Epigenetic Mechanisms in Apis melifera: From Development to Environmental Adaptation
Abstract
1. Introduction
2. DNA Methylation
2.1. Characteristics of DNA Methylation in Honeybees
2.2. The Role of DNA Methylation in Caste Differentiation and Social Behavior in Honeybees
2.2.1. Functional Roles
2.2.2. Evolutionary Conservation
3. Non-Coding RNAs
4. Histone Modifications
Histone Site | Modification Type | Modification Pattern | Function | Reference |
---|---|---|---|---|
H3K4 | me1, me2 | Unmodified form is the most abundant; me1 level is low; me2 is undetectable | Associated with gene promoters, typically linked to gene activation; me1 influences caste differentiation | [105,106,108,114] |
H3K9 | ac, me1, me2, me3 | me1 is the most abundant; me2 and me3 levels are low | me1 is associated with enhancers; me2 and me3 are linked to gene repression | [105] |
H3K14 | ac | High acetylation level | Associated with gene promoters, typically linked to gene activation | [105] |
H3K18, H3K23 | ac | Monoacetylation of H3K23 is more abundant than deacetylation | Associated with gene promoters, typically linked to gene activation | [105] |
H3K27 | me1, me2, me3 | me2 is the most abundant | me2 is linked to gene transcription; me3 is associated with gene silencing | [105,106,108] |
H3K36 | me1, me2, me3 | Low modification levels | me1 is associated with gene transcription regions | [105] |
H3K79 | me1, me2 | level me1 is higher; me2 is lower | Associated with gene transcription regions, typically linked to gene activation | [105] |
H4K5, H4K8, H4K12, H4K16 | ac | H4K16 acetylation is the highest, followed by H4K8, H4K12, and H4K5 | Typically linked to gene activation | [105] |
H4K20 | me1, me2 | level me1 is higher; me2 is lower | Associated with chromosome structure and stability, also linked to gene activation | [105] |
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AEB | Alternative exon boundaries |
AC | Acetylation |
ATE | Alternative terminal exons |
CH3 | Methyl group |
CSBV | China Sac brood virus |
CpG | Cytosine–phosphate–guanine |
DWV | Deformed wing virus |
DMRs | Differentially methylated regions |
DNA | Deoxyribonucleic acid |
DNMT | DNA methyltransferase |
DsRNA | Double strand RNA |
ES | Exon skipping |
GFP | Green fluorescence protein |
H3 | Histone H3 |
H3K27me2 | Histone 3 lysine 27 demethylation |
H3K27me3 | Histone 3 lysine 27 trimethylation |
H3K36 | Histone 3 lysine 36 |
H3K36me3 | Histone 3 lysine 36 trimethylation |
H3K4 | Histone 3 lysine 4 |
H3K4me2 | Demethylation of histone H3 lysine 4 |
H3K4me3 | Trimethylation of histone H3 lysine 4 |
H3K79 | Histone 3 lysine 79 |
H3K79me2 | Histone 3 lysine 79 demethylation |
HATs | Histone acetyltransferases |
HDACs | Histone deacetylases |
HSF | Heat shock transcription factor |
HSP | Heat shock proteins |
IAPV | Israeli acute paralysis virus |
IR | intron retention |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
lncRNA | Long non-coding RNA |
Me | Methylation |
miRNAs | MicroRNAs |
mRNA | Messenger RNA |
ncRNA | Non-coding RNA |
Poly I:C | Polyinosinic acid-polycytidylic acid |
RISC | RNA-Induced silencing complex |
RNA | Ribonucleic acid |
RNAi | Ribonucleic acid interference |
SAM | S-adenosylmethionine |
siRNA | Small interference RNA |
TCA | Tricarboxylic acid cycle |
TOR | Phosphatidylinositol/rapamycin target protein |
Zeb | Zebularine |
ZGA | Zygotic genome activation |
References
- Dolezal, A.G.; Toth, A.L. Honey bee sociogenomics: A genome-scale perspective on bee social behavior and health. Apidologie 2014, 45, 375–395. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Wang, Y.; Ma, L.; Zhang, W.; Xu, B. Genome-wide differential DNA methylation in reproductive, morphological, and visual system differences between queen bee and worker bee (Apis mellifera). Front. Genet. 2020, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Abdelmawla, A.; Yang, C.; Li, X.; Li, M.; Li, C.L.; Liu, Y.B.; He, X.J.; Zeng, Z.J. Feeding Asian honeybee queens with European honeybee royal jelly alters body color and expression of related coding and non-coding RNAs. Front. Physiol. 2023, 14, 1073625. [Google Scholar] [CrossRef] [PubMed]
