Molecular Pathogenesis of Avian Splenic Injury Under Thermal Challenge: Integrated Mitigation Strategies for Poultry Heat Stress
Abstract
1. Introduction
2. Effects of HS on the Organization of the Chicken Spleen
3. Physiological Effects of HS on Chicken Spleen
3.1. Thermoregulatory and Metabolic Changes
3.2. Impaired Immune Function
4. Molecular Mechanisms of HS-Induced Splenic Injury in Chickens
4.1. Oxidative Stress
4.2. Apoptotic Pathways
4.3. Inflammatory Signaling Pathways
5. Strategies for Mitigating HS Splenic Injury
6. Outlook
- Investigating the mechanism of HS: Using single-cell sequencing and other technologies, we will investigate the effect of HS on the subpopulation of immune cells in chicken spleen, and clarify the specific changes of different immune cells and their interaction mechanisms under HS. At the same time, the molecular mechanism of HS on chicken spleen immune function, in particular the relationship between immunosuppression and the balance of the cytokine network, should be researched in-depth to provide more precise targets for subsequent interventions.
- Research on strategies to mitigate the effects of HS: On the one hand, in-depth research on nutritional regulation strategies, screening and validation of more nutrients that can mitigate the effects of HS on chicken immune function, such as functional amino acids, vitamins, minerals, etc., and explore the mechanism of their action. On the other hand, in combination with environmental control measures, such as optimizing the ventilation and cooling system of the chicken house, we will comprehensively evaluate the effects of different measures to mitigate the effects of HS, to provide a basis for the development of scientific and reasonable feeding and management plans in actual production.
- Research on heat resistance of different chicken breeds or genotypes: Further expand the scope of research, screen and identify more chicken breeds or genotypes with excellent heat resistance, and thoroughly analyses the genetic basis and molecular mechanism of their heat resistance, so as to provide theoretical support for chicken breeding and to breed better breeds that are better adapted to high temperature environments. However, traditional genetic improvement approaches may compromise productivity, necessitating the integration of epigenetic mechanisms and molecular biology techniques to achieve equilibrium between thermotolerance and production metrics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SOD | Superoxide Dismutase |
GPx | Glutathione Peroxidase |
MDA | Malondialdehyde |
TLRs | Toll-like Receptor |
MyD88 | Myeloid Differentiation Primary Response 88 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
MAFbx | Muscle Atrophy F-box protein |
PCK | Phosphoenolpyruvate Carboxykinase |
FBP1 | Fructose-1,6-bisphosphatase 1 |
PepT1 | Peptide Transporter 1 |
FATP1 | Fatty Acid Transport Protein 1 |
ACADL | Acyl-CoA Dehydrogenase, Long Chain |
ACOX | Acyl-CoA Oxidase |
Bu1+ B cells | Bursal Disease Virus Receptor 1-positive B cells |
CD3+ T cells | Cluster of Differentiation 3-positive T cells |
CD4+ T cells | Cluster of Differentiation 4-positive T helper cells |
CD8+ T cells | Cluster of Differentiation 8-positive cytotoxic T cells |
TBK1 | TANK-binding kinase 1 |
Bcl-2 | B-cell Lymphoma 2 |
IgG/IgM/IgA | Immunoglobulin G/M/A |
C3/C4 | Complement Component 3/4 |
TNF-α | Tumor Necrosis Factor-alpha |
IL-1β/IL-6/IL-10/IL-4 | Interleukin-1 beta/6/10/4 |
ROS | Reactive Oxygen Species |
HSP70/HSP27/HSP90 | Heat Shock Protein70/27/90 |
T-AOC | Total Antioxidant Capacity |
avUCP | Avian Uncoupling Protein |
sHSPs | Small heat shock proteins |
