Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature
Abstract
1. Introduction
2. Morphological and Leaf Anatomical Structural Alterations in Plants Under High-Temperature Stress
3. Effects of High Temperature on Plant Physiology and Biochemistry
3.1. Effects of High-Temperature Stress on Photosynthesis
3.2. Effect of High Temperature on Regulatory Substances in Plants
4. Signal Transduction Under High-Temperature Conditions
5. Molecular Mechanism of High-Temperature Stress
5.1. Heat Shock Transcription Factor Regulation
5.2. Heat Shock Protein Regulation
6. Response of Plant Hormones to High Temperature
6.1. Auxin
6.2. Abscisic Acid
6.3. Ethylene
6.4. Brassinosteroids
6.5. Jasmonic Acid
6.6. Salicylic Acid
7. Regulatory Network for Plant Responses to High Temperature
8. Strategies for Enhancing the Heat Tolerance of Plants
8.1. Effects of Heat Acclimation on Plant Responses to High-Temperature Stress
8.2. Application of Exogenous Substances to Enhance Plant Thermotolerance
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S.G.; Zong, X.F. Plant Resistance Biology; Xi’ an Normal University Press: Chongqing, China, 2015; pp. 1–113. [Google Scholar]
- Hong, E.M.; Xia, X.Z.; Ji, W.; Li, T.Y.; Xu, X.Y.; Chen, J.G.; Chen, X.; Zhu, X.T. Effects of high temperature stress on the physiological and biochemical characteristics of Paeonia ostii. Int. J. Mol. Sci 2023, 24, 11180. [Google Scholar] [CrossRef]
- Song, C.Y.; Liu, X.B.; Jin, C.X. Mechanisms of damage and acclimation of photosynthetic apparatus due to heat stress. Syst. Sci. Compr. Stud. Agric. 2002, 18, 252–255. [Google Scholar]
- Zhang, F.J.; Luo, F.; Tan, Y.Y.; Zhang, M.H.; Xing, W.; Jin, X.L. Effects of high temperature stress on the physiological characteristics and chlorophyll fluorescence parameters of Chinese Rose. J. Henan Agric. Sci. 2019, 48, 108–115. [Google Scholar]
- He, M.; Hu, Y.; Wang, T.; Xu, J.; Zeng, W.C.; Zhao, A. Physiological response of colored-leaved north American Begonia to high temperature. Acta Agric. Univ. Jiangxiensis 2019, 41, 664–672. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.Z.; Wang, X.Y. Physiological responses of Rhododendron latoucheae to high temperature stress. J. For. Environ. 2020, 40, 284–289. [Google Scholar] [CrossRef]
- Liu, Y.P.; Huang, W.D.; Zhang, J.H. Effect of heat acclimation and SA pretreat on the ultra structure of mesophyll cell in grape plants under heat shock. Acta Hortic. Sin. 2006, 33, 491–495. [Google Scholar]
- Zhang, C.; Liu, H.; Xi, D.J.; Luo, H.F.; Pei, J.B.; Huang, K.K.; Ruan, R.X.; Lai, M.X.; Fan, H.F. Effects of high temperature on leaf physiological indexes of summit in seedlings sweet cherry. J. Fruit Sci. 2023, 40, 712–723. [Google Scholar]
- Hu, W.J.; Zhang, Q.X.; Pan, H.T.; Dong, L.L. Difference in ultrastructure of mesophyll cell between two Primula species with different thermotolerance under heat acclimation and heat stress. J. South China Agric. Univ. 2010, 31, 43–46. [Google Scholar]
- Liang, W.; Zhao, B.; Huang, W.M. Heat-resistance of Rhododendron with a heat acclimation pretreatment. J. Zhejiang AF Univ. 2018, 35, 284–290. [Google Scholar]
- Yang, D.S.; Peng, S.B.; Wang, F. Response of photosynthesis to high growth temperature was not related to leaf anatomy plasticity in Rice (Oryza sativa L.). Front. Plant Sci. 2020, 11, 26. [Google Scholar] [CrossRef]
