Plant Extracts and Natural Compounds for the Treatment of Urinary Tract Infections in Women: Mechanisms, Efficacy, and Therapeutic Potential
Abstract
1. Introduction
2. Pathogenesis and Risk Factors of Urinary Tract Infections in Women
3. Natural Therapeutic Strategies for UTIs: Comparative Overview and Mechanistic Insights of Medicinal Plants
3.1. Berry-Derived Botanicals
3.2. Leaf- and Herb-Derived Botanicals
3.3. Seed-, Root- and Resin-Derived Botanicals
3.4. Comparison of Antibacterial Activity and Clinical Potential of Plant Extracts Versus Conventional Antibiotics in Urinary Tract Infections
3.5. Mechanisms of Plant Extracts in Disrupting Bacterial Biofilms and Their Role in Recurrent UTI Management
4. Herbal and Emerging Therapies for Urinary Tract and Lower Urinary Tract Symptoms: Clinical Evidence and Non-Antibiotic Strategies
5. Discussion
6. Summary
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPH | Benign prostatic hyperplasia |
CCR | Clinical cure rate |
CNKI | China National Knowledge Infrastructure |
EC | Epicatechin |
ECG | Epicatechin-3-gallate |
EGC | Epigallocatechin |
EGCG | Epigallocatechin-3-gallate |
EOT | End-of-treatment |
EPS | Extracellular polymeric substance |
HQ | Hydroquinone |
IL | Interleukin |
LUTD | Lower urinary tract dysfunction |
LUTS | Lower urinary tract symptoms |
MIC | Minimum inhibitory concentration |
NRF2 | NF-E2-related factor 2 |
PACs | Proanthocyanidins |
PAE | Post-antibiotic effect |
PRP | Platelet-rich plasma |
QS | Quorum sensing |
RR | Risk ratio |
rUTIs | Recurrent urinary tract infections |
THMs | Traditional herbal medicines |
TSA | Trial sequential analysis |
UPEC | Uropathogenic Escherichia coli |
UTI | Urinary tract infection |
References
- Advani, S.D.; Thaden, J.T.; Perez, R.; Stair, S.L.; Lee, U.J.; Siddiqui, N.Y. State-of-the-Art Review: Recurrent Uncomplicated Urinary Tract Infections in Women. Clin. Infect. Dis. 2025, 80, e31–e42. [Google Scholar] [CrossRef] [PubMed]
- Bausch, K.; Stangl, F.P.; Prieto, J.; Bonkat, G.; Kranz, J. Urinary Infection Management in Frail or Comorbid Older Individuals. Eur. Urol. Focus 2024, 10, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Eells, S.J.; Bharadwa, K.; McKinnell, J.A.; Miller, L.G. Recurrent urinary tract infections among women: Comparative effectiveness of 5 prevention and management strategies using a Markov chain Monte Carlo model. Clin. Infect. Dis. 2014, 58, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Sokhn, E.S.; Salami, A.; El Roz, A.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Med. Sci. 2020, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Gadisa, E.; Tadesse, E. Antimicrobial activity of medicinal plants used for urinary tract infections in pastoralist community in Ethiopia. BMC Complement. Med. Ther. 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Carilli, M.; Rizzo, M.; Miele, M.T.; Sinibaldi-Vallebona, P.; Matteucci, C.; Bove, P.; Balestrieri, E. Bioactive Compounds as Alternative Approaches for Preventing Urinary Tract Infections in the Era of Antibiotic Resistance. Antibiotics 2025, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Maisto, M.; Iannuzzo, F.; Novellino, E.; Schiano, E.; Piccolo, V.; Tenore, G.C. Natural Polyphenols for Prevention and Treatment of Urinary Tract Infections. Int. J. Mol. Sci. 2023, 24, 3277. [Google Scholar] [CrossRef] [PubMed]
- Tache, A.M.; Dinu, L.D.; Vamanu, E. Novel Insights on Plant Extracts to Prevent and Treat Recurrent Urinary Tract Infections. Appl. Sci. 2022, 12, 2635. [Google Scholar] [CrossRef]
- Sujith, S.; Solomon, A.P.; Rayappan, J.B.B. Comprehensive insights into UTIs: From pathophysiology to precision diagnosis and management. Front. Cell. Infect. Microbiol. 2024, 14, 1402941. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, K.; Bros-Konopielko, M.; Teliga-Czajkowska, J. Urinary tract infection in women. Menopause Rev./Przegląd Menopauzalny 2021, 20, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Lila, A.S.A.; Rajab, A.A.H.; Abdallah, M.H.; Rizvi, S.M.D.; Moin, A.; Khafagy, E.S.; Tabrez, S.; Hegazy, W.A.H. Biofilm Lifestyle in Recurrent Urinary Tract Infections. Life 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Park, Y.J. Probiotics in the Prevention and Treatment of Postmenopausal Vaginal Infections: Review Article. J. Menopausal Med. 2017, 23, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Glover, M.; Moreira, C.G.; Sperandio, V.; Zimmern, P. Recurrent urinary tract infections in healthy and nonpregnant women. Urol. Sci. 2014, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Swatesutipun, V. Can recurrent UTIs in women be cured? Review article. Cont. Rep. 2023, 5, 100021. [Google Scholar] [CrossRef]