caspase-3/caspase-9 | Cysteine-dependent Aspartate-specific Protease-3/9 |
INF-γ | Interferon-gamma |
ABCG2 | ATP-Binding Cassette Subfamily G Member 2 |
SVCT-2 | Sodium-Dependent Vitamin C Transporter 2 |
Bax | Bcl-2-Associated X Protein |
mPTP | Mitochondrial Permeability Transition Pore |
Cyt c | Cytochrome C |
APAF-1 | Apoptotic Protease-Activating Factor 1 |
NOD | Nucleotide-binding Oligomerization Domain-containing protein |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
Keap1 | Kelch-like ECH-associated protein 1 |
MAPK | Mitogen-Activated Protein Kinase |
DAI | DNA-dependent activator of interferon |
CAT | Catalase |
IRAK-1 | Interleukin-1 Receptor-Associated Kinase 1 |
TRIF | TIR-domain-containing adapter-inducing interferon-β |
IRF3 | Interferon Regulatory Factor 3 |
IκBα | Inhibitor of Nuclear Factor Kappa B Alpha |
STAT3 | Signal Transducer and Activator of Transcription 3 |
CORT | Corticosterone |
GABA | Gamma-aminobutyric acid |
References
- Basiouni, S.; Tellez-Isaias, G.; Latorre, J.D.; Graham, B.D.; Petrone-Garcia, V.M.; El-Seedi, H.R.; Yalçın, S.; El-Wahab, A.A.; Visscher, C.; May-Simera, H.L.; et al. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet. Sci. 2023, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Assersohn, K.; Brekke, P.; Hemmings, N. Physiological factors influencing female fertility in birds. R. Soc. Open Sci. 2021, 8, 202274. [Google Scholar] [CrossRef] [PubMed]
- Ayo, J.O.; Obidi, J.A.; Rekwot, P.I. Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern Guinea savannah zone of Nigeria: A review. ISRN Vet. Sci. 2011, 2011, 838606. [Google Scholar] [CrossRef]
- Saelao, P.; Wang, Y.; Chanthavixay, G.; Yu, V.; Gallardo, R.A.; Dekkers, J.C.M.; Lamont, S.J.; Kelly, T.; Zhou, H. Distinct transcriptomic response to Newcastle disease virus infection during heat stress in chicken tracheal epithelial tissue. Sci. Rep. 2021, 11, 7450. [Google Scholar] [CrossRef]
- Mangan, M.; Siwek, M. Strategies to combat heat stress in poultry production-A review. J. Anim. Physiol. Anim. Nutr. 2024, 108, 576–595. [Google Scholar] [CrossRef]
- Kpomasse, C.C.; Oke, O.E.; Houndonougbo, F.M.; Tona, K. Broiler production challenges in the tropics: A review. Vet. Med. Sci. 2021, 7, 831–842. [Google Scholar] [CrossRef]
- Goel, A. Heat stress management in poultry. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1136–1145. [Google Scholar] [CrossRef]
- Barrett, N.W.; Rowland, K.; Schmidt, C.J.; Lamont, S.J.; Rothschild, M.F.; Ashwell, C.M.; Persia, M.E. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poult. Sci. 2019, 98, 6684–6692. [Google Scholar] [CrossRef]
- Liu, L.; Ren, M.; Ren, K.; Jin, Y.; Yan, M. Heat stress impacts on broiler performance: A systematic review and meta-analysis. Poult. Sci. 2020, 99, 6205–6211. [Google Scholar] [CrossRef]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Oluwagbenga, E.M.; Fraley, G.S. Heat stress and poultry production: A comprehensive review. Poult. Sci. 2023, 102, 103141. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.H. Effects of heat stress on the gut health of poultry. J. Anim. Sci. 2020, 98, skaa090. [Google Scholar] [CrossRef] [PubMed]
- Boni, R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev. 2019, 86, 1307–1323. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M. Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 2018, 76, 101–106. [Google Scholar] [CrossRef]
- Gu, X.H.; Hao, Y.; Wang, X.L. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poult. Sci. 2012, 91, 790–799. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, H.; Han, Y.; Yang, P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. Biology 2024, 13, 926. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Wