancer. JCO Precis. Oncol. 2024, 8, e2300348. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; Papadopoulou, K.; Chatzikonstantinou, T.; Karakatsoulis, G.; Constantoulakis, P.; Tsantikidi, A.; Tsaousis, G.; Karageorgopoulou, S.; Koumarianou, A.; Mauri, D.; et al. Concordance between Three Homologous Recombination Deficiency (HRD) Assays in Patients with High-Grade Epithelial Ovarian Cancer. Cancers 2023, 15, 5525. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, D.J.; Liu, B.; Meng, P.; Sun, L.; Cai, Y.H.; Shi, T.P. An optimized homologous recombination deficiency (HRD) algorithm ASGAD for predicting PARP inhibitor response in ovarian cancer patient. J. Clin. Oncol. 2019, 37 (Suppl. S15), e17077. [Google Scholar] [CrossRef]
- Caris Life Sciences. Whole-Exome Sequencing Provides Loss of Heterozygosity (LOH) Data Comparable to That of Whole-Genome Sequencing. Available online: https://www.carislifesciences.com/wp-content/uploads/2022/03/SGO-Caris-2022_Whole-exome-sequencing-provides-Loss-of-Heterozygosity-LoH-data-comparable-to-that-of-Whole-Genome-Sequencing.pdf (accessed on 16 July 2025).
- Caris Life Sciences. Research and Precision Oncology Collaborations at the 2025 ASCO Annual Meeting. Available online: https://www.carislifesciences.com/about/news-and-media/caris-life-sciences-to-highlight-an-extensive-lineup-of-research-and-precision-oncology-collaborations-at-the-2025-american-society-of-clinical-oncology-annual-meeting/ (accessed on 16 July 2025).
- Woodhouse, R.; Li, M.; Hughes, J.; Delfosse, D.; Skoletsky, J.; Ma, P.; Meng, W.; Dewal, N.; Milbury, C.; Clark, T.; et al. Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PloS one 2020, 15, e0237802. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, C.; Yang, Z.; Zhou, M.; Sun, J. Multi-Omics Deep-Learning Prediction of Homologous Recombination Deficiency-Like Phenotype Improved Risk Stratification and Guided Therapeutic Decisions in Gynecological Cancers. IEEE J. Biomed. Health Inform. 2025, 29, 1861–1871. [Google Scholar] [CrossRef]
- Hsiao, S.J.; Black, D.; Devereaux, K.A.; Hagemann, I.S.; Jennings, L.J.; Mandelker, D.; Paulson, V.A.; Shiller, M.; Stockley, T.L.; Vail, E.; et al. Recommendations for Clinical Molecular Laboratories for Detection of Homologous Recombination Defi-ciency in Cancer: A Joint Consensus Recommendation of the Association of Molecular Pathology, Association of Cancer Care Centers, and College of American Pathologists. J. Mol. Diagn. 2025, 27, 685–704. [Google Scholar] [CrossRef]
- Herzog, T.J.; Vergote, I.; Gomella, L.G.; Milenkova, T.; French, T.; Tonikian, R.; Poehlein, C.; Hussain, M. Testing for homologous recombination repair or homologous recombination deficiency for poly (ADP-ribose) polymerase inhibitors: A current perspective. Eur. J. Cancer 2023, 179, 136–146. [Google Scholar] [CrossRef]
- Graeser, M.; McCarthy, A.; Lord, C.J.; Savage, K.; Hills, M.; Salter, J.; Orr, N.; Parton, M.; Smith, I.E.; Reis-Filho, J.S.; et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 2010, 16, 6159–6168. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.G.; Staples, C.J. Assessment of DNA fibers to track replication dynamics. In Methods in Cell Biology; Zierhut, C., Galluzzi, L., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 182, pp. 285–298. [Google Scholar] [CrossRef]