- Murray, B.O.; Flores, C.; Williams, C.; Flusberg, D.A.; Marr, E.E.; Kwiatkowska, K.M.; Charest, J.L.; Isenberg, B.C.; Rohn, J.L. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front. Cell. Infect. Microbiol. 2021, 11, 691210. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Patán, F.; Bartolomé, B.; Martín-Alvarez, P.J.; Anderson, M.; Howell, A.; Monagas, M. Comprehensive assessment of the quality of commercial cranberry products. Phenolic characterization and in vitro bioactivity. J. Agric. Food Chem. 2012, 60, 3396–3408. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, B.E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Dell’Annunziata, F.; Cometa, S.; Della Marca, R.; Busto, F.; Folliero, V.; Franci, G.; Galdiero, M.; De Giglio, E.; De Filippis, A. In Vitro Antibacterial and Anti-Inflammatory Activity of Arctostaphylos uva-ursi Leaf Extract against Cutibacterium acnes. Pharmaceutics 2022, 14, 1952. [Google Scholar] [CrossRef] [PubMed]
- Portillo-Torres, L.A.; Bernardino-Nicanor, A.; Gómez-Aldapa, C.A.; González-Montiel, S.; Rangel-Vargas, E.; Villagómez-Ibarra, J.R.; González-Cruz, L.; Cortés-López, H.; Castro-Rosas, J. Hibiscus Acid and Chromatographic Fractions from Hibiscus Sabdariffa Calyces: Antimicrobial Activity against Multidrug-Resistant Pathogenic Bacteria. Antibiotics 2019, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Ray, R.; Hazra, B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae. Pharm. Biol. 2015, 53, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
- Mërtiri, I.; Păcularu-Burada, B.; Stănciuc, N. Phytochemical Characterization and Antibacterial Activity of Albanian Juniperus communis and Juniperus oxycedrus Berries and Needle Leaves Extracts. Antioxidants 2024, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Ihedioha, T.E.; Asuzu, I.U.; Anaga, A.O.; Ihedioha, J.I. Haematology, serum biochemistry and histopathological findings associated with sub-chronic administration of methanol leaf extract of Pterocarpus santalinoides DC in albino rats. Afr. J. Pharm. Pharmacol. 2020, 14, 11. [Google Scholar] [CrossRef]
- Alrasheed, A.A.; Alrasheid, A.A.; Abdalla, W.M.; Saeed, S.M.; Ahmed, H.H. Antimicrobial and Antioxidant Activities and Phytochemical Analysis of Rosmarinus officinalis L. Pod and Thymus vulgaris L. Leaf Ethanolic Extracts on Escherichia coli Urinary Isolates. Int. J. Microbiol. 2023, 2023, 4171547. [Google Scholar] [CrossRef] [PubMed]
- Brito-Junior, L.; Brito, H.C.; Simões, M.M.; Santos, B.; Marques, F.M.C.; Medeiros, M.A.A.; Alves, M.S.; Farias, J.H.A.; Pereira, C.T.; Diniz, A.F.; et al. Evaluation of the antibacterial activity of essential oils from oregano (Origanum vulgare) against Escherichia coli strains isolated from meat products. Braz. J. Biol. 2025, 84, e286183. [Google Scholar] [CrossRef] [PubMed]
- Dakhli, N.; López-Jiménez, A.; Cárdenas, C.; Hraoui, M.; Dhaouafi, J.; Bernal, M.; Sebai, H.; Medina, M. Urtica dioica Aqueous Leaf Extract: Chemical Composition and In Vitro Evaluation of Biological Activities. Int. J. Mol. Sci. 2025, 26, 1220. [Google Scholar] [CrossRef] [PubMed]
- Tobías, G.; Ramírez De León, J.; Castañón Rodríguez, J.F.; Paredes-Sanchez, F.A.; Paz-González, A.D.; Rivera, G.; Herrera-Mayorga, V. Antibacterial activity of organic extracts from Solidago graminifolia leaves. Biotecnia 2024, 26, e2277. [Google Scholar] [CrossRef]
- Petrolini, F.V.; Lucarini, R.; de Souza, M.G.; Pires, R.H.; Cunha, W.R.; Martins, C.H. Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections. Braz. J. Microbiol. 2013, 44, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, M.G.; Molina, A.K.; Pires, T.C.S.; Dias, M.I.; Calhelha, R.; Bachari, K.; Ziani, B.E.C.; Oliveira, M.; Pereira, C.; Barros, L. Biological Activity of Pumpkin Byproducts: Antimicrobial and Antioxidant Properties. Molecules 2022, 27, 8366. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.M.; Hashem, M.M.; Abdelrahman, E.H.; Michel, C.G. Serenoa repens: A Phytochemical and Pharmacological Review. Egypt. J. Chem. 2025, 68, 665–688. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef] [PubMed]
- Aladeeb, M.; Al Qattan, A.; Al-Hamadany, A.Y.M.; Saadi, A.M.; Mohammed, Z.A. Efficacy of Nigella sativa and Zingiber officinale Extract Against Multidrug-Resistance Escherichia coli: An Experimental Study. J. Biosci. Appl. Res. 2024, 10, 856. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Wu, S.; Ootawa, T.; Nguyen, H.C.; Tran, H.T.; Pothinuch, P.; Pham, H.T.T.; Do, A.T.H.; Hoang, H.T.; Islam, M.Z.; et al. Effects of Roasting Conditions on Antibacterial Properties of Vietnamese Turmeric (Curcuma longa) Rhizomes. Molecules 2023, 28, 7242. [Google Scholar] [CrossRef] [PubMed]
- Mahore, S.; Pradhan, S.; Jatav, R.; Gupta, D.; Nayak, A.; Jain, S.; Tiwari, A. Evaluation of minimum inhibitory concentration of Glycyrrhiza glabra and Zingiber officinale against different bacteria. Int. J. Adv. Biochem. Res. 2024, 8, 5. [Google Scholar] [CrossRef]