- Alhosin, M. Epigenetics mechanisms of honeybees: Secrets of Royal Jelly. Epigenetics Insights 2023, 16, 25168657231213717. [Google Scholar] [CrossRef] [PubMed]
- Lyko, F.; Foret, S.; Kucharski, R.; Wolf, S.; Falckenhayn, C.; Maleszka, R. The honey bee epigenomes: Differential methylation of brain DNA in queens and workers. PLoS Biol. 2010, 8, e1000506. [Google Scholar] [CrossRef] [PubMed]
- Jablonka, E.; Lamb, M.J. The changing concept of epigenetics. Ann. N. Y. Acad. Sci. USA 2002, 981, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.B.; Coghill, R.D. Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus1. J. Am. Chem. Soc. 1925, 47, 2838–2844. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Singal, R.; Ginder, G.D. DNA methylation. Blood J. Am. Soc. Hematol. 1999, 93, 4059–4070. [Google Scholar] [CrossRef]
- Elango, N.; Hunt, B.G.; Goodisman, M.A.; Yi, S.V. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. USA 2009, 106, 11206–11211. [Google Scholar] [CrossRef] [PubMed]
- Foret, S.; Kucharski, R.; Pittelkow, Y.; Lockett, G.A.; Maleszka, R. Epigenetic regulation of the honey bee transcriptome: Unravelling the nature of methylated genes. BMC Genom. 2009, 10, 472. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, E.M.; Vågbø, C.B.; Münch, D.; Krokan, H.E.; Klungland, A.; Amdam, G.V.; Dahl, J.A. DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species-and tissue-specific turnover rates. Biochem. Biophys. Rep. 2016, 6, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Zemach, A.; McDaniel, I.E.; Silva, P.; Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 2010, 328, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.B.; Gavery, M.R. Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates? Front. Physiol. 2012, 2, 116. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Cokus, S.J.; Zhang, X.; Chen, P.-Y.; Bostick, M.; Goll, M.G.; Hetzel, J.; Jain, J.; Strauss, S.H.; Halpern, M.E. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. USA 2010, 107, 8689–8694. [Google Scholar] [CrossRef] [PubMed]
- Huh, I.; Wu, X.; Park, T.; Yi, S.V. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species. Brief. Bioinform. 2019, 20, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Simola, D.F.; Wissler, L.; Donahue, G.; Waterhouse, R.M.; Helmkampf, M.; Roux, J.; Nygaard, S.; Glastad, K.M.; Hagen, D.E.; Viljakainen, L. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Res. 2013, 23, 1235–1247. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.H.G.S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jorda, M.; Jones, P.L.; Maleszka, R.; Ling, X.; Robertson, H.M.; Mizzen, C.A.; Peinado, M.A.; Robinson, G.E. Functional CpG methylation system in a social insect. Science 2006, 314, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Moczek, A.P.; Snell-Rood, E.C. The basis of bee-ing different: The role of gene silencing in plasticity. Evol. Dev. 2008, 10, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Lyko, F. DNA methylation with a sting: An active DNA methylation system in the honeybee. Bioessays 2007, 29, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Wedd, L.; Kucharski, R.; Maleszka, R. DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. Adv. Exp. Med. Biol. 2022, 1389, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Bhatia, N.; Grozinger, C.M.; Yi, S.V. Comparative studies of genomic and epigenetic factors influencing transcriptional variation in two insect species. G3 2022, 12, jkac230. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Shook, M.; Li, Y.; Robinson, G.E.; Ma, J. Comparative Analysis of Brain and Fat Body Gene Splicing Patterns in the Honey Bee, Apis mellifera. G3 2019, 9, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Smith, C.W.J.; Jiggins, C.D. Alternative splicing as a source of phenotypic diversity. Nat. Rev. Genet. 