- Kumar, A.; Li, C. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res. 2009, 100, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Cheng, Y.W.; Ya, H.Y.; Han, J.M.; Zheng, L. Identification of heat shock proteins viatranscriptome profiling of tree peony leafexposed to high temperature. Genet. Mol. Res. 2015, 14, 8431–8442. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.X.; Ling, R.; Cheng, S.Y.; Zhai, J.W.; Zheng, Z.X.; Wu, S.S. Physiological and biochemical responses of eight Hydrangea Cultivars to high temperature stress. Chin. J. Trop. Crops 2022, 43, 816–828. [Google Scholar]
- Li, Z.Q.; Xing, W.; Luo, P.; Zhang, F.J.; Jin, X.L.; Zhang, M.H. Comparative transcriptome analysis of Rosa chinensis ‘Slater’s crimson China’ Tprovides insights into the crucial factors and signaling pathways in heatstress response. Plant Physiol. Biochem. 2019, 142, 312–331. [Google Scholar] [CrossRef]
- Liu, D.L.; Lai, W.N. Research on physio-biochemistry indexes of heat resistant of Prunus mume in summer. North. Hortic. 2012, 57–61. [Google Scholar]
- Zhang, X.; Wang, M.M.; Li, G.L.; Bai, Z.J.; Yao, F. Photosynthetic response of Quercus variabilis and Quercus aliena var. acuteserrata seedlings to high temperature stress. J. Beijing For. Univ. 2022, 44, 25–35. [Google Scholar]
- Yin, Z.P.; Lu, J.Z.; Gao, Z.H.; Qi, M.F.; Meng, S.D.; Li, T.L. Effects of photosynthetic, PSII electron transport and reactive oxygen species on short-term high temperature stress in tomato seedlings. North. Hortic. 2019, 1–11. [Google Scholar]
- Steven, J.C.; Michael, E.S. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef]
- Urban, J.; Ingwers, M.; McGuire, M.A.; Teskey, R.O. Stomatal conductance increases with rising temperature. Plant Signal. Behavior. 2017, 12, e1356534. [Google Scholar] [CrossRef]
- Zhang, W.B. Studies on Heat Resistance in ‘Ganmi 6’ Kiwifruit(Actinidia eriantha Benth); Jiangxi Agricultural University: Nanchang, China, 2017. [Google Scholar]
- Jin, S.H.; Li, X.Q.; Wang, J.G. Effects of high temperature stress on photosynthesis in Ficus concinna var. subsessilis. Chin. Agric. Sci. Bull. 2009, 25, 83–87. [Google Scholar]
- Su, X.Y.; Gao, T.M.; Li, F.; Wei, L.B.; Tian, Y.; Wang, D.Y.; Zhu, S.T.; Wei, S.L. Physiological response mechanism to high temperature stress in different heat-tolerant genotypes of sesame seedlings. Acta Agric. Boreali-Sin. 2021, 36, 96–105. [Google Scholar]
- Dou, F.F.; Zhang, L.P.; Wang, Y.K.; Yu, K.; Liu, H.F. Effects of high temperature stress on photosynthesis and gene expressionof different grape cultivars. J. Fruit Sci. 2021, 38, 871–883. [Google Scholar]
- Huan, L.; Gao, S.; Xie, X.J.; Tao, W.R.; Pan, G.H.; Zhang, B.Y.; Niu, J.F.; Lin, A.P.; He, L.W.; Wang, G.G. Specific photosynthetic and morphological characteristics allow macroalgae Gloiopeltis furcata (Rhodophyta) to survive in unfavorable conditions. Photosynthetica 2014, 52, 281–287. [Google Scholar] [CrossRef]
- Xu, C.; Wang, M.T.; Yang, Z.Q.; Han, W.; Zheng, S.H. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level. Chin. J. Appl. Ecol. 2021, 32, 231–240. [Google Scholar]
- Wu, J.Y.; Xu, G.X.; Li, H.F.; Zeng, X.Y.; Jiang, J.F.; Liu, Y.X.; Wei, Y.N.; Ren, H.S. Effects of heat stress on chlorophyll fluorescence and photosynthetic characteristic parameters in grape (Vitisvinifera L. Manicure finger). Xinjiang Agric. Sci. 2021, 58, 2274–2281. [Google Scholar] [CrossRef]
- Ashraf, M. Thermotolerance in plants: Potential physio-biochemical and molecular markers for crop improvement. Environ. Exp. Bot. 2021, 186, 104454. [Google Scholar] [CrossRef]