- Alshibly, N.M.; Mohamed, R.M.; Al-Shaikh, T.M.; Soliman, A.M. Study of Commiphora myrrha (Nees) Engl. var. molmol Extract and Its Antibiogram Against Some Microbial Pathogens. Egypt. J. Chem. 2022, 65, 13–22. [Google Scholar] [CrossRef]
- Ekhtelat, M.; Arzani Birghani, S.; Namjoyan, F.; Ameri, A. The Antibacterial Activity of Barberry Root and Fennel Seed Extracts Individually and in Combination with Nisin and Sodium Diacetate Against Escherichia coli O157:H7. Jundishapur J. Nat. Pharm. Prod. 2019, 15, e55078. [Google Scholar] [CrossRef]
- Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J.; Calhelha, R.C.; Santos, P.F.; Ferreira, I. Echinacea purpurea (L.) Moench: Chemical Characterization and Bioactivity of Its Extracts and Fractions. Pharmaceuticals 2020, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Jangid, H.; Shidiki, A.; Kumar, G. Cranberry-derived bioactives for the prevention and treatment of urinary tract infections: Antimicrobial mechanisms and global research trends in nutraceutical applications. Front. Nutr. 2025, 12, 1502720. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B.; Dreyfus, J.F.; Bosley, S.; Krueger, C.G.; Birmingham, A.; Reed, J.D.; Chughtai, B. Differences in P-Type and Type 1 Uropathogenic Escherichia coli Urinary Anti-Adhesion Activity of Cranberry Fruit Juice Dry Extract Product and D-Mannose Dietary Supplement. J. Diet. Suppl. 2024, 21, 633–659. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Baliou, S. The Molecular Mechanisms and Therapeutic Potential of Cranberry, D-Mannose, and Flavonoids against Infectious Diseases: The Example of Urinary Tract Infections. Antibiotics 2024, 13, 593. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Patel, B.; Kumar, P.; Mitra, P.; Lall, R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr. Issues Mol. Biol. 2025, 47, 80. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 2007, 51, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Babar, A.; Moore, L.; Leblanc, V.; Dudonné, S.; Desjardins, Y.; Lemieux, S.; Bochard, V.; Guyonnet, D.; Dodin, S. High dose versus low dose standardized cranberry proanthocyanidin extract for the prevention of recurrent urinary tract infection in healthy women: A double-blind randomized controlled trial. BMC Urol. 2021, 21, 44. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, J.; Liu, Z.; Zhi, Y.; Mei, C.; Wang, H. Flavonoids as Promising Natural Compounds for Combating Bacterial Infections. Int. J. Mol. Sci. 2025, 26, 2455. [Google Scholar] [CrossRef] [PubMed]
- Konesan, J.; Liu, L.; Mansfield, K.J. The Clinical Trial Outcomes of Cranberry, D-Mannose and NSAIDs in the Prevention or Management of Uncomplicated Urinary Tract Infections in Women: A Systematic Review. Pathogens 2022, 11, 1471. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez de Llano, D.; Moreno-Arribas, M.V.; Bartolome, B. Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Hahn, D.; Stephens, J.H.; Craig, J.C.; Hodson, E.M. Cranberries for preventing urinary tract infections. Cochrane Database Syst. Rev. 2023, 4, CD001321. [Google Scholar] [CrossRef] [PubMed]
- Hudek Turkovic, A.; Gunjaca, M.; Marjanovic, M.; Lovric, M.; Butorac, A.; Rasic, D.; Peraica, M.; Vujcic Bok, V.; Sola, I.; Rusak, G.; et al. Proteome changes in human bladder T24 cells induced by hydroquinone derived from Arctostaphylos uva-ursi herbal preparation. J. Ethnopharmacol. 2022, 289, 115092. [Google Scholar] [CrossRef] [PubMed]
- de Arriba, S.G.; Naser, B.; Nolte, K.U. Risk assessment of free hydroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int. J. Toxicol. 2013, 32, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Valero-Mendoza, A.G.; Meléndez-Rentería, N.P.; Chávez-González, M.L.; Flores-Gallegos, A.C.; Wong-Paz, J.E.; Govea-Salas, M.; Zugasti-Cruz, A.; Ascacio-Valdés, J.A. The whole pomegranate (Punica granatum L.), biological properties and important findings: A review. Food Chem. Adv. 2023, 2, 100153. [Google Scholar] [CrossRef]
- Tasnim, F.; Hosen, M.E.; Hasan, A.R.; Hasan, M.T.; Rahaman, M.M.; Hossain, M.M.; Jubayed, M.A.A.; Aktaruzzaman, M.; Altayyar, M.; Yihune, E.; et al. Punica granatum leaf extract as a natural antibacterial agent explored by experimental and computational methods. Sci. Rep. 2025, 15, 17489. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Abdu, A.; Mitiku, H.; Ataro, Z. In vitro Antibacterial Activities of Selected Medicinal Plants Used by Traditional Healers for Treating Urinary Tract Infection in Haramaya District, Eastern Ethiopia. Infect. Drug Resist. 2023, 16, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Zam, W.; Alkhaddour, A. Anti-virulence effects of aqueous pomegranate peel extract on E. coli urinary tract infection. Prog. Nutr. 2017, 19 (Suppl. S1), 98–104. [Google Scholar]