- Pan, J.W.; Tan, Z.C.; Ng, P.S.; Zabidi, M.M.A.; Nur Fatin, P.; Teo, J.Y.; Hasan, S.N.; Islam, T.; Teoh, L.-Y.; Jamaris, S.; et al. Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer. npj Breast Cancer 2024, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- DiSilvestro, P.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Efficacy of Maintenance Olaparib for Patients with Newly Diagnosed Advanced Ovarian Cancer with a BRCA Mutation: Subgroup Analysis Findings from the SOLO1 Trial. J. Clin. Oncol. 2020, 38, 3528–3537. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Shang, Y.; Zhang, X.; He, W.; Hua, H.; Ye, F.; Zhou, X.; Li, Y.; Zhong, W.; Jiang, W.; et al. The prognostic and predictive value of homologous recombination deficiency in gastrointestinal cancer. Oncologist 2025, 30, oyaf141. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Lin, B.; Xie, Y. Incidence of BRCA1 somatic mutations and response to neoadjuvant chemotherapy in Chinese women with triple-negative breast cancer. Gene 2016, 584, 26–30. [Google Scholar] [CrossRef]
- Richters, L.; Gluz, O.; Weber-Lassalle, N.; Christgen, M.; Haverkamp, H.; Kuemmel, S.; Kayali, M.; Kates, R.E.; Grischke, E.-M.; Altmüller, J.; et al. Genetic Alterations, Therapy Response, and Survival Among Patients with Triple-Negative Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2025, 8, e2461639. [Google Scholar] [CrossRef]
- Maya-Mendoza, A.; Moudry, P.; Merchut-Maya, J.M.; Lee, M.; Strauss, R.; Bartek, J. High speed of fork progression induces DNA replication stress and genomic instability. Nature 2018, 559, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.-G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Konstantinopoulos, P.A.; Waggoner, S.; Vidal, G.A.; Mita, M.; Moroney, J.W.; Holloway, R.; Van Le, L.; Sachdev, J.C.; Chap-man-Davis, E.; Colon-Otero, G.; et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 2019, 5, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhu, H.; Zhang, S.; Shu, G.; Lei, H.; Yin, G.; Ni, X.; Wang, M.; Wu, Q. Promoter Methylation Changes in DNA Damage-Response Genes in Ovarian Cancer and Their Correlation with Prognosis. Clin. Exp. Obstet. Gynecol. 2024, 51, 109. [Google Scholar] [CrossRef]
- Hill, S.J.; Decker, B.; Roberts, E.A.; Horowitz, N.S.; Muto, M.G.; Worley, M.J., Jr.; Feltmate, C.M.; Nucci, M.R.; Swisher, E.M.; Nguyen, H.; et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discov. 2018, 8, 1404–1421. [Google Scholar] [CrossRef]
- González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef]
- Musacchio, L.; Cicala, C.M.; Camarda, F.; Ghizzoni, V.; Giudice, E.; Carbone, M.V.; Ricci, C.; Perri, M.T.; Tronconi, F.; Gentile, M.; et al. Combining PARP inhibition and immune checkpoint blockade in ovarian cancer patients: A new perspective on the horizon? ESMO Open 2022, 7, 100536. [Google Scholar] [CrossRef]
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019, 69, 280–304. [Google Scholar] [CrossRef]
Feature | DSBR (Double-Strand Break Repair) | SDSA (Synthesis-Dependent Strand Annealing) |
---|---|---|
Holliday Junctions | Involves the formation of Holliday junctions, cross-stranded intermediates. | Does not involve Holliday junctions; no crossover intermediates. |
Crossover vs. Non-Crossover | Can result in both CO and NCO products, depending on resolvase cleavage orientation. | Primarily results in NCO products, avoiding crossovers. |
Genetic Diversity | Increases genetic diversity through CO events, exchanging genetic material, | Maintains genetic stability by avoiding CO, preserving parental genes. |
Cellular Context | Crucial during meiosis for genetic diversity in gametes; less favored in somatic cells. | Preferred in somatic cells for accurate repair; less relevant in meiosis. |