2022, 23, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Wang, C.; Nieh, J.C.; Tan, K. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera. J. Insect Physiol. 2016, 90, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lockett, G.A.; Helliwell, P.; Maleszka, R. Involvement of DNA methylation in memory processing in the honey bee. Neuroreport 2010, 21, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Biergans, S.D.; Giovanni Galizia, C.; Reinhard, J.; Claudianos, C. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci. Rep. 2015, 5, 16223. [Google Scholar] [CrossRef] [PubMed]
- Herb, B.R.; Wolschin, F.; Hansen, K.D.; Aryee, M.J.; Langmead, B.; Irizarry, R.; Amdam, G.V.; Feinberg, A.P. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 2012, 15, 1371–1373. [Google Scholar] [CrossRef] [PubMed]
- Herb, B.R.; Shook, M.S.; Fields, C.J.; Robinson, G.E. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genom. 2018, 19, 216. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, R.; Maleszka, J.; Maleszka, R. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160558. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, R.; Maleszka, R. Exploring DNA methylation diversity in the honey bee brain by ultra-deep amplicon sequencing. Epigenomes 2020, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Kilaso, M.; Remnant, E.J.; Chapman, N.C.; Oldroyd, B.P.; Chanchao, C. DNA methylation of Kr-h1 is involved in regulating ovary activation in worker honeybees (Apis mellifera). Insectes Sociaux 2017, 64, 87–94. [Google Scholar] [CrossRef]
- Amarasinghe, H.E.; Clayton, C.I.; Mallon, E.B. Methylation and worker reproduction in the bumble-bee (Bombus terrestris). Proc. R. Soc. B Biol. Sci. 2014, 281, 20132502. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Jung, J.W.; Choi, B.-S.; Jayakodi, M.; Lee, J.; Lim, J.; Yu, Y.; Choi, Y.-S.; Lee, M.-L.; Park, Y. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genom. 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.D.; Lloyd, J.P.B.; Domb, K.; Zilberman, D.; Zemach, A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Drewell, R.A.; Bush, E.C.; Remnant, E.J.; Wong, G.T.; Beeler, S.M.; Stringham, J.L.; Lim, J.; Oldroyd, B.P. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera. Development 2014, 141, 2702–2711. [Google Scholar] [CrossRef] [PubMed]
- Marhold, J.; Rothe, N.; Pauli, A.; Mund, C.; Kuehle, K.; Brueckner, B.; Lyko, F. Conservation of DNA methylation in dipteran insects. Insect Mol. Biol. 2004, 13, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Cao, X.; Khetani, R.S.; Chen, C.-C.; Coon, M.; Sammak, A.a.; Bollig-Fischer, A.; Land, S.; Huang, Y.; Hudson, M.E. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genom. 2013, 14, 666. [Google Scholar] [CrossRef] [PubMed]
- Abdelmawla, A.; Li, X.; Shi, W.; Zheng, Y.; Zeng, Z.; He, X. Roles of DNA Methylation in Color Alternation of Eastern Honey Bees (Apis cerana) Induced by the Royal Jelly of Western Honey Bees (Apis mellifera). Int. J. Mol. Sci. 2024, 25, 3368. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Y.; Yan, W.Y.; Huang, Z.Y.; Wang, Z.L.; Wu, X.B.; Zeng, Z.J. Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera). Naturwissenschaften 2013, 100, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Strachecka, A.; Olszewski, K.; Bajda, M.; Demetraki-Paleolog, J. Natural Larval Diet Differently Influences the Pattern of Developmental Changes in DNA 5-Methylcytosine Levels in Apis mellifera Queens as Compared with Workers and Drones. Biochemitry 2015, 80, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Foret, S.; Kucharski, R.; Pellegrini, M.; Feng, S.; Jacobsen, S.E.; Robinson, G.E.; Maleszka, R. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl. Acad. Sci. USA 2012, 109, 4968–4973. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Robinson, G.E. Understanding the relationship between brain gene expression and social behavior: Lessons from the honey bee. Annu. Rev. Genet. 2012, 46, 591–615. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, R.; Maleszka, J.; Foret, S.; Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008, 319, 1827–1830. [Google Scholar] [CrossRef] [PubMed]