- da Silva, P.M.; da Silva, B.R.; de Oliveira Silva, J.N.; de Moura, M.C.; Soares, T.; Feitosa, A.P.S.; Brayner, F.A.; Alves, L.C.; Paiva, P.M.G.; Damborg, P.; et al. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. Int. J. Biol. Macromol. 2019, 135, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.; Jusufi, I. Green tea as an effective antimicrobial for urinary tract infections caused by Escherichia coli. Front. Microbiol. 2013, 4, 162. [Google Scholar] [CrossRef] [PubMed]
- Tannupriya; Garg, V.K. A review on traditional natural compounds and conventional methods for the treatment of UTI. URINE 2023, 5, 13–22. [Google Scholar] [CrossRef]
- Mansour, A.; Hariri, E.; Shelh, S.; Irani, R.; Mroueh, M. Efficient and cost-effective alternative treatment for recurrent urinary tract infections and interstitial cystitis in women: A two-case report. Case Rep. Med. 2014, 2014, 698758. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and pharmacological importance of stinging nettle (Urtica dioica L.): A review. Heliyon 2022, 8, e09717. [Google Scholar] [CrossRef] [PubMed]
- Wojnicz, D.; Tichaczek-Goska, D.; Glensk, M.; Hendrich, A.B. Is it Worth Combining Solidago virgaurea Extract and Antibiotics against Uropathogenic Escherichia coli rods? An In Vitro Model Study. Pharmaceutics 2021, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Das, S. Natural therapeutics for urinary tract infections-a review. Future J. Pharm. Sci. 2020, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, A.; Scocchi, M.; Mangoni, M.L.; Shirooie, S.; Serio, A.; Ferreira Garcia da Costa, Y.; Alves, M.S.; Seker Karatoprak, G.; Suntar, I.; Khan, H.; et al. Bioactive compounds: A goldmine for defining new strategies against pathogenic bacterial biofilms? Crit. Rev. Microbiol. 2023, 49, 117–149. [Google Scholar] [CrossRef] [PubMed]
- Heim, S.; Seibt, S.; Stier, H.; Moré, M.I. Uromedic® Pumpkin Seed Derived Δ7-Sterols, Extract and Oil Inhibit 5α-Reductases and Bind to Androgen Receptor in Vitro. Pharmacol. Pharm. 2018, 9, 15. [Google Scholar] [CrossRef]
- Nasrin, S.; Masuda, E.; Kugaya, H.; Osano, A.; Ito, Y.; Yamada, S. Effects of Saw Palmetto Extract on Urodynamic Parameters, Bladder Muscarinic and Purinergic Receptors and Urinary Cytokines in Rats with Cyclophosphamide-Induced Cystitis. Low. Urin. Tract Symptoms 2014, 6, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Gales, A.C.; Jones, R.N.; Gordon, K.A.; Sader, H.S.; Wilke, W.W.; Beach, M.L.; Pfaller, M.A.; Doern, G.V. Activity and spectrum of 22 antimicrobial agents tested against urinary tract infection pathogens in hospitalized patients in Latin America: Report from the second year of the SENTRY antimicrobial surveillance program (1998). J. Antimicrob. Chemother. 2000, 45, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Baudry-Simner, P.J.; Singh, A.; Karlowsky, J.A.; Hoban, D.J.; Zhanel, G.G. Mechanisms of reduced susceptibility to ciprofloxacin in Escherichia coli isolates from Canadian hospitals. Can. J. Infect. Dis. Med. Microbiol. 2012, 23, e60–e64. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Ilina, P.; Cruz, C.D.; Nurmi, D.; Vidarte, P.Z.; Rissanen, M.; Tammela, P.; Vuorinen, T. Willow Bark-Derived Material with Antibacterial and Antibiofilm Properties for Potential Wound Dressing Applications. J. Agric. Food Chem. 2023, 71, 16554–16567. [Google Scholar] [CrossRef] [PubMed]
- Cock, I.; Mavuso, N.; Van Vuuren, S. A Review of Plant-Based Therapies for the Treatment of Urinary Tract Infections in Traditional Southern African Medicine. Evid. Based Complement. Altern. Med. 2021, 2021, 7341124. [Google Scholar] [CrossRef] [PubMed]
- Margetis, D.; Roux, D.; Gaudry, S.; Messika, J.; Bouvet, O.; Branger, C.; Ponnuswamy, P.; Oufella, H.A.; Dreyfuss, D.; Denamur, E.; et al. Effects of Proanthocyanidins on Adhesion, Growth, and Virulence of Highly Virulent Extraintestinal Pathogenic Escherichia coli Argue for Its Use to Treat Oropharyngeal Colonization and Prevent Ventilator-Associated Pneumonia. Crit. Care Med. 2015, 43, e170–e178. [Google Scholar] [CrossRef] [PubMed]