- Hameed, M.; Keitel, C.; Ahmad, N.; Mahmooda, T.; Trethowana, R. Screening of tomatoes germplasm for heat stress toleranceunder controlled conditions. Procedia Environ. Sci. 2015, 29, 173–174. [Google Scholar] [CrossRef]
- Li, Y.Y.; Dou, X.Y.; Peng, C.L. Response of photosynthesis in saplings of three endangered Magnolialia species to high temperature. Acta Ecol. Sin. 2008, 28, 3789–3797. [Google Scholar]
- Li, J.W.; Liu, X.Y.; Xiao, Z.B.; Huang, H.G. A Study on introduction and adaptation of Magnoliaceae plants and its landscape evaluation. For. Resour. Manag. 2020, 161–168. [Google Scholar] [CrossRef]
- Li, Y.Z.; Li, X.R.; Zhang, J.; Li, D.X.; Yan, L.J.; You, M.H.; Zhang, J.B.; Lei, X.; Chang, D.; Ji, X.F.; et al. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Front. Plant Sci. 2021, 12, 753011. [Google Scholar] [CrossRef]
- Wang, K.H.; Ling, J.H.; Zhang, L.H.; Liu, X.P.; Li, L. Analysis of principal components and subordinate function on heat tolerance of two seedlings of Rhododendron Subgenus Hymenanthes. J. Trop. Subtrop. Bot. 2011, 19, 412–418. [Google Scholar] [CrossRef]
- Peng, Y.Z.; Liu, Z.Y.; Zhu, X.F.; Du, X.W.; Ye, K.; Lu, Y.Q.; Qin, J.; Zeng, L. Physiological index changes and heat tolerance evaluation of five rose cultivars after high temperature treatment. J. Shanghai Jiaotong Univ. 2019, 37, 53–58. [Google Scholar]
- Han, Y.Y.; Fan, S.X.; Zhang, Q.; Wang, Y.A. Effect of heat stress on the MDA, proline and soluble sugars content in leaf lettuce seedlings. Agric. Sci. 2013, 4, 112–115. [Google Scholar] [CrossRef]
- Dong, Q.; Wallrad, L.; Almutairi, B.O.; Kudla, J. Ca2+ signaling in plant responses to abiotic stresses. J. Integr. Plant Biol. 2022, 64, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J. Unlocking the secrets of cell signaling. Annu. Rev. Physiol. 2005, 67, 1–21. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Z.J. Organellar Calcium Signaling in Plants. Plant Physiol. J. 2015, 51, 1195–1203. [Google Scholar] [CrossRef]
- Zhou, J.J.; Xia, K.F. Study on Ca2+ signal transduction in plant. Gui Haia 2005, 25, 386–392. [Google Scholar]
- Pozzan, T.; Rizzuto, R.; Volpe, P.; Meldolesi, J. Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 1994, 74, 595–636. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Lederer, W.J. Sodium/calcium exchange: Its physiological implications. Physiol. Rev. 1999, 79, 763–854. [Google Scholar] [CrossRef]
- Shen, H.F.; Zhao, B.; Xu, J.J.; Zheng, X.Z.; Huang, W.M. Effects of salicylic acid and calcium chloride on heat tolerance in Rhododendron ‘Fen Zhen Zhu’. J. Amer. Soc. Hort. Sci. 2016, 141, 363–372. [Google Scholar] [CrossRef]
- Yang, H.G.; Yang, Y.M. Effect of exogenous calcium and calcium inhibitors on the heat tolerance in Phalaenopsis seedlings. Chin. J. Trop. Crops 2021, 42, 436–441. [Google Scholar] [CrossRef]
- Wu, H.C.; Jinn, T.L. Oscillation regulation of Ca2+/calmodulin and heat-stress related genes in response to heat stress in rice (Oryza sativa L.). Plant Signal. Behav. 2012, 7, 1056–1057. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Gao, F.; Li, G.L.; Han, J.L.; Liu, D.L.; Sun, D.Y.; Zhou, R.G. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J. 2008, 55, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Li, G.L.; Chang, H.; Sun, D.Y.; Zhou, R.G.; Li, B. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant, Cell Environ. 2007, 30, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.D.; Qian, Y.; Fang, Y.F.; Ji, Y.R.; Sheng, J.R.; Ge, C.L. Characteristics of SlCML39, a tomato calmodulin-like gene, and its negative role in high temperature tolerance of Arabidopsis thaliana during germination and seedling growth. Int. J. Mol. Sci. 2021, 22, 11479. [Google Scholar] [CrossRef]