Mechanism | Strand invasion forms Holliday junctions: resolvases cleave junctions symmetrically (CO) or same orientation (NCO). | Strand invasion, DNA synthesis; newly synthesized strand displaces and anneals |
Outcome Determination | Depends on the cleavage pattern of resolvases. | Inherently NCO due to displacement and annealing. |
Risk of Genomic Alteration | Higher risk of LOH or rearrangements due to CO events. | Lower risk; promotes fidelity to the original sequence. |
Cell Cycle Relevance | Active in S and G2 phases, prominent in meiotic prophase I. | Active in S and G2 phases of somatic cells, prioritizing stability. |
Biological Role | Ensures chromosome segregation and diversity in gametes | Ensures high-fidelity DSBs repair in mitotic cells. |
Key Proteins Involved | Involves resolvases (e.g., GEN1, MUS81-EME1) for junction resolution, plus RAD51 for strand invasion. | RAD51 for strand invasion, helicases for displacement. |
Repair Mechanism | Primary Function | Type of Damage Repaired | Key Proteins/Pathways | Cell Cycle Phase | Fidelity |
---|---|---|---|---|---|
Homologous Recombination Repair (HRR) [30] | Repairs DSBs with high accuracy using homologous template. | Double-strand breaks (DSBs), interstrand crosslinks | BRCA1, BRCA2, RAD51 | S and G2 | High |
Base Excision Repair (BER) [31] | Removes damaged bases, repairs SSBs. | Oxidized, alkylated, or deaminated bases | Glycosylases, APE1, DNA polymerase β | Throughout | High |
Nucleotide Excision Repair (NER) [32] -Global genome NER -Transcription-coupled NER | Removes bulky DNA lesions. | UV-induced lesions, chemical adducts | XPA, XPC, ERCC1 (GG-NER, TC-NER) | Throughout | High |
Mismatch Repair (MMR) [25] | Corrects replication errors. | Mismatched bases, insertion/deletion loops | MSH2, MLH1, PMS2 | Post-replication (S) | High |
Nonhomologous End-Joining (NHEJ) [22,23,25] | Ligates broken DNA ends. | Double-strand breaks (DSBs) | Ku70/80, DNA-PKcs, Ligase IV | G1 | Error-prone |
Translesion Synthesis (TLS) [33] | Bypasses DNA lesions during replication. | Unrepaired lesions (e.g., UV damage, adducts) | Specialized polymerases (Pol η, Pol ζ) | S | Low |
Interstrand Crosslink (ICL) Repair [29] | Repairs covalent DNA strand links. | Interstrand crosslinks | Fanconi anemia (FA) pathway (FANCD2, FANCI) | S and G2 | High |
Key Biomarkers | Description | ||
---|---|---|---|
BRCA1/BRCA2 Mutations | Germline or somatic mutations in BRCA1 or BRCA2; most recognized causes of HRD [30] | ||
Genomic Scars | DNA damage patterns from HRD, including loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) [41,42,43] | ||
Mutational Signatures | Distinct mutation patterns (e.g., COSMIC Signature 3) identified via whole-genome sequencing, associated with HRD [44,45]. | ||
Other HRR Gene Alterations | Mutations/deficiencies in non-BRCA HRR genes (e.g., RAD51C/RAD51D, BRIP1, PALB2, PPP2R2A, TP53, PLK1, SETD1A, EME1, SOX5) contributing to HRD [5,12,18,19,25,34,40]. | ||
Epigenetic Modifications | Promoter hypermethylation (e.g., BRCA1, RAD51C) and RNA methylation (e.g., m6A via METTL3, ALKBH5, IGF2BP2) contributing to HRD [7,8,29,46,47]. | ||
Functional Biomarkers | Serum miR-622 and metabolomic profiles predicting platinum/PARPi response [12]. | ||
Genomic Signatures of the HRD Phenotype | |||
Genomic Scars | Definition | Key Characteristics | HRD Thresholds/Criteria |
Loss of Heterozygosity (LOH) | Irreversible loss of one parental allele at a chromosomal locus, leading to absence of tumor suppressor genes. | Copy-loss LOH; Copy-neutral LOH; LOH size > 15 Mb (but < whole chromosome) correlates with HR gene deficiency. Chromosome-specific LOH (e.g., 8p, 17p) enhances detection [5]. |