- Noormandi, A.; Dabaghzadeh, F. Effects of green tea on Escherichia coli as a uropathogen. J. Tradit. Complement. Med. 2015, 5, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn. Rev. 2017, 11, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Bontsidis, C.A.; Plessas, S.; Alexopoulos, A.; Theodoridou, E.; Tsigalou, C.; Voidarou, C.; Douganiotis, G.; Kazakos, S.L.; Stavropoulou, E.; et al. Comparative Susceptibility Study Against Pathogens Using Fermented Cranberry Juice and Antibiotics. Front. Microbiol. 2019, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Puentes, V.; Uberos, J.; Rodríguez-Belmonte, R.; Nogueras-Ocaña, M.; Blanca-Jover, E.; Narbona-López, E. Efficacy and safety profile of cranberry in infants and children with recurrent urinary tract infection. An. Pediatr. 2015, 82, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Mulat, M.; Banicod, R.J.S.; Tabassum, N.; Javaid, A.; Karthikeyan, A.; Jeong, G.J.; Kim, Y.M.; Jung, W.K.; Khan, F. Multiple Strategies for the Application of Medicinal Plant-Derived Bioactive Compounds in Controlling Microbial Biofilm and Virulence Properties. Antibiotics 2025, 14, 555. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Chou, M.Y.; Howell, A.; Wobbe, C.; Grady, R.; Stapleton, A.E. Cranberry products inhibit adherence of p-fimbriated Escherichia coli to primary cultured bladder and vaginal epithelial cells. J. Urol. 2007, 177, 2357–2360. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sha, K.; Xu, G.; Tian, H.; Wang, X.; Chen, S.; Wang, Y.; Li, J.; Chen, J.; Huang, N. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility. Int. J. Mol. Sci. 2016, 17, 979. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Meng, F.; Gu, W.; Li, F.; Tao, Y.; Zhang, Z.; Zhang, F.; Yang, X.; Li, J.; Yu, J. Effects of Natural Products on Bacterial Communication and Network-Quorum Sensing. Biomed. Res. Int. 2020, 2020, 8638103. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhao, Y.; Li, M.; Wang, X.; Zhu, J.; Liao, L.; Wang, J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J. Pharm. Anal. 2024, 14, 100906. [Google Scholar] [CrossRef] [PubMed]
- Dzięgielewska, M.; Tomczyk, M.; Wiater, A.; Woytoń, A.; Junka, A. Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance. Molecules 2025, 30, 2863. [Google Scholar] [CrossRef] [PubMed]
- van Wietmarschen, H.; van Steenbergen, N.; van der Werf, E.; Baars, E. Effectiveness of herbal medicines to prevent and control symptoms of urinary tract infections and to reduce antibiotic use: A literature review. Integr. Med. Res. 2022, 11, 100892. [Google Scholar] [CrossRef] [PubMed]
- Lederer, A.K.; Michel, M.C. Natural Products in the Treatment of Lower Urinary Tract Dysfunction and Infection. Handb. Exp. Pharmacol. 2025, 287, 295–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Fang, C.-C.; Chen, N.-C.; Liu, S.S.-H.; Yu, P.-H.; Wu, T.-Y.; Chen, W.-T.; Lee, C.-C.; Chen, S.-C. Cranberry-Containing Products for Prevention of Urinary Tract Infections in Susceptible Populations: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch. Intern. Med. 2012, 172, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Avins, A.L.; Bent, S. Saw palmetto and lower urinary tract symptoms: What is the latest evidence? Curr. Urol. Rep. 2006, 7, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.J.; Lin, P.Y.; Lin, W.L.; Hsueh, T.P. Integrated traditional herbal medicine for recurrent urinary tract infection treatment and follow-up: A meta-analysis of randomized controlled trials. J. Ethnopharmacol. 2024, 321, 117491. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.J.; Jiang, Y.H.; Jhang, J.F.; Chen, S.F.; Lee, Y.K.; Lee, C.L.; Chang, T.L.; Kuo, H.C. Pathophysiology and potential treatment modalities in women with recurrent urinary tract infection. Tzu Chi Med. J. 2025, 37, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Beerepoot, M.A.; ter Riet, G.; Nys, S.; van der Wal, W.M.; de Borgie, C.A.; de Reijke, T.M.; Prins, J.M.; Koeijers, J.; Verbon, A.; Stobberingh, E.; et al. Cranberries vs antibiotics to prevent urinary tract infections: A randomized double-blind noninferiority trial in premenopausal women. Arch. Intern. Med. 2011, 171, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Xie, Y.; Sun, M.; Zhang, C.; Wang, L. Sanjin tablet combined with antibiotics for treating patients with acute lower urinary tract infections: A meta-analysis and GRADE evidence profile. Exp. Ther. Med. 2020, 19, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Xie, Y.M.; Gao, Z.; Shen, J.W.; Deng, Y.Y.; Xiang, S.T.; Gao, W.X.; Zeng, W.T.; Zhang, C.H.; Yi, D.H.; et al. Sanjin tablets for acute uncomplicated lower urinary tract infection (syndrome of dampness-heat in the lower jiao): Protocol for randomized, double-blind, double-dummy, parallel control of positive drug, multicenter clinical trial. Trials 2019, 20, 446. [Google Scholar] [CrossRef] [PubMed]
- Çelik, H.; Kozan, E.; Caf, B.B.; Çebi, G.; Koç, M. The association between urinary tract infections and diet: A literature review. Discov. Med. 2025, 2, 91. [Google Scholar] [CrossRef]
- Yin, J.; Gao, Z.; Liu, D.; Liu, Z.; Ye, J. Berberine improves glucose metabolism through induction of glycolysis. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E148–E156. [Google Scholar] [CrossRef] [PubMed]