- Finka, A.; Cuendet, A.F.; Maathuis, F.J.; Saidi, Y.; Goloubinoff, P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 2012, 24, 3333–3348. [Google Scholar] [CrossRef]
- Mishra, R.C.; Grover, A. ClpB/Hsp100 proteins and heat stress tolerance in plants. Crit. Rev. Biotechnol. 2015, 36, 862–874. [Google Scholar] [CrossRef]
- Zai, W.S.; Miao, L.X.; Xiong, Z.L.; Zhang, H.L.; Ma, Y.R.; Li, Y.L.; Chen, Y.B.; Ye, S.G. Comprehensive identification and expression analysis of Hsp90s genefamily in Solanum lycopersicum. Genet. Mol. Res. 2015, 14, 7811–7820. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wu, J.R.; Duong, N.K.; Lu, C.A.; Yeh, C.H.; Wu, S.J. HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in Arabidopsi. J. Plant Physiol. 2021, 261, 153430. [Google Scholar] [CrossRef]
- Haq, S.U.; Khan, A.; Ali, M.; Gai, W.X.; Zhang, H.X.; Yu, Q.H.; Yang, S.B.; Wei, A.M.; Gong, Z.H. Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stressin pepper (Capsicum annuum L.). Planta. 2019, 250, 2127–2145. [Google Scholar] [CrossRef]
- Jiang, C.G.; Xu, J.Y.; Zhang, H.; Zhang, X.; Shi, J.; Li, M.; Ming, F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stressesto Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ. 2009, 32, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Y.; Hu, W.J.; Qian, Y.X.; Ren, Q.Y.; Zhang, J. Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene 2021, 770, 145348. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, N.; Qin, Q.; Su, A.; Si, W.; Cheng, B.; Wu, L.; Peng, X.; Jiang, H. Alternative splicing of ZmHsf23 modulates maize heat tolerance by regulating sHSPs and TIL1 expression. Crop J. 2025, 1–13. [Google Scholar] [CrossRef]
- Liu, H.C.; Liao, H.T.; Charng, Y.Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 2011, 34, 738–751. [Google Scholar] [CrossRef]
- Zou, X.W.; Yue, J.N.; Li, Z.Y.; Dai, L.Y.; Li, W. Functional analysis of rice heat shock transcription factor HsfA2b regulating the resistance to abiotic stresses. Biotechnol. Bull. 2024, 40, 105–113. [Google Scholar] [CrossRef]
- Li, H.G.; Yang, Y.L.; Liu, M.Y.; Zhu, Y.H.; Wang, H.L.; Feng, C.H.; Niu, M.X.; Liu, C.; Yin, W.L.; Xia, X.L. The in vivo performance of a heat shock transcription factor from Populus euphratica, PeHSFA2, promises a prospective strategy toalleviate heat stress damage in poplar. Environ. Exp. Bot. 2022, 201, 104940. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Meng, M.; Di, H.; Wang, J. Populus trichocarpa PtHSFA4a enhances heat tolerance by regulating expression of APX1 and HSPs. Forests 2023, 14, 2028. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Ding, L.P.; Wang, C.P.; Cao, X.; Teng, N.J. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. New Phytol. 2024, 241, 2124–2142. [Google Scholar] [CrossRef]
- Iba, K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 2002, 53, 225–245. [Google Scholar] [CrossRef]
- Waters, E.R.; Lee, G.J.; Vierling, E. Evolution, structure and functionof the small heat shock proteins in plants. J. Exp. Bot. 1996, 47, 325–338. [Google Scholar] [CrossRef]
- Wang, H.; Charagh, S.; Dong, N.; Lu, F.; Wang, Y.; Cao, R.; Ma, L.; Wang, S.; Jiao, G.; Xie, L.; et al. Genome-wide analysis of heat shock protein family and identification of their functions in rice quality and yield. Int. J. Mol. Sci. 2024, 25, 11931. [Google Scholar] [CrossRef]