|
Telomeric Allelic Imbalance (TAI) | Number of subtelomeric regions with allelic imbalance (copy loss/gain) without crossing the centromere. | Linked to BRCA loss and cisplatin sensitivity and the result of stalled replication forks, increased replication stress; Enriched with 25 Kb CNVs, non-random breakpoints. |
|
Large-Scale State Transitions (LST) | Chromosomal breaks between adjacent regions > 10 Mb (e.g., deletions, inversions, translocations). | Mostly translocations with high GC-content; detectable via OGM and aCGH [41,42]. |
|
Study | Cancer Type/Subtype | HRD Prevalence/Threshold | Key Findings |
---|---|---|---|
Quesada et al. (2025) [60] | Ovarian (HGSOC) | 50–51% (≥42) | Global consensus, compares CDx assays, advocates standardization |
Li et al. (2025) [80] | Ovarian/Breast | Adjusted thresholds | ZNF251 haploinsufficiency may cause false negatives, suggests additional markers |
Barnicle et al. (2024) [62] | Ovarian (HGSOC) | 48–53% (≥42) | Consistent across 6 olaparib trials, reinforces PARPi efficacy prediction |
Torres-Esquius et al. (2024) [84] | Ovarian (RAD51C/D-mutated) | 70–80% (≥42) | Detects non-BRCA HRD effectively |
Min Wang et al. (2023) [61] | Ovarian (Chinese HGSOC) | 52% (≥38) | CNVs improve sensitivity, 97% platinum sensitivity in HRD+ BRCAm |
Christinat et al. (2023) [68] | Ovarian (HGSOC) | 49–53% | Normalized LST correlates with olaparib response, streamlined alternative |
Capoluongo et al. (2022) [67] | Ovarian (HGSOC) | 55–60% | Genomic + functional assays improve sensitivity over genomic-only |
Fumagalli et al. (2022) [66] | Ovarian (HGSOC) | ~50% (≥42) | High concordance with AmoyDx HRD Focus panel, in-house feasibility |
Quesada et al. (2022) [59] | Ovarian (HGSOC) | 50–51% (≥42) | Reliable for BRCA1/2 and scars, limited for non-BRCA (e.g., RAD51C) |
Weichert et al. (2022) [64] | Ovarian (HGSOC) | 49–52% (≥42) | 92% PPA (BRCA1/2), 87% (HRD score) with NGS kit harmonization |
Wu et al. (2020) [65] | Ovarian (HGSOC) | 51% | HRD score (89% sensitivity, 85% specificity) as robust alternative |
Jiao et al. (2019) [112] | Ovarian (HGSOC) | 52% | ASGAD algorithm achieves 93% PARPi response accuracy |
Caris Life Sciences (2022) [113,114] | Ovarian (HGSOC) | 50–53% (GSS ≥42) | WES-based GSS (LOH + LST) achieves >97% concordance with Myriad myChoice CDx |
Engebrethsen et al. (2023) [76] | Breast (Luminal) | 15–25% (≥42) | Links high scores to replication stress and BRCA1/2 defects |
Yndestad et al. (2023) [75] | Breast (HR+/HER2-, HER2+) | 15–20% (HR+/HER2-), 30–35% (HER2+) | Validates utility across diverse subtypes |
Feng et al. (2023) [81] | Breast | Correlates with GSS | Genomic scar score (GSS) aligns with LOH, TAI, LST, enhancing precision |
Lenz et al. (2023) [69] | Breast (TNBC, HER2+, Luminal) | 65% (TNBC), 40% (HER2+), 25% (Lum B), 15% (Lum A) | GIS complements HRD score, reflecting subtype-specific instability |
Jacobson et al. (2023) [70] | Breast | ~45%, TNBC 70% (≥42) | Multi-scale features (e.g., tandem duplications) enhance subtle HRD detection |
Lim et al. (2023) [72] | Breast | ~50%, TNBC 60–70% | Machine learning mutational signatures distinguish BRCA1/2-driven HRD |
Batalini et al. (2023) [53] | Breast | High scores | Captures somatic BRCA1/2 and germline PALB2 HRD, aligns with PARPi response |
Zhang et al. (2022) [71] | Breast (Early TNBC) | 50–60% (≥42) | Predicts pCR with platinum neoadjuvant therapy |