- Delpino, F.M.; Figueiredo, L.M.; Gonçalves da Silva, T.; Flores, T.R. Effects of blueberry and cranberry on type 2 diabetes parameters in individuals with or without diabetes: A systematic review and meta-analysis of randomized clinical trials. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1093–1109. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, F.; Scognamiglio, M.; Fiorentino, A.; Buommino, E.; D’Abrosca, B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules 2020, 25, 5024. [Google Scholar] [CrossRef] [PubMed]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Shi, M.; Chen, R.; Zhang, Y.; Sheng, Y.; Tong, C.; Cao, G.; Shou, D. Natural phytochemical-based strategies for antibiofilm applications. Chin. Med. 2025, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, E.Y.; Morosanova, M.A.; Pevzner, I.B.; Zorova, L.D.; Manskikh, V.N.; Pulkova, N.V.; Galkina, S.I.; Skulachev, V.P.; Zorov, D.B. Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proc. Natl. Acad. Sci. USA 2013, 110, E3100–E3108. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Elrashidy, R.A.; Li, B.; Liu, G. Oxidative Stress: A Putative Link Between Lower Urinary Tract Symptoms and Aging and Major Chronic Diseases. Front. Med. 2022, 9, 812967. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.S.; Mora, A.; Felder, P.A.; Mysorekar, I.U. NRF2 promotes urothelial cell response to bacterial infection by regulating reactive oxygen species and RAB27B expression. Cell Rep. 2021, 37, 109856. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Navarro, G.; Gómez-Autet, M.; Morales, P.; Rebassa, J.B.; Llinas Del Torrent, C.; Jagerovic, N.; Pardo, L.; Franco, R. Homodimerization of CB(2) cannabinoid receptor triggered by a bivalent ligand enhances cellular signaling. Pharmacol. Res. 2024, 208, 107363. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.; Fernando, W.M.A.D.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health—A review. Int. J. Food Sci. Technol. 2022, 57, 10. [Google Scholar] [CrossRef]
- Bisht, A.; Dickens, M.; Rutherfurd-Markwick, K.; Thota, R.; Mutukumira, A.N.; Singh, H. Chlorogenic Acid Potentiates the Anti-Inflammatory Activity of Curcumin in LPS-Stimulated THP-1 Cells. Nutrients 2020, 12, 2706. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, H.; Zhang, T.; Lin, F.; Chen, M.; Zhang, G.; Feng, Z. Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway. Front. Pharmacol. 2025, 16, 1548073. [Google Scholar] [CrossRef] [PubMed]
- Baars, E.W.; Weiermayer, P.; Szőke, H.P.; van der Werf, E.T. The Introduction of the Global Traditional, Complementary, and Integrative Healthcare (TCIH) Research Agenda on Antimicrobial Resistance and Its Added Value to the WHO and the WHO/FAO/UNEP/WOAH 2023 Research Agendas on Antimicrobial Resistance. Antibiotics 2025, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Perricone, V.; Comi, M.; Giromini, C.; Rebucci, R.; Agazzi, A.; Savoini, G.; Bontempo, V. Green Tea and Pomegranate Extract Administered During Critical Moments of the Production Cycle Improves Blood Antiradical Activity and Alters Cecal Microbial Ecology of Broiler Chickens. Animals 2020, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Martz, F.; Kankaanpää, S. Stinging Nettle (Urtica dioica) Roots: The Power Underground-A Review. Plants 2025, 14, 279. [Google Scholar] [CrossRef] [PubMed]
- Jabbar Al Kaabi, H.K.; Hmood, B.A. Antimicrobial activity of cranberry juice (Vaccinium macrocarpon L.) ethanol extract against uropathogenic bacteria. Open Vet. J. 2025, 15, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed. Res. Int. 2018, 2018, 9105261. [Google Scholar] [CrossRef] [PubMed]
- Čolić, M.; Mihajlović, D.; Bekić, M.; Marković, M.; Dragišić, B.; Tomić, S.; Miljuš, N.; Šavikin, K.; Škrbić, R. Immunomodulatory Activity of Punicalagin, Punicalin, and Ellagic Acid Differs from the Effect of Pomegranate Peel Extract. Molecules 2022, 27, 7871. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Kim, D.; Im, E.; Kim, N.D. Therapeutic Potential of Pomegranate Extract for Women’s Reproductive Health and Breast Cancer. Life 2024, 14, 1264. [Google Scholar] [CrossRef] [PubMed]
- Medina-Larqué, A.S.; Rodríguez-Daza, M.C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, É.; Marette, A.; Roy, D.; Jacques, H.; Desjardins, Y. Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front. Immunol. 2022, 13, 871080. [Google Scholar] [CrossRef] [PubMed]
- Simoni, A.; Schwartz, L.; Junquera, G.Y.; Ching, C.B.; Spencer, J.D. Current and emerging strategies to curb antibiotic-resistant urinary tract infections. Nat. Rev. Urol. 2024, 21, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; Aleya, S.; Alsubih, M.; Aleya, L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J. Pers. Med. 2024, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics 2020, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, S.; Hvarchanova, N.; Georgiev, K.D.; Radeva-Ilieva, M. Green Tea: Antioxidant vs. Pro-Oxidant Activity. Beverages 2025, 11, 64. [Google Scholar] [CrossRef]