- Maleszka, R. Epigenetic integration of environmental and genomic signals in honey bees: The critical interplay of nutritional, brain and reproductive networks. Epigenetics 2008, 3, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.A.; Galbraith, D.A.; Adams, D.C.; Valenzuela, N.; Noll, F.B.; Grozinger, C.M.; Toth, A.L. A survey of DNA methylation across social insect species, life stages, and castes reveals abundant and caste-associated methylation in a primitively social wasp. Naturwissenschaften 2013, 100, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, B.P.; Yagound, B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos. Trans. R. Soc. B 2021, 376, 1826. [Google Scholar]
- Chen, W.F.; Wang, Y.; Zhang, W.X.; Liu, Z.G.; Xu, B.H.; Wang, H.F. Methionine as a methyl donor regulates caste differentiation in the European honey bee (Apis mellifera). Insect Sci. 2021, 28, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Yagound, B.; Remnant, E.J.; Buchmann, G.; Oldroyd, B.P. Intergenerational transfer of DNA methylation marks in the honey bee. Proc. Natl. Acad. Sci. USA 2020, 117, 32519–32527. [Google Scholar] [CrossRef] [PubMed]
- Remnant, E.J.; Ashe, A.; Young, P.E.; Buchmann, G.; Beekman, M.; Allsopp, M.H.; Suter, C.M.; Drewell, R.A.; Oldroyd, B.P. Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation. BMC Genom. 2016, 17, 226. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Galbraith, D.A.; Chatterjee, P.; Jeong, H.; Grozinger, C.M.; Yi, S.V. Lineage and Parent-of-Origin Effects in DNA Methylation of Honey Bees (Apis mellifera) Revealed by Reciprocal Crosses and Whole-Genome Bisulfite Sequencing. Genome Biol. Evol. 2020, 12, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; He, X.J.; Barron, A.B.; Liu, Y.B.; Wang, Z.L.; Yan, W.Y.; Zeng, Z.J. Transgenerational accumulation of methylome changes discovered in commercially reared honey bee (Apis mellifera) queens. Insect Biochem. Mol. Biol. 2020, 127, 103476. [Google Scholar] [CrossRef] [PubMed]
- Yagound, B.; Smith, N.M.; Buchmann, G.; Oldroyd, B.P.; Remnant, E.J. Unique DNA methylation profiles are associated with cis-variation in honey bees. Genome Biol. Evol. 2019, 11, 2517–2530. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Júnior, C.A.; Yagound, B.; Ronai, I.; Remnant, E.J.; Hartfelder, K.; Oldroyd, B.P. DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Mol. Ecol. 2021, 30, 4804–4818. [Google Scholar] [CrossRef] [PubMed]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, E.; Smutin, D.; Timkin, P.; Kotelnikov, D.; Taldaev, A.; Panushev, N.; Adonin, L. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution. Non-Coding RNA Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Humann, F.C.; Tiberio, G.J.; Hartfelder, K. Sequence and expression characteristics of long noncoding RNAs in honey bee caste development--potential novel regulators for transgressive ovary size. PLoS ONE 2013, 8, e78915. [Google Scholar] [CrossRef] [PubMed]
- Tadano, H.; Kohno, H.; Takeuchi, H.; Kubo, T. Unique spatially and temporary-regulated/sex-specific expression of a long ncRNA, Nb-1, suggesting its pleiotropic functions associated with honey bee lifecycle. Sci. Rep. 2024, 14, 8701. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Shi, T.; Qi, L.; Su, X.; Wang, D.; Dong, J.; Huang, Z.Y. lncRNA profile of Apis mellifera and its possible role in behavioural transition from nurses to foragers. BMC Genom. 2019, 20, 393. [Google Scholar] [CrossRef] [PubMed]