- Yamada, K.; Fukao, Y.; Hayashi, M.; Fukazawa, M.; Suzuki, I.; Nishimura, M. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J. Biol. Chem. 2007, 282, 37794–37804. [Google Scholar] [CrossRef] [PubMed]
- Song, H.M.; Zhao, R.M.; Fan, P.X.; Wang, X.C.; Chen, X.Y.; Li, Y.X. Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivityto salt and drought stresses. Planta 2009, 229, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Chen, C.; Wu, C.Z.; Meng, Q.W.; Zhuang, K.Y.; Ma, N.N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. Plant Physiol. Biochem. 2023, 204, 108106. [Google Scholar] [CrossRef] [PubMed]
- Panzade, K.P.; Vishwakarma, H.; Padaria, J.C. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco. Mol. Biol. Rep. 2020, 47, 3821–3831. [Google Scholar] [CrossRef]
- Rong, J.; Wang, P.W.; Wu, N.; Qu, J.; Yu, M.; Feng, Y.Q. Identification of heat tolerance of small heat shock protein gene HSP17. 4 from Soybean. J. Jilin Agric. Univ. 2018, 40, 568–576. [Google Scholar] [CrossRef]
- Li, N.N.; Yang, Y.F.; Zhao, F.Y.; Hu, X.L. Study on chloroplast proteins affected by small heat shock26(sHSP26) under heat stress in maize. J. Henan Agric. Univ. 2015, 49, 729–736. [Google Scholar] [CrossRef]
- Ben-Zvi, A.P.; Goloubinoff, P. Review: Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 2001, 135, 84–93. [Google Scholar] [CrossRef]
- Park, H.S.; Jeong, W.J.; Kim, E.C.; Jung, Y.G.; Lim, J.M.; Hwang, M.S.; Park, E.J.; Ha, D.S.; Choi, D.W. Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. Mar. Biotechnol. 2012, 14, 332–342. [Google Scholar] [CrossRef]
- Chen, Y.P.; Deng, C.J.; Xu, Q.Z.; Chen, X.P.; Jiang, F.; Zhang, Y.L.; Hu, W.S.; Zheng, S.Q.; Su, W.B.; Jiang, J.M. Integrated analysis of the metabolome, transcriptome and miRNome reveals crucial roles of auxins and heat shock proteins in the heat stress response of loquat fruit. Sci. Hortic. 2022, 294, 110764. [Google Scholar] [CrossRef]
- Sharma, L.; Dalal, M.; Verma, R.K.; Kumar, S.V.; Yadava, S.K.; Pushkar, S.; Kushwaha, S.R.; Bhowmik, A.; Chinnusamy, V. Auxin protects spikelet fertility and grain yield under drought and heat Tstresses in rice. Environ. Exp. Bot. 2018, 150, 9–24. [Google Scholar] [CrossRef]
- Wang, R.H.; Zhang, Y.; Kieffer, M.; Yu, H.; Kepinski, S.; Estelle, M. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxinsco-receptor F-box protein TIR1. Nat. Commun. 2016, 7, 10269. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, M.; Silvina, M.; René, T.; Lourdes, F.C.; Juan, C.P.; Castellano, M.M. The co-chaperone HOP participates in TIR1 stabilisation and in auxins response in plants. Plant Cell Env. 2022, 45, 2508–2519. [Google Scholar] [CrossRef]
- Wen, T. Plant Physiology; China Agriculture Press: Beijing, China, 2018; pp. 1–348. [Google Scholar]
- Xing, Y.; Jia, W.S.; Zhang, J.H. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 2008, 54, 440–451. [Google Scholar] [CrossRef]
- Cho, E.K.; Hong, B. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep. 2006, 25, 349–358. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Li, J.X.; Li, M.; Zhang, S.T.; Song, S.S.; Wang, W.M.; Wang, S.; Chang, J.B.; Xia, Z.L.; Zhang, S.T.; et al. NtHSP70-8b positively regulates heat tolerance and seed size in Nicotiana tabacum. Plant Physiol. Biochem. 2023, 201, 107901. [Google Scholar] [CrossRef]