- Miller, S.J.; Carpenter, L.; Taylor, S.L.; Wesselingh, S.L.; Choo, J.M.; Shoubridge, A.P.; Papanicolas, L.E.; Rogers, G.B. Intestinal microbiology and urinary tract infection associated risk in long-term aged care residents. Commun. Med. 2024, 4, 164. [Google Scholar] [CrossRef] [PubMed]
Common Name (Scientific Name) | Used Part | Key Active Compounds | Minimum Inhibitory Concentration (MIC, mg/mL) | Common Formulations | References |
---|---|---|---|---|---|
Cranberry (V. macrocarpon) | Fruit | A-type proanthocyanidins (PACs) | 0.5–112 | Juice and capsule | [20] |
Lingonberry (Vaccinium vitis-idaea, V. vitis-idaea) | Leaf/Fruit | PACs, tannins | 0.24–0.48 mg/mL (E. coli) 125 mg/mL (C. albicans) | Concentrate and tea | [21] |
Bearberry (Arctostaphylos uva-ursi, A. uva-ursi) | Leaf | Arbutin | 0.21–0.6 (Cutibacterium acnes) | Tea and capsule | [22] |
Roselle (Hibiscus sabdariffa) | Calyx | Hibiscus acid, anthocyanins | 7–10 (E. coli); 25–50 (multidrug-resistant Acinetobacter baumannii) | Acid tea and powder | [23] |
Pomegranate (P. granatum) | Peel | Punicalagin | 0.78–6.25 (E. coli and antibiotic-resistant Gram-positive bacteria) | Peel extract | [24] |
Juniper berry (Juniperus communis, J. communis) | Berry (oil) | α-pinene | 6.25 (E. coli and Staphylococcus aureus) | Essential oil and tincture | [25] |
Green tea (C. sinensis) | Leaf | EGCG | 3.25–50 (E. coli) | Tea and powder | [26] |
Thyme (Thymus vulgaris) | Leaf (oil) | Thymol | 12.5–50 (E. coli) | Essential oil and tincture | [27] |
Oregano (O. vulgare) | Leaf (oil) | Carvacrol | 0.256 (E. coli) | Essential oil | [28] |
Rosemary (Rosmarinus officinalis) | Leaf | Rosmarinic acid | 12.5–50 (E. coli) | Extract and essential oil | [27] |
Stinging nettle (Urtica dioica, U. dioica) | Leaf | Chlorogenic acid | 0.195 (E. coli) | Tea and powder | [29] |
Goldenrod (Solidago virgaurea, S. virgaurea) | Aerial parts | Diterpenes | 1.5 (E. coli) | Extract and tea | [30] |
Java tea (Orthosiphon stamineus) | Leaf | Sinensetin, rosmarinic acid | 0.31–2 (E. coli) | Tea and extract | [30] |
Parsley (Petroselinum crispum, P. crispum) | Leaf/seed oil | Apiol | 0.35–0.4 (P. aeruginosa); >70 (Gram-positive bacteria) | Essential oil and tincture | [31] |
Pumpkin seed (Cucurbita pepo, C. pepo) | Seed oil | Δ7-sterols | ≥10 (E. coli) | Oil capsule | [32] |
Saw palmetto (Serenoa repens, S. repens) | Fruit (oil) | Fatty acids | 1.5–2.1 (E. coli) | CO2 oil and softgel | [33] |
Garlic (A. sativum) | Bulb | Allicin | 375 (E. coli) | Raw, oil, and tablet | [34] |
Ginger (Zingiber officinale) | Rhizome | Gingerols | 100 (E. coli) | Powder and tincture | [35] |
Turmeric (Curcuma longa) | Rhizome | Curcumin | 0.25–0.5 (E. coli) | Powder and capsule | [36] |
Licorice (Glycyrrhiza glabra) | Root | Glycyrrhizin | 12.5 (E. coli and Klebsiella spp.) | Extract and tablet | [37] |
Myrrh (Commiphora myrrha) | Resin | Furano-sesquiterpenes | 15.6 (E. coli and C. albicans) | Tincture and essential oil | [38] |
Barberry (Berberis vulgaris) | Root/peel | Berberine | 40 (E. coli) | Tincture and capsule | [39] |
Echinacea (Echinacea purpurea) | Aerial parts | Cichoric acid | >5 (E. coli and C. albicans) | Extract and tablet | [40] |
Natural Product | Key Bioactive Compounds | Mechanism of Action | Clinical Effects | References |
---|---|---|---|---|
Cranberry | Flavonoids, phenolic acids, anthocyanins, triterpenoids, A-type PACs | - Inhibits E. coli adhesion to urothelial cells - Disrupts biofilm formation - Antioxidant, anti-inflammatory, antimicrobial, immunomodulatory effects | - Reduces UTI incidence, especially in women and children - Effective against both antibiotic-susceptible and resistant E. coli | [42,45,46,51,52] |
D-Mannose | Monosaccharide sugar | - Binds to E. coli type 1 fimbriae to prevent adhesion to the urothelium | - Inhibits bacterial attachment - Shows potential in combination with cranberry products” | [44,50] |
Cranberry + D-Mannose | PACs + monosaccharide sugar | - Synergistic anti-adhesive effects against uropathogenic E. coli | - Promising non-antibiotic strategy for recurrent UTI prevention in susceptible populations | [44,50] |
Bearberry | Arbutin, hydroquinone (HQ) | - Antiseptic activity via release of hydroquinone in urine - Diuretic effect aids bacterial flushing | - Broad-spectrum antimicrobial activity - Used in traditional medicine for UTI treatment” | [53,54,55] |
Plant/Botanical | Key Bioactive Compounds | Mechanism of Action | Therapeutic Role in UTIs | Notes/Concerns | References |
---|---|---|---|---|---|
Goldenrod (S. virgaurea) | Flavonoids, saponins, phenolic acids | Diuretic; reduces bacterial survival and biofilm formation | Promotes urinary flushing; reduces bacterial persistence | May weaken the efficacy of certain antibiotics (e.g., amikacin and ciprofloxacin) | [62,65] |