- Tadano, H.; Yamazaki, Y.; Takeuchi, H.; Kubo, T. Age-and division-of-labour-dependent differential expression of a novel non-coding RNA, Nb-1, in the brain of worker honeybees, Apis mellifera L. Insect Mol. Biol. 2009, 18, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, C.; Sharma, S.; Meghwanshi, K.K.; Patel, S.; Mehta, P.; Shukla, N.; Do, D.N.; Rajpurohit, S.; Suravajhala, P.; Shukla, J.N. Long non-coding RNAs in insects. Animals 2021, 11, 1118. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Huang, J.; Zhang, Z.; Nie, H.; Lin, Y.; Li, Z.; Su, S. Understanding of waggle dance in the honey bee (Apis mellifera) from the perspective of long non-coding RNA. Insects 2022, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Schmid, M.; Hettich, T.; Schmid, S. The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees. Environ. Pollut. 2020, 266, 115297. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Dong, J.; Guo, H.; Xiao, M.; Wang, D. Identification of long noncoding RNAs reveals the effects of dinotefuran on the brain in Apis mellifera (Hymenopptera: Apidae). BMC Genom. 2021, 22, 502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, C.; Zhang, J.; Lu, S.; Zhao, H.; Jiang, Y.; Ma, W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genom. 2024, 25, 506. [Google Scholar] [CrossRef] [PubMed]
- Kiya, T.; Ugajin, A.; Kunieda, T.; Kubo, T. Identification of kakusei, a nuclear non-coding RNA, as an immediate early gene from the honeybee, and its application for neuroethological study. Int. J. Mol. Sci. 2012, 13, 15496–15509. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Wang, S.; Guo, S.; Fan, X.; Zang, H.; Gao, X.; Jing, X.; Liu, Z.; Na, Z.; Zou, P. Regulatory roles of long non-coding RNAs relevant to antioxidant enzymes and immune responses of Apis cerana larvae following Ascosphaera apis invasion. Int. J. Mol. Sci. 2023, 24, 14175. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Fan, X.; Long, Q.; Wang, J.; Zhang, W.; Cai, Z.; Sun, M.; Gu, X.; Zou, P.; Chen, D. Comprehensive investigation and regulatory function of lncRNAs engaged in western honey bee larval immune response to Ascosphaera apis invasion. Front. Physiol. 2022, 13, 1082522. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, H.; Du, Y.; Zhou, D.; Geng, S.; Wang, H.; Wan, J.; Xiong, C.; Zheng, Y.; Guo, R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects 2019, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Fan, X.; Zhang, K.; Zhang, J.; Zhao, H.; Gao, X.; Zhang, Y.; Guo, S.; Zhou, D. Systematic characterization and regulatory role of lncRNAs in Asian honey bees responding to microsporidian infestation. Int. J. Mol. Sci. 2023, 24, 5886. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Tan, X.; Yang, S.; Zhou, Z.; Wang, D.; Dong, J. Long Non-Coding RNA LOC113219358 Regulates Immune Responses in Apis mellifera Through Protein Interactions. Int. J. Mol. Sci. 2025, 26, 676. [Google Scholar] [CrossRef] [PubMed]
- Jayakodi, M.; Jung, J.W.; Park, D.; Ahn, Y.-J.; Lee, S.-C.; Shin, S.-Y.; Shin, C.; Yang, T.-J.; Kwon, H.W. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera. BMC Genom. 2015, 16, 680. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Su, S.; Skogerboe, G.; Dai, S.; Li, W.; Li, Z.; Liu, F.; Ni, R.; Guo, Y.; Chen, S.; et al. Recipe for a busy bee: microRNAs in Honey Bee caste determination. PLoS ONE 2013, 8, e81661. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.; Xia, J.; Zhou, X.; Thatcher, S.; Gu, X.; Ament, S.; Newman, T.; Green, P.; Zhang, W.; Robinson, G. Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes Brain Behav. 2012, 11, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Ashby, R.; Forêt, S.; Searle, I.; Maleszka, R. MicroRNAs in honey bee caste determination. Sci. Rep. 2016, 6, 18794. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, F.; Li, W.; Li, Z.; Pan, J.; Yan, L.; Zhang, S.; Huang, Z.Y.; Su, S. Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L. J. Insect Physiol. 