- Liu, X.L.; Ji, P.; Yang, H.T.; Jiang, C.J.; Liang, Z.W.; Chen, Q.Z.; Lu, F.; Chen, X.; Yang, Y.Y.; Zhang, X.B. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes. Plant Growth Regul. 2022, 98, 23–38. [Google Scholar] [CrossRef]
- Chen, Z.L.; Galli, M.; Gallavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol. 2022, 65, 102134. [Google Scholar] [CrossRef]
- Prakash, V.; Singh, V.P.; Tripathic, D.K.; Sharma, S.; Corpas, F.J. Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ. Exp. Bot. 2019, 161, 41–49. [Google Scholar] [CrossRef]
- Iqbal, N.; Sehar, Z.; Fatma, M.; Umar, S.; Sofo, A.; Khan, N.A. Nitric oxide and abscisic acid mediate heat stress tolerance through regulation of osmolytes and antioxidants to protect photosynthesis and growth in wheat plants. Antioxidants 2022, 11, 372. [Google Scholar] [CrossRef]
- Chen, Y.F.; Etheridge, N.; Schaller, G.E. Ethylene Signal Transduction. Ann. Bot. 2005, 95, 901–915. [Google Scholar] [CrossRef]
- Zhao, H.; Geng, X.M.; Wang, L.L.; Xu, S.D. Research on the effect of ethylene in heat resistance mechanism of Rhododendron. Acta Hortic. Sin. 2022, 49, 561–570. [Google Scholar] [CrossRef]
- Huang, J.Y.; Zhao, X.B.; Burger, M.; Wang, Y.R.; Chory, J. Two interacting ethylene response factors regulate heat stress response. Plant Cell 2021, 33, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.C.; Tong, J.; Dong, Y.F.; Xu, D.Y.; Mao, J.; Zhou, Y. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis. PLoS ONE 2017, 12, e0186376. [Google Scholar] [CrossRef] [PubMed]
- Eric, B.; Esha, D.; Brittani, H.; Lauren, H.W.; Daniel, M.R.; Brad, M.B. Ethylene-mediated metabolic priming increases photosynthesis and metabolism to enhance plant growth and stress tolerance. PNAS Nexus 2023, 2, 216. [Google Scholar] [CrossRef]
- Sadural, I.; Janeczko, A. Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol. Plant. 2018, 62, 601–616. [Google Scholar] [CrossRef]
- Luo, J.Y.; Jiang, J.J.; Sun, S.Y.; Wang, X.L. Brassinosteroids promote thermotolerance through releasing BIN2-mediated phosphorylation and suppression of HsfA1 transcription factors in Arabidopsis. Plant Commun. 2022, 3, 100419. [Google Scholar] [CrossRef]
- Xia, X.J.; Wang, Y.J.; Zhou, Y.H.; Tao, Y.; Mao, W.H.; Shi, K.; Asami, T.D.; Chen, Z.X.; Yu, J.Q. Reactive oxygen species are involved in brassinosteroid-induced stress tolerancein cucumber. Plant Physiol. 2009, 150, 801–814. [Google Scholar] [CrossRef]
- Lam, D.V.; Xu, X.Y.; Zhu, T.T.; Pan, L.X.; Zanten, M.V.; Jong, D.D.; Wang, Y.W.; Vanremoortele, T.; Locke, A.M.; Cotte, B.; et al. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat. Commun. 2021, 12, 2842. [Google Scholar] [CrossRef]
- Wang, C.K.; Guo, M. Effects of brassinolide on growth morphology and physiological characters of Avena nuda under room and high temperature stresses. J. South. Agric. 2017, 48, 1173–1177. [Google Scholar] [CrossRef]
- Yu, J.Q.; Huang, L.F.; Hu, W.H.; Zhou, Y.H.; Mao, W.H.; Ye, S.F.; NogueÂs, S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 2004, 55, 1135–1143. [Google Scholar] [CrossRef]
- Guan, Y.X.; Ding, L.; Jiang, J.F.; Shentu, Y.Y.; Zhao, W.Q.; Zhao, K.K.; Zhang, X.; Song, A.; Chen, S.; Chen, F.D. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Hortic. Res. 2021, 8, 87. [Google Scholar] [CrossRef]