Lovage (Levisticum officinale) | Phthalides, coumarins | Diuretic and mild antiseptic | Aids in pathogen clearance through increased urine output | Use with caution in renal disorders | [62] |
Parsley (P. crispum) | Apigenin | Diuretic and anti-inflammatory | Reduces inflammation; supports flushing of pathogens | High doses may interact with diuretics or anticoagulants | [62,63] |
Stinging nettle (U. dioica) | Flavonoids, phenolic acids | Diuretic, anti-inflammatory, coagulant | Supports detoxification and urinary tract cleansing; reduces inflammation | Generally safe at recommended doses | [62,64] |
Cranberry (V. macrocarpon) | A-type PACs | Anti-adhesive against E. coli, antimicrobial, antioxidant | Prevents bacterial adhesion to urothelium; reduces risk of recurrent UTIs | Interactions with warfarin reported in rare cases | [66] |
Bearberry (A. uva-ursi) | Arbutin (HQ) | Antiseptic and diuretic | Kills uropathogens in urine; traditionally used for bladder infections | Use with caution in long-term treatment due to potential HQ toxicity | [66] |
Juniper (J. communis) | Essential oils, flavonoids | Diuretic, antimicrobial | Increases urine flow; inhibits bacterial growth | May irritate kidneys with prolonged use | [66] |
Goldenseal (Hydrastis canadensis) | Berberine | Inhibits bacterial adhesion and biofilm formation | Potential use in preventing UTI-causing bacterial colonization | Use cautiously in pregnancy; can interact with liver enzymes | [67] |
Oregon grape (Mahonia aquifolium) | Berberine, alkaloids | Similar to goldenseal; antimicrobial, anti-adhesive | May prevent bacterial colonization and support UTI management | Similar precautions as with goldenseal | [67] |
Therapy/Product | Target Condition | Mechanism/Effect | Clinical Evidence/Benefits | References |
---|---|---|---|---|
Cranberry (V. macrocarpon) | Recurrent UTIs (particularly in women and children) | Inhibits E. coli adhesion; anti-adhesive, antimicrobial, antioxidant | Moderate preventive effect in susceptible populations | [85,87] |
Saw palmetto (S. repens) | Male LUTS due to BPH | Anti-androgenic and anti-inflammatory; modulates prostatic growth pathways | Modest benefits reported; recent studies show inconsistent results; short-term use appears safe | [86,88] |
Stinging nettle (U. dioica) root | Male LUTS | Anti-inflammatory and mild diuretic effects | Evidence supports use in combination with saw palmetto for BPH-related LUTS | [86] |
Pumpkin seed extract | Male LUTS | Anti-inflammatory, modulates bladder function | Shown to improve urinary flow and reduce symptoms in men with BPH | [86] |
European goldenrod (S. virgaurea) | UTIs | Diuretic and antimicrobial; reduces bacterial survival and biofilm formation | Used traditionally; some evidence supports use in combination therapies | [86] |
Combination THMs + Antibiotics | Recurrent UTIs | Enhances antimicrobial efficacy; targets multiple infection pathways | Meta-analysis shows significantly improved outcomes vs. antibiotics alone | [89] |
Traditional Herbal Medicines (alone) | Recurrent UTIs | Varies depending on formula; includes anti-inflammatory and antimicrobial effects | Less effective than antibiotics alone but may serve as non-antibiotic alternatives | [89] |
PRP | rUTIs with LUTD in women | Regenerates urothelial lining, anti-inflammatory, enhances barrier function | Promising results in reducing recurrence and improving bladder symptom | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-T.; Wu, H.-C.; Tsai, C.-C.; Tsai, Y.-C.; Kuo, C.-Y. Plant Extracts and Natural Compounds for the Treatment of Urinary Tract Infections in Women: Mechanisms, Efficacy, and Therapeutic Potential. Curr. Issues Mol. Biol. 2025, 47, 591. https://doi.org/10.3390/cimb47080591
Hsu Y-T, Wu H-C, Tsai C-C, Tsai Y-C, Kuo C-Y. Plant Extracts and Natural Compounds for the Treatment of Urinary Tract Infections in Women: Mechanisms, Efficacy, and Therapeutic Potential. Current Issues in Molecular Biology. 2025; 47(8):591. https://doi.org/10.3390/cimb47080591
Chicago/Turabian StyleHsu, Ya-Ting, Hsien-Chang Wu, Chung-Che Tsai, Yao-Chou Tsai, and Chan-Yen Kuo. 2025. "Plant Extracts and Natural Compounds for the Treatment of Urinary Tract Infections in Women: Mechanisms, Efficacy, and Therapeutic Potential" Current Issues in Molecular Biology 47, no. 8: 591. https://doi.org/10.3390/cimb47080591
APA StyleHsu, Y.-T., Wu, H.-C., Tsai, C.-C., Tsai, Y.-C., & Kuo, C.-Y. (2025). Plant Extracts and Natural Compounds for the Treatment of Urinary Tract Infections in Women: Mechanisms, Efficacy, and Therapeutic Potential. Current Issues in Molecular Biology, 47(8), 591. https://doi.org/10.3390/cimb47080591