2012, 58, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Dong, J.; Guo, H.; Wang, D. Effects of dinotefuran on brain miRNA expression profiles in young adult honey bees (Hymenopptera: Apidae). J. Insect Sci. 2021, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.F.; Wang, Y.F.; Liu, F.; Qi, L.; Yu, L.S. Influence of the Neonicotinoid Insecticide Thiamethoxam on miRNA Expression in the Honey Bee (Hymenoptera: Apidae). J. Insect Sci. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, Y.; Wang, R.W.; Schwarz, R.S.; Evans, J.D. Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae. Sci. Rep. 2015, 5, 17494. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, W.; Zhang, K.; Zhang, J.; Long, Q.; Wu, Y.; Zhang, K.; Zhu, L.; Chen, D.; Guo, R. In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Front. Microbiol. 2022, 13, 1003294. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, A.P.; Guidugli-Lazzarini, K.R.; Freitas, F.C.; Bitondi, M.M.; Simões, Z.L. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochem. Mol. Biol. 2013, 43, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Kapheim, K.M.; Jones, B.M.; Søvik, E.; Stolle, E.; Waterhouse, R.M.; Bloch, G.; Ben-Shahar, Y. Brain microRNAs among social and solitary bees. R. Soc. Open Sci. 2020, 7, 200517. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.H.; Ahmed, A.C.C.; Kilikevicius, L.; Robinson, G.E. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J. Exp. Biol. 2024, 227, 246785. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Su, S.; Geir, S.; Li, W.; Li, Z.; Zhang, S.; Chen, S. Differential expression of miRNAs related to caste differentiation in the honey bee, Apis mellifera. Apidologie 2016, 47, 495–508. [Google Scholar] [CrossRef]
- Watson, O.T.; Buchmann, G.; Young, P.; Lo, K.; Remnant, E.J.; Yagound, B.; Shambrook, M.; Hill, A.F.; Oldroyd, B.P.; Ashe, A. Abundant small RNAs in the reproductive tissues of the honey bee, Apis mellifera, are a plausible mechanism for epigenetic inheritance and parental manipulation of gene expression. bioRxiv 2021. [Google Scholar] [CrossRef]
- Watson, O.T.; Buchmann, G.; Young, P.; Lo, K.; Remnant, E.J.; Yagound, B.; Shambrook, M.; Hill, A.F.; Oldroyd, B.P.; Ashe, A. Abundant small RNAs in the reproductive tissues and eggs of the honey bee, Apis mellifera. BMC Genom. 2022, 23, 257. [Google Scholar] [CrossRef] [PubMed]
- Macedo, L.M.F.; Nunes, F.; Freitas, F.C.d.P.; Pires, C.V.; Tanaka, E.D.; Martins, J.; Piulachs, M.D.; Cristino, A.S.; Pinheiro, D.; Simões, Z.L.P. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (A pis mellifera L.). Insect Mol. Biol. 2016, 25, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Liu, M.; Fu, Z.; Zhou, Z.; Kong, Y.; Liang, H.; Lin, Z.; Luo, J.; Zheng, H.; Wan, P. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 2017, 13, e1006946. [Google Scholar] [CrossRef] [PubMed]
- Gharehdaghi, L.; Bakhtiarizadeh, M.R.; He, K.; Harkinezhad, T.; Tahmasbi, G.; Li, F. Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut. BMC Genom. 2021, 22, 587. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, C.; Chen, C.; Lu, Q.; Shi, W.; Liu, Z.; Wang, H.; Guo, H. Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honey bees. PeerJ 2017, 5, e3881. [Google Scholar] [CrossRef] [PubMed]
- Guidugli, K.R.; Nascimento, A.M.; Amdam, G.V.; Barchuk, A.R.; Omholt, S.; Simões, Z.L.; Hartfelder, K. Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett. 2005, 579, 4961–4965. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.P.; Powell, J.E.; Perutka, J.; Geng, P.; Heckmann, L.C.; Horak, R.D.; Moran, N.A. Engineered symbionts activate honey bee immunity and limit pathogens. Science 2020, 367, 573–576. [Google Scholar]
- Wei, T.; Qiu, Y.; Hou, M.; Wang, T.; Su, S.; Li, Z. Effects of RNAi-mediated silencing of major royal jelly protein 1 (Mrjp1) gene on learning and memory in worker bees of Apis mellifera ligustica. J. Environ. Entomol. 2021, 64, 1145–1152. (In Chinese) [Google Scholar] [CrossRef]
