Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Flowers of Citrus grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Flowers of Citrus grandis ‘Tomentosa’
2.2. Identification of Essential Oil Components
2.3. Target Screening of Essential Oil Components
2.4. GO Functional and KEGG Pathway Analysis
2.5. Network Construction of Active Component–Target–Disease
2.6. Cell Lines and Cell Culture
2.7. Cell Proliferation Assay
2.8. Statistical Analysis
3. Results
3.1. Determination of Essential Oil Components in Flowers of Citrus grandis ‘Tomentosa’
3.2. Potential Targets of Essential Oil Components
3.3. Gene Ontology (GO) Function and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
3.4. Network Construction of Active Component–Target–Disease
3.5. Effect of β-Caryophyllene on Cell Proliferation in HT29 and MCF-7cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, F.S.; Ding, Z.D.; Zhang, K.; Duan, W.J.; Qin, Y.R.; Su, Z.P.; Bi, Y.G. Optimization of extraction flavonoids from and evaluation its hypoglycemic and hypolipidemic activities. J. Ethnopharmacol. 2020, 262, 113178. [Google Scholar] [PubMed]
- Zeng, X.; Su, W.W.; Zheng, Y.Y.; Liu, H.; Li, P.L.; Zhang, W.J.; Liang, Y.T.; Bai, Y.; Peng, W.; Yao, H.L. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef]
- Yu, X.X.; Liu, Q.D.; Wu, J.W.; Liang, Z.K.; Zhao, M.Q.; Xu, X.J. Simultaneous Determination of Four Major Constituents in Citri Grandis Exocarpium by HPLC-DAD. Acta Chromatogr. 2016, 28, 129–143. [Google Scholar] [CrossRef]
- Xie, Z.S.; Liu, Q.D.; Liang, Z.K.; Zhao, M.Q.; Yu, X.X.; Yang, D.P.; Xu, X.J. The GC/MS Analysis of Volatile Components Extracted by Different Methods from Exocarpium Citri Grandis. J. Anal. Methods Chem. 2013, 2013, 918406. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.P.; Qin, Y.R.; Zhang, K.; Bi, Y.G.; Kong, F.S. Inclusion Complex of Exocarpium Citri Grandis Essential Oil with β-Cyclodextrin: Characterization, Stability, and Antioxidant Activity. J. Food Sci. 2019, 84, 1592–1599. [Google Scholar] [PubMed]
- You, J.S.; He, S.C.; Chen, L.; Guo, Z.H.; Gao, F.; Zhang, M.Y.; Dan, L.; Chen, W. Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Leaves of C. grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology. Comb. Chem. High Throughput Screen. 2023, 26, 1689–1700. [Google Scholar]
- Qi, Y.; Chen, Q.Z.; Oouyang, Q.Q.; Wang, H.R.; Chen, X.B. Comparison of volatile oil composition between flowers and fruits of Exocarpium Citri Grandis. J. Guangdong Med. Univ. 2022, 40, 18–21. [Google Scholar]
- Paradis, D.; Bérail, G.; Bonmatin, J.M.; Belzunces, L.P. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem. 2014, 406, 621–633. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Chen, B.; Chen, S.M.; Lin, M.Q.; Chen, Y.; Jin, S.; Chen, W.Y.; Zhang, Y.Y. Applications of Network Pharmacology in Traditional Chinese Medicine Research. Evid.-Based Complement. Altern. Med. 2020, 2020, 1646905. [Google Scholar] [CrossRef]