André et al. (2020) [78] | Male Breast Cancer | ~30% | Suggests adaptation with epigenetic markers (BRCA2/RAD51C hypermethylation) |
Study | Cancer Type | HRD Detection | Key Findings |
---|---|---|---|
Weichert et al. (2022) [64] | Ovarian (HGSOC) | 49–52% (BRCA1/2, LOH) | Effective for BRCA1/2 and LOH, limited for non-BRCA (e.g., RAD51C) [60] |
Weichert et al. (2022) [64] | Breast (TNBC) | 50–70% (BRCA1-driven) | Captures BRCA1 HRD, requires optimization for non-BRCA genes [60] |
Chien-Feng Li et al. (2022) [81] | Breast (TNBC) | 55% (LOH-based) | Genome-wide LOH assay aligns with F1CDx, offers cost-effective alternative [73] |
Quesada et al. (2025) [60] | Ovarian (HGSOC) | 50–51% (BRCA1/2, LOH) | Compares with myChoice CDx, supports standardization for PARPi eligibility [64] |
Marconato et al. (2025) [15] | Ovarian/Breast | Varies by assay | Broader genomic profiling, limited non-BRCA HRD specificity compared to dedicated assays [89] |
Component | Description | Key Features |
---|---|---|
Genomic and Functional Assay Integration | Combines genomic (NGS, SNP arrays) and functional (RAD51 foci, DNA fiber assay) assays for comprehensive HRD detection | Captures BRCA1/BRCA2 and non-BRCA HRD; addresses dynamic HRD status with GIScar, Oncomine, OGM, aCGH |
Multi-Omics Profiling | Uses machine learning to integrate genomic, transcriptomic, proteomic data for precise HRD subtyping | Enhances sensitivity (e.g., HRDetect > 90%, ASGAD 93%) with HRProfiler, DirectHRD, GSscan, shallowHRD, AcornHRD |
Methylation Analysis | Assesses BRCA1/RAD51C promoter hypermethylation in mutation-negative cases; Epitranscriptomics (RNA) modifications/methylation | Identifies HRD in 1–15% ovarian, up to 60% TNBC cases; includes m6A/m5C dysregulation and methylations driven DDR genes |
Biallelic Inactivation Reporting | Reports biallelic status of HRR gene mutations to predict PARPi response | Enhances outcome prediction (>80% biallelic rate in BRCA-associated tumors) |
Resistance Mitigation | Targets resistance mechanisms (e.g., BRCA reversion, ZNF251 haploinsufficiency) via combination therapies | PARPi with ATR or immune checkpoint inhibitors; addresses SETD1A/EME1, SOX5 resistance |
Standardization | Harmonizes assay thresholds (e.g., GIS ≥ 42, gLOH ≥ 16%) and reporting protocols | Reduces non-BRCA HRD variability (60–70% concordance); includes OGM, aCGH, low-pass WGS |
Clinical Translation | Translates detection into practice with cost-effective diagnostics and genetic counseling | Ensures equitable access; addresses disparities in Asian, Black populations |
Validation Roadmap | Validates model across diverse tumor types and populations | Prioritizes large-scale trials (n > 1000) for novel biomarkers (e.g., SBS39, miR-622, metabolomic profiles) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, B.; Hussain, M.; Seth, A. Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment. Curr. Issues Mol. Biol. 2025, 47, 638. https://doi.org/10.3390/cimb47080638
Shah B, Hussain M, Seth A. Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment. Current Issues in Molecular Biology. 2025; 47(8):638. https://doi.org/10.3390/cimb47080638
Chicago/Turabian StyleShah, Bhaumik, Muhammad Hussain, and Anjali Seth. 2025. "Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment" Current Issues in Molecular Biology 47, no. 8: 638. https://doi.org/10.3390/cimb47080638
APA StyleShah, B., Hussain, M., & Seth, A. (2025). Homologous Recombination Deficiency in Ovarian and Breast Cancers: Biomarkers, Diagnosis, and Treatment. Current Issues in Molecular Biology, 47(8), 638. https://doi.org/10.3390/cimb47080638