- Mutti, N.S.; Dolezal, A.G.; Wolschin, F.; Mutti, J.S.; Gill, K.S.; Amdam, G.V. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. 2011, 214, 3977–3984. [Google Scholar] [CrossRef] [PubMed]
- Li-Byarlay, H.; Li, Y.; Stroud, H.; Feng, S.; Newman, T.C.; Kaneda, M.; Hou, K.K.; Worley, K.C.; Elsik, C.G.; Wickline, S.A. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. USA 2013, 110, 12750–12755. [Google Scholar] [CrossRef] [PubMed]
- Maori, E.; Paldi, N.; Shafir, S.; Kalev, H.; Tsur, E.; Glick, E.; Sela, I. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 2009, 18, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Hunter, W.; Ellis, J.; Vanengelsdorp, D.; Hayes, J.; Westervelt, D.; Glick, E.; Williams, M.; Sela, I.; Maori, E.; Pettis, J. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog. 2010, 6, e1001160. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Eu, Y.J.; Whyard, S.; Currie, R. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol. Biol. 2012, 21, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Brutscher, L.M.; Flenniken, M.L. RNAi and Antiviral Defense in the Honey Bee. J. Immunol. Res. 2015, 2015, 941897. [Google Scholar] [CrossRef] [PubMed]
- Flenniken, M.L.; Andino, R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS ONE 2013, 8, e77263. [Google Scholar] [CrossRef] [PubMed]
- Paldi, N.; Glick, E.; Oliva, M.; Zilberberg, Y.; Aubin, L.; Pettis, J.; Chen, Y.; Evans, J.D. Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl. Environ. Microbiol. 2010, 76, 5960–5964. [Google Scholar] [CrossRef] [PubMed]
- Garbian, Y.; Maori, E.; Kalev, H.; Shafir, S.; Sela, I. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog. 2012, 8, e1003035. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.L.; Laniel, M.-A. Histones and histone modifications. Curr. Biol. 2004, 14, R546–R551. [Google Scholar] [CrossRef] [PubMed]
- Dickman, M.J.; Kucharski, R.; Maleszka, R.; Hurd, P.J. Extensive histone post-translational modification in honey bees. Insect Biochem. Mol. Biol. 2013, 43, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.A.; Alattal, Y.Z. Alterations in Histone Methylation States Increased Profusion of Lethal (2)-Essential-for-Life-Like (l (2) elf), Trithorax and Polycomb Genes in Apis mellifera under Heat Stress. Insects 2024, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Kojić, D.; Spremo, J.; Đorđievski, S.; Čelić, T.; Vukašinović, E.; Pihler, I.; Purać, J. Spermidine supplementation in honey bees: Autophagy and epigenetic modifications. PLoS ONE 2024, 19, e0306430. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Nair, S. Epigenetic processes in insect adaptation to environmental stress. Curr. Opin. Insect Sci. 2024, 101294. [Google Scholar] [CrossRef] [PubMed]
- Buttstedt, A.; Ihling, C.H.; Pietzsch, M.; Moritz, R.F. Royalactin is not a royal making of a queen. Nature 2016, 537, E10–E12. [Google Scholar] [CrossRef] [PubMed]
- Spannhoff, A.; Kim, Y.K.; Raynal, N.J.M.; Gharibyan, V.; Su, M.B.; Zhou, Y.Y.; Li, J.; Castellano, S.; Sbardella, G.; Issa, J.P.J. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep. 2011, 12, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Tian, L.Q.; Huang, Q.; Wu, X.B.; Zeng, Z.J. Effects of 10-Hydroxy-2-decenoic acid on the development of honey bee (Apis mellifera) larvae. J. Apic. Res. 2014, 53, 171–176. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Zeng, Z. Advances in epigenetics and caste differentiation in honeybees. J. Environ. Entomol. 2014, 51, 1406–1412. (In Chinese) [Google Scholar] [CrossRef]