- Luo, T.T.; Lu, Y.; Yan, S.K.; Xiao, X.; Rong, X.L.; Guo, J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin. J. Integr. Med. 2020, 26, 72–80. [Google Scholar] [CrossRef]
- Peng, J.J.; Lu, G.L.; Xue, H.S.; Wang, T.; Shang, X.Q. TS-GOEA: A web tool for tissue-specific gene set enrichment analysis based on gene ontology. BMC Bioinform. 2019, 20 (Suppl. 18), 572. [Google Scholar] [CrossRef]
- Liang, B.; Li, C.N.; Zhao, J.Y. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Med. Oncol. 2016, 33, 111. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.T.; Zhao, D.H.; Yu, X.Y.; Shen, X.Y.; Zhou, Y.; Wang, S.S.; Qiu, Y.Q.; Chen, Y.Z.; Zhu, F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024, 52, D1465–D1477. [Google Scholar] [CrossRef]
- Simstein, R.; Burow, M.; Parker, A.; Weldon, C.; Beckman, B. Apoptosis, chemoresistance, and breast cancer: Insights from the MCF-7 cell model system. Exp. Biol. Med. 2003, 228, 995–1003. [Google Scholar] [CrossRef]
- Kim, N.D.; Im, E.; Yoo, Y.H.; Choi, Y.H. Modulation of the cell cycle and induction of apoptosis in human cancer cells by synthetic bile acids. Curr. Cancer Drug Targets 2006, 6, 681–689. [Google Scholar] [CrossRef]
- Ramalho, T.R.D.; de Oliveira, M.T.P.; Lima, A.L.D.; Bezerra-Santos, C.R.; Piuvezam, M.R. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice. Planta Med. 2015, 81, 1248–1254. [Google Scholar] [CrossRef]
- Cetin, H.; Cilek, J.E.; Oz, E.; Aydin, L.; Deveci, O.; Yanikoglu, A. Acaricidal activity of L. essential oil and its major components, carvacrol and γ-terpinene against adult (Acari: Ixodidae). Vet. Parasitol. 2010, 170, 287–290. [Google Scholar]
- Sousa-Pimenta, M.; Estevinho, L.M.; Szopa, A.; Basit, M.; Khan, K.; Armaghan, M.; Ibrayeva, M.; Gürer, E.S.; Calina, D.; Hano, C.; et al. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel. Front. Pharmacol. 2023, 14, 1157306. [Google Scholar] [CrossRef]
- Winnacker, M. Polyamides Derived from Terpenes: Advances in Their Synthesis, Characterization and Applications. Eur. J. Lipid Sci. Tech. 2023, 125, 2300014. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.; Asif, M.; Ahmed, M.; Babu, D.; Hassan, L.E.; Ahamed, M.B.K.; Sandai, D.; Barakat, K.; Siraki, A.; et al. β-Caryophyllene Induces Apoptosis and Inhibits Angiogenesis in Colorectal Cancer Models. Int. J. Mol. Sci. 2021, 22, 10550. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Ma, W.B.; Du, J.W. β-Caryophyllene (BCP) ameliorates MPP plus induced cytotoxicity. Biomed. Pharmacother. 2018, 103, 1086–1091. [Google Scholar] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strzadala, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar]
- Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007, 59, 1643–1647. [Google Scholar] [PubMed]
- Kane, W.J.; Hassinger, T.E.; Elwood, N.R.; Dietch, Z.C.; Krebs, E.D.; Popovsky, K.A.; Hedrick, T.L.; Sawyer, R.G. Fever Is Associated with Reduced Mortality in Trauma and Surgical Intensive Care Unit-Acquired Infections. Surg. Infect. 2021, 22, 174–181. [Google Scholar] [CrossRef]