- Hu, R.L.; Wang, J.L.; Yang, H.Q.; Wei, D.Y.; Tang, Q.L.; Yang, Y.; Tian, S.B.; Wang, Z.M. Comparative transcriptome analysis reveals the involvement of an MYB transcriptional activator, SmMYB108, in anther dehiscence in eggplant. Front. Plant Sci. 2023, 14, 1164467. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Y.; Liang, C.L.; Qiu, Z.Y.; Zhou, S.Q.; Liu, J.L.; Yang, Y.Y.; Wang, R.; Yin, J.; Ma, C.H.; Cui, Z.H.; et al. Jasmonic acid negatively regulates branch growth in pear. Front. Plant Sci. 2023, 14, 1164467. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.B.; Yang, R.; Cai, W.H.; Liu, Y.N.; Zhou, D.R.; Meng, L.; Wang, P.; Huang, B.Q. Genome-Wide identifcation and analysis uncovers the potential role of JAZ and MYC families in potato under abiotic stress. Int. J. Mol. Sci. 2023, 24, 6706. [Google Scholar] [CrossRef]
- Huang, Y.M.; Zeng, X.C. Effects of methyl jasmonate on physiological characteristics of rice leaves at heading and flowering stage under high temperature. Jiangsu Agric. Sci. 2023, 51, 66–71. [Google Scholar] [CrossRef]
- Wang, F. The functional characterization and regulatory mechanism analysis of jasmonate synthetic gene OPR3 in thermotolerance of Arabidopsis and Wheat (Triticum aestivum L.). China Agric. Univ. 2014, 1–67. [Google Scholar]
- Ji, D.L. Regulation Mechanism of Methyl Jasmonate on Panicle Morphogenesis in Rice Under High Temperature Stress During the Panicle Differentiation Stage; Yangzhou University: Yangzhou, China, 2024; pp. 1–118. [Google Scholar]
- Ruan, J.J.; Zhou, Y.X.; Zhou, M.L.; Yan, J.; Khurshid, M.; Weng, W.F.; Cheng, J.P.; Zhang, K.X. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Tian, X.J.; Wang, F.; Zhao, Y.; Lan, T.Y.; Yu, K.H.; Zhang, L.Y.; Qin, Z.; Hu, Z.R.; Yao, Y.Y.; Ni, Z.F.; et al. Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. Plant Biotechnol. J. 2020, 18, 1109–1111. [Google Scholar] [CrossRef]
- Li, J.J. Research Progress in Salicylic Acid Metabolism and Regulation in Plants. World Ecol. 2023, 12, 209–219. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, H.Y.; Wang, J.B.; Wang, X.M.; Jia, X.Q.; Wang, L.; Xu, Z.; Li, R.L.; Jiang, K.; Chen, Z.X.; et al. AIM1-dependent high basal salicylic acid accumulation modulates stomatal aperture in rice. New Phytol. 2023, 238, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Gao, Y.H.; Huang, J.S.; Zhang, Q. Effects of exogenous salicylic acid on physiological and electrical impedance parameters of trollius chinensis seedlings under high temperature stress. Bull. Bot. Res. 2020, 40, 543–551. [Google Scholar] [CrossRef]
- Jahan, M.S.; Wang, Y.; Shu, S.; Zhong, M.; Chen, Z.; Wu, J.Q.; Sun, J.; Guo, S.R. Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci. Hortic. 2019, 247, 421–429. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhao, B.L.; Yu, S.L. Study of exogenous salicylic acid(SA) on the heat tolerance in grape seedling under high temperature stress. J. Soil Water Conserv. 2014, 28, 290–294+299. [Google Scholar] [CrossRef]
- Ling, R.; You, L.; Wu, C.M.; Zheng, Z.X.; Zhai, J.W.; Wu, S.S. Effects of exogenous salicylic acidon heat-tolerance of two Hydrangea Cultivars. J. Northwest For. Univ. 2021, 36, 72–78. [Google Scholar] [CrossRef]
- Ding, M.H.; Xing, W.; Li, Z.Q.; Jin, X.; Yu, Q.X.; Sun, J.H. The class B heat shock factor RcHsf17 from Rosa chinensis enhances basal thermotolerance in Rosa rugosa. Environ. Exp. Bot. 2024, 225, 105832. [Google Scholar] [CrossRef]
- Bu, W.X.; Huang, Y.; Chen, L.J.; Zhang, M.H.; Luo, X.N.; Zheng, T.C.; Shao, F.X.; Lei, W.Q.; Xing, W.; Yang, X.Y. Transcriptome analysis of tree peony under high temperature treatment and functional verification of PsDREB2A gene. Plant Physiol. Biochem. 2025, 219, 109405. [Google Scholar] [CrossRef]