- Hunt, B.G.; Glastad, K.M.; Yi, S.V.; Goodisman, M.A. Patterning and regulatory associations of DNA methylation are mirrored by histone modifications in insects. Genome Biol. Evol. 2013, 5, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; He, X.; Wang, Z.; Zeng, Z. H3K4me1 modification functions in caste differentiation in honey bees. Int. J. Mol. Sci. 2023, 24, 6217. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xiao, Y.; Li, Y.; Wang, X.; Qi, S.; Wang, Y.; Zhao, L.; Wang, K.; Peng, W.; Luo, G.-Z. RNA m6A modification functions in larval development and caste differentiation in honeybee (Apis mellifera). Cell Rep. 2021, 34. [Google Scholar] [CrossRef] [PubMed]
- Bresnahan, S.T.; Lee, E.; Clark, L.; Ma, R.; Markey, M.; Rangel, J.; Grozinger, C.M.; Li-Byarlay, H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). BMC Genom. 2023, 24, 315. [Google Scholar] [CrossRef] [PubMed]
miRNA | Target Gene/Pathway | Function/Effect | Category | Reference |
---|---|---|---|---|
ame-miR-3786-3p | CDK5 (regulates behavioral transition thresholds) | Modulates foraging behavior under pesticide stress | Pesticide Response | [78] |
ame-miR-3049-5p | Tollip (enhances antimicrobial peptide synthesis) | Activates immune response under stress conditions | Pesticide Response | [78] |
ame-miR-6038 | HSP90 (disrupts stress granule assembly, affects synaptotagmin-7) | Reduces homing ability by 41% after thiamethoxam exposure | Pesticide Response | [79] |
ame-miR-317 | MPC1 (suppresses mitochondrial transport, shifts metabolism to glycolysis) | Supports parasite proliferation through metabolic reprogramming | Pesticide Response | [80,81] |
Plant-derived miRNAs | amTOR (regulates development, chitin deposition, and gut stem cell proliferation) | Delays development and chitin formation; impacts gut regeneration through nutritional input | Pesticide Response | [89,90] |
ame-miR-2796 | PLC-epsilon (neural differentiation) | Facilitates nurse-to-forager transition (behavioral maturation) | Behavioral Regulation | [74] |
miR-184 | Unspecified (affects caste trajectory) | Induces worker-like traits in queen-destined bees (via royal jelly) | Developmental Plasticity | [74] |
ame-miR-279a | Mblk-1 (transcription factor) | Lowers sugar response threshold; promotes foraging behavior | Behavioral Regulation | [75] |
miR-34 family | Notch signaling (olfactory modulation) | Enhances pheromone recognition via olfactory receptor activity | Behavioral Regulation | [76,77,86,87] |
miR-124 | Neural synaptic regulators | Regulates synaptic plasticity related to complex behaviors (e.g., waggle dance) | Behavioral Regulation | [76,77] |
ame-miR-278/282 | Neurometabolic pathways | Modulates brain metabolic states during behavior transitions | Behavioral Regulation | [76,77] |
ame-miR-305 | Transcription factors for behavioral maturation | Alters gene expression in brain; regulates caste-associated behaviors | Evolutionary/Behavioral | [84] |
miR-276b | Dnmt3 (DNA methyltransferase) | Modulates JH synthesis; promotes queen-like ovarian development | Developmental Regulation | [76] |
ame-miR-263 | FoxO (transcription factor) | Accelerates juvenile hormone degradation; biases toward worker fate | Developmental Regulation | [85] |
ame-let-7 | Notch (suppression) | Promotes ovariole primordium development in queen larvae | Developmental Regulation | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Xu, J.; Wang, K. Epigenetic Mechanisms in Apis melifera: From Development to Environmental Adaptation. Curr. Issues Mol. Biol. 2025, 47, 554. https://doi.org/10.3390/cimb47070554
Hu X, Xu J, Wang K. Epigenetic Mechanisms in Apis melifera: From Development to Environmental Adaptation. Current Issues in Molecular Biology. 2025; 47(7):554. https://doi.org/10.3390/cimb47070554
Chicago/Turabian StyleHu, Xiexin, Jing Xu, and Kang Wang. 2025. "Epigenetic Mechanisms in Apis melifera: From Development to Environmental Adaptation" Current Issues in Molecular Biology 47, no. 7: 554. https://doi.org/10.3390/cimb47070554
APA StyleHu, X., Xu, J., & Wang, K. (2025). Epigenetic Mechanisms in Apis melifera: From Development to Environmental Adaptation. Current Issues in Molecular Biology, 47(7), 554. https://doi.org/10.3390/cimb47070554