- Ceneviva, G.D.; Phipps, L.M.; Harter, A.J.; Mauger, D.T.; Lucking, S.E.; Thomas, N.J.; Dettorre, M.D.; Cilley, R.E. Fever as a predictor of infection in childhood trauma. Crit. Care Med. 2001, 29, A106. [Google Scholar]
- ‘Sullivan, D.O.; Stanczak, M.A.; Villa, M.; Uhl, F.M.; Corrado, M.; Geltink, R.I.K.; Sanin, D.E.; Apostolova, P.; Rana, N.; Edwards-Hicks, J.; et al. Fever supports CD8+effector T cell responses by mitochondrial translation. Proc. Natl. Acad. Sci. USA 2021, 118, e2023752118. [Google Scholar]
- Mier, J.W.; Souza, L.M.; Allegretta, M.; Boone, T.; Bernheim, H.A.; Dinarello, C.A. Dissimilarities Between Purified Human Interleukin-1 and Recombinant Human Interleukin-2 in the Induction of Fever, Brain Prostaglandin, and Acute-Phase Protein-Synthesis. J. Biol. Response Modif. 1985, 4, 35–45. [Google Scholar]
- Seo, Y.; Prome, S.A.; Kim, L.; Han, J.Y.; Kim, J.M.; Choi, S.J. Florid lambda-monotypic B-cell proliferation in fatal severe fever with thrombocytopenia syndrome virus infection-associated necrotizing lymphadenitis: A potential diagnostic pitfall. J. Hematop. 2022, 15, 221–228. [Google Scholar] [CrossRef]
- Wrotek, S.; Sobocinska, J.; Kozlowski, H.M.; Pawlikowska, M.; Jedrzejewski, T.; Dzialuk, A. New Insights into the Role of Glutathione in the Mechanism of Fever. Int. J. Mol. Sci. 2020, 21, 1393. [Google Scholar] [CrossRef]
- Kleef, R.; Jonas, W.B.; Knogler, W.; Stenzinger, W. Fever, cancer incidence and spontaneous remissions. Neuroimmunomodulation 2001, 9, 55–64. [Google Scholar] [CrossRef]
- Gregório, H.; Magalhaes, T.R.; Pires, I.; Prada, J.; Carvalho, M.I.; Queiroga, F.L. The role of COX expression in the prognostication of overall survival of canine and feline cancer: A systematic review. Vet. Med. Sci. 2021, 7, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Consalvi, S.; Biava, M.; Poce, G. COX inhibitors: A patent review (2011–2014). Expert. Opin. Ther. Pat. 2015, 25, 1357–1371. [Google Scholar] [PubMed]
- Pereira, R.D. Selective Cyclooxygenase-2 (COX-2) Inhibitors Used for Preventing or Regressing Cancer. Recent Pat. Anti-Cancer 2009, 4, 157–163. [Google Scholar] [CrossRef]
- Etain, B.; Mathieu, F.; Jamain, S.; Henry, C.; Roy, I.; Bellivier, F.; Leboyer, M. Norepinephrine transporter gene (SLC6A2) polymorphisms influence phenotypic expression of bipolar disorder. Biol. Psychiatry 2006, 59, 51s. [Google Scholar]
- Fichna, J.P.; Huminska-Lisowska, K.; Safranow, K.; Adamczyk, J.G.; Cieszczyk, P.; Zekanowski, C.; Berdynski, M. Rare Variant in the SLC6A2 Encoding a Norepinephrine Transporter Is Associated with Elite Athletic Performance in the Polish Population. Genes 2021, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Licinio, J. Sequence Variability in ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1, NTRK2 and BDNF: Novel Variations and Association with Depression and Antidepressant Response. Biol. Psychiatry 2010, 67, 193s–194s. [Google Scholar]