- Tian, X.J. Functional Analysis of Heat Stress Responsive Genes TaMBF1c and TaMYB in Wheat (Triticum aestivum L.); China Agricultureal University: Beijing, China, 2018; pp. 1–122. [Google Scholar]
- Li, S.J.; Fu, Q.T.; Chen, L.G.; Huang, W.D.; Yu, D.Q. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 2011, 233, 1237–1252. [Google Scholar] [CrossRef]
- Zou, L.F.; Yu, B.W.; Ma, X.L.; Cao, B.H.; Chen, G.J.; Chen, C.M.; Lei, J.J. Cloning and expression analysis of the BocMBF1c gene involved in heat tolerance in Chinese Kale. Int. J. Mol. Sci. 2019, 20, 5637. [Google Scholar] [CrossRef]
- Busch, W.; Wunderlich, M.; Schoffl, F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 2005, 41, 1–14. [Google Scholar] [CrossRef]
- Ding, L.P.; Wu, Z.; Teng, R.D.; Xu, S.J.; Cao, X.; Yuan, G.Z.; Zhang, D.H.; Teng, N.J. LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). Hortic. Res. 2021, 8, 36. [Google Scholar] [CrossRef]
- Suzuki, N.; Bajad, S.; Shuman, J.; Shulaev, V.; Mittler, R. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. Chem. 2008, 283, 9269–9275. [Google Scholar] [CrossRef] [PubMed]
- Arslan, Ö. The role of heat acclimation in thermotolerance of chickpea cultivars: Changes in photochemical and biochemical responses. Life 2023, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, J.L.; Zhang, X.Q.; Wei, H.; Cui, L.J. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006, 56, 274–285. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Z.; Liu, B.; Zhou, H.; Elmongy, M.S.; Xia, Y.P. Combined proteome and transcriptome analysis of heat-primed azalea reveals new insights into plant heat acclimation memory. Front. Plant Sci. 2020, 11, 1278. [Google Scholar] [CrossRef] [PubMed]
- Rhaman, M.S.; Imran, S.; Rauf, F.; Khatun, M.; Baskin, C.C.; Murata, Y.; Hasanuzzaman, M. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants 2021, 10, 37. [Google Scholar] [CrossRef]
- Jiang, X.D.; Jiang, L.L.; Hua, M.F.; Chen, H.L.; Lv, R.; Hu, N.; Yang, X.Y. Analysis the effect of different chemical agents on high temperature stress in rice leaves. Chin. J. Agrometeorol. 2018, 39, 92–99. [Google Scholar] [CrossRef]
- Zhao, B.; Fu, Y.M.; Ding, H.H.; Zhang, X.X.; Du, Y.K. Effects of Ca2+ on Tolerance of Rhododendron lapponicum in Qinling to Heat Stress. J. Northwest For. Univ. 2010, 25, 29–32. [Google Scholar]
- Wang, H.Q.; Qing, K.R.; Zhu, H.X.; Wang, W.L.; Wang, H.Y. Effect of exogenous heat-resistant agent on heat resistance of Rhododendron under high temperature stress. J. Southwest Univ. 2022, 44, 36–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Y.; Jin, H.; Yu, Y.; Mu, K.; Kang, Y. Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature. Curr. Issues Mol. Biol. 2025, 47, 601. https://doi.org/10.3390/cimb47080601
Wang J, Wang Y, Jin H, Yu Y, Mu K, Kang Y. Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature. Current Issues in Molecular Biology. 2025; 47(8):601. https://doi.org/10.3390/cimb47080601
Chicago/Turabian StyleWang, Jinling, Yaling Wang, Hetian Jin, Yingzi Yu, Kai Mu, and Yongxiang Kang. 2025. "Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature" Current Issues in Molecular Biology 47, no. 8: 601. https://doi.org/10.3390/cimb47080601
APA StyleWang, J., Wang, Y., Jin, H., Yu, Y., Mu, K., & Kang, Y. (2025). Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature. Current Issues in Molecular Biology, 47(8), 601. https://doi.org/10.3390/cimb47080601