- Ono, K.; Iwanaga, Y.; Mannami, T.; Kokubo, Y.; Tomoike, H.; Komamura, K.; Shioji, K.; Yasui, N.; Tago, N.; Iwai, N. Epidemiological evidence of an association between gene polymorphism and hypertension. Hypertens. Res. 2003, 26, 685–689. [Google Scholar]
- Singh, A.K.; Chanotiya, C.S.; Yadav, A.; Kalra, A. Volatiles of: A Rich Source of Selinene Isomers. Nat. Prod. Commun. 2010, 5, 269–272. [Google Scholar]
No. | RT (min) | Compound | Content (%) | CAS | SMILES |
---|---|---|---|---|---|
1 | 5.390 | (1R)-(+)-α-Pinene | 0.44 | 7785-70-8 | CC1=CC[C@@H]2C[C@H]1C2(C)C |
2 | 6.496 | (−)-β-Pinene | 1.36 | 18172-67-3 | CC1([C@H]2CCC(=C)[C@@H]1C2)C |
3 | 6.923 | Myrcene | 8.93 | 123-35-3 | CC(=CCCC(=C)C=C)C |
4 | 7.821 | M-Cymene | 2.75 | 535-77-3 | CC1=CC(=CC=C1)C(C)C |
5 | 7.942 | (+)-Dipentene | 3 | 5989-27-5 | CC1=CC[C@@H](CC1)C(=C)C |
6 | 8.508 | 1,3,6-Octatriene,3,7-dimethyl- | 1.82 | 13877-91-3 | CC(=CCC=C(C)C=C)C |
7 | 8.850 | γ-Terpinene | 9.23 | 99-85-4 | CC1=CCC(=CC1)C(C)C |
8 | 9.201 | 2-Furanmethanol,5-ethenyltetrahydro-a,a,5-trimethyl-, (2R,5S)-rel- | 1.41 | 5989-33-3 | C[C@]1(CC[C@@H](O1)C(C)(C)O)C=C |
9 | 9.655 | Cyclohexene,3-methyl-6-(1-methylethylidene)- | 1.42 | 586-63-0 | CC1CCC(=C(C)C)C=C1 |
10 | 10.034 | 3,7-Dimethylocta-1,6-dien-3-ol | 5.35 | 78-70-6 | CC(=CCCC(C)(C=C)O)C |
11 | 12.213 | Terpinen-4-ol | 0.39 | 562-74-3 | CC1=CCC(CC1)(C(C)C)O |
12 | 12.601 | α-Terpineol | 1.3 | 98-55-5 | CC1=CCC(CC1)C(C)(C)O |
13 | 13.310 | 2-(4-Methyl-cyclohex-3-enyl)-propionaldehyde | 0.33 | 29548-14-9 | CC1=CCC(CC1)C(C)C=O |
14 | 13.695 | Nerol | 0.81 | 106-25-2 | CC(=CCC/C(=C\CO)/C)C |
15 | 14.587 | Geraniol | 1.68 | 106-24-1 | CC(=CCC/C(=C/CO)/C)C |
16 | 17.699 | Methyl anthranilate | 3.23 | 134-20-3 | COC(=O)C1=CC=CC=C1N |
17 | 20.462 | β-Caryophyllene | 11.42 | 87-44-5 | C/C/1=C\CCC(=C)[C@H]2CC([C@@H]2CC1)(C)C |
18 | 21.516 | α-Caryophyllene | 1.92 | 6753-98-6 | C/C/1=C\CC(/C=C/C/C(=C/CC1)/C)(C)C |
19 | 22.464 | (−)-Germacrene D | 7.4 | 23986-74-5 | C/C/1=C\CCC(=C)/C=C/[C@@H](CC1)C(C)C |
20 | 22.883 | α-Selinene | 1.06 | 473-13-2 | CC1=CCC[C@]2([C@H]1C[C@@H](CC2)C(=C)C)C |
21 | 22.924 | (+)-Bicyclogermacrene | 2.03 | 24703-35-3 | CC1=CCC2C(C1)CC(CC=C2C)(C)C |
22 | 23.045 | α-Muurolene | 0.75 | 31983-22-9 | CC1=C[C@@H]2[C@H](CC1)C(=CC[C@H]2C(C)C)C |
23 | 23.424 | 1H-Benzocyclohepten-7-ol,2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-, (4aS,7S)- | 0.94 | 6892-80-4 | C[C@@]12CCCC(C1=CC[C@@](CC2)(C)O)(C)C |
24 | 23.763 | Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)- | 1.38 | 16729-01-4 | CC1=CC2C(CCC(=C2CC1)C)C(C)C |
25 | 24.748 | Germacrene B | 0.64 | 15423-57-1 | C/C/1=C\CC/C(=C/CC(=C(C)C)CC1)/C |
26 | 25.124 | Nerolidol | 14.8 | 40716-66-3 | CC(=CCC/C(=C/CCC(C)(C=C)O)/C)C |
27 | 25.416 | Spathulenol | 1.19 | 6750-60-3 | C[C@@]1(CC[C@@H]2[C@@H]1[C@H]3[C@H](C3(C)C)CCC2=C)O |
28 | 25.581 | Caryophyllene oxide | 1.39 | 1139-30-6 | C[C@@]12CC[C@@H]3[C@H](CC3(C)C)C(=C)CC[C@H]1O2 |
29 | 27.157 | Isospathulenol | 0.61 | 88395-46-4 | CC1=C2CC[C@]([C@H]2[C@H]3[C@H](C3(C)C)CC1)(C)O |
30 | 27.660 | (−)-tau-Muurolol | 0.6 | 19912-62-0 | CC1=C[C@H]2[C@@H](CC[C@]([C@H]2CC1)(C)O)C(C)C |
31 | 28.145 | α-Cadinol | 0.8 | 481-34-5 | CC1=C[C@H]2[C@@H](CC[C@@]([C@@H]2CC1)(C)O)C(C)C |
32 | 29.028 | 4(15),5,10(14)-Germacratrien-1-ol | 0.17 | 81968-62-9 | CC(C)[C@@H]/1CCC(=C)C(CCC(=C)/C=C1)O |
33 | 29.342 | Cis-Trans-Farnesol | 0.27 | 3790-71-4 | CC(=CCC/C(=C/CC/C(=C\CO)/C)/C)C |
34 | 29.796 | Farnesol | 5.52 | 4602-84-0 | CC(=CCC/C(=C/CC/C(=C/CO)/C)/C)C |
35 | 31.956 | Methyl hexadecanoate | 0.44 | 112-39-0 | CCCCCCCCCCCCCCCC(=O)OC |
36 | 32.183 | 5-(5-Methyl-1-methylen-4-hexenyl)-1-(4-methyl-3-pentenyl)-1-cyclohexen | 0.6 | 20016-73-3 | CC(=CCCC1=CCCC(C1)C(=C)CCC=C(C)C)C |
37 | 32.248 | Dibutyl phthalate | 0.44 | 84-74-2 | CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC |
38 | 32.428 | 4-(6-methylhepta-1,5-dien-2-yl)-1-(4-methylpent-3-enyl)cyclohexene | 0.35 | 20016-72-2 | CC(=CCCC1=CCC(CC1)C(=C)CCC=C(C)C)C |
39 | 33.134 | Methyl linoleate | 0.34 | 112-63-0 | CCCCC/C=C\C/C=C\CCCCCCCC(=O)OC |
40 | 33.184 | Methyl linolenate | 0.31 | 301-00-8 | CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OC |
41 | 33.230 | 4,8,13-Cyclotetradecatriene-1,3-diol,1,5,9-trimethyl-12-(1-methylethyl)- | 0.33 | 7220-78-2 | C/C/1=C\CC/C(=C/C(CC(/C=C\C(CC1)C(C)C)(C)O)O)/C |
42 | 33.612 | 4,7,10,13,16,19-Docosahexaenoicacid, (4Z,7Z,10Z,13Z,16Z,19Z)- | 0.19 | 6217-54-5 | CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCC(=O)O |
43 | 33.653 | Z-9-octadecyl-18-lactone | 0.69 | 88395-46-4 | CC1=C2CC[C@]([C@H]2[C@H]3[C@H](C3(C)C)CC1)(C)O |
Uniprot ID | Protein Name | Gene Name | Degree | Betweenness Centrality | Closeness Centrality | Average Shortest Path Length |
---|---|---|---|---|---|---|
Q07869 | Peroxisome proliferator-activated receptor alpha | PPARA | 26 | 0.033301 | 0.4511 | 2.216802 |
P14867 | Gamma-aminobutyric acid receptor subunit alpha-1 | GABRA1 | 25 | 0.020241 | 0.407735 | 2.452575 |
P35354 | Prostaglandin G/H synthase 2 | PTGS2 | 22 | 0.024147 | 0.431075 | 2.319783 |
P23975 | Sodium-dependent noradrenaline transporter | SLC6A2 | 21 | 0.017634 | 0.403279 | 2.479675 |
P08172 | Muscarinic acetylcholine receptor M2 | CHRM2 | 19 | 0.005435 | 0.329759 | 3.03252 |
P11229 | Muscarinic acetylcholine receptor M1 | CHRM1 | 19 | 0.009314 | 0.366071 | 2.731707 |
P34972 | Cannabinoid receptor 2 | CNR2 | 19 | 0.012984 | 0.411371 | 2.430894 |
P23219 | Prostaglandin G/H synthase 1 | PTGS1 | 19 | 0.024813 | 0.43007 | 2.325203 |
P20309 | Muscarinic acetylcholine receptor M3 | CHRM3 | 17 | 0.008508 | 0.358252 | 2.791328 |
P10275 | Androgen receptor | AR | 17 | 0.013655 | 0.417421 | 2.395664 |
P11511 | Aromatase | CYP19A1 | 16 | 0.00618 | 0.366071 | 2.731707 |
Q8NER1 | Transient receptor potential cation channel subfamily V member 1 | TRPV1 | 14 | 0.005349 | 0.356522 | 2.804878 |
P28845 | Corticosteroid 11-beta-dehydrogenase isozyme 1 | HSD11B1 | 13 | 0.005774 | 0.359299 | 2.783198 |
Q01959 | Sodium-dependent dopamine transporter | SLC6A3 | 13 | 0.007051 | 0.361057 | 2.769648 |
P04035 | 3-hydroxy-3-methylglutaryl-coenzyme A reductase | HMGCR | 13 | 0.008209 | 0.376915 | 2.653117 |
P06401 | Progesterone receptor | PGR | 13 | 0.011462 | 0.380805 | 2.626016 |
O00519 | Fatty-acid amide hydrolase 1 | FAAH | 13 | 0.013109 | 0.417894 | 2.392954 |
P18031 | Tyrosine-protein phosphatase non-receptor type 1 | PTPN1 | 12 | 0.004097 | 0.357905 | 2.794038 |
P22303 | Acetylcholinesterase | ACHE | 11 | 0.004405 | 0.322835 | 3.097561 |
P19793 | Retinoic acid receptor RXR-alpha | RXRA | 11 | 0.008531 | 0.412752 | 2.422764 |
Target | Diseases | Target | Diseases |
---|---|---|---|
PPARA | High cholesterol level; hyperlipoproteinemia | CYP19A1 | Hormonally-responsive breast cancer; Cushing disease |
GABRA1 | Respiratory distress syndrome; intractable insomnia | TRPV1 | Knee osteoarthritis; Atopic dermatitis |
PTGS2 | Chronic pain; musculoskeletal pain | HSD11B1 | Influenza virus infection; lupus |
SLC6A2 | Acute pain; attention deficit hyperactivity disorder | SLC6A3 | Attention deficit hyperactivity disorder; anesthesia |
CHRM2 | Asthma; glaucoma/ocular hypertension | HMGCR | Dyslipidemia; multiple sclerosis |
CHRM1 | Visceral spasms; anesthesia | PGR | Menstrual disorder; premature labor |
CNR2 | Attention deficit hyperactivity disorder; insomnia | FAAH | anesthesia; major depressive disorder |
PTGS1 | Miosis; dysmenorrhea | PTPN1 | Ophthalmic surgery injury; infectious disease |
CHRM3 | Asthma; obstructive lung disease | ACHE | Open-angle glaucoma; Glaucoma/ocular hypertension |
AR | Acute myeloid leukemia; alcoholic hepatitis | RXRA | Kaposi sarcoma; cutaneous T-cell lymphoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Wen, S.; Chen, M.; Huang, J.; Zhang, G.; Li, R.; Lu, J.; Yao, Z.; Gao, F.; You, J. Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Flowers of Citrus grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology. Curr. Issues Mol. Biol. 2025, 47, 541. https://doi.org/10.3390/cimb47070541
Yan D, Wen S, Chen M, Huang J, Zhang G, Li R, Lu J, Yao Z, Gao F, You J. Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Flowers of Citrus grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology. Current Issues in Molecular Biology. 2025; 47(7):541. https://doi.org/10.3390/cimb47070541
Chicago/Turabian StyleYan, Danxi, Shuyi Wen, Mingxia Chen, Jinlan Huang, Guihao Zhang, Renkai Li, Jiamin Lu, Zhongxuan Yao, Fei Gao, and Jieshu You. 2025. "Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Flowers of Citrus grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology" Current Issues in Molecular Biology 47, no. 7: 541. https://doi.org/10.3390/cimb47070541
APA StyleYan, D., Wen, S., Chen, M., Huang, J., Zhang, G., Li, R., Lu, J., Yao, Z., Gao, F., & You, J. (2025). Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Flowers of Citrus grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology. Current Issues in Molecular Biology, 47(7), 541. https://doi.org/10.3390/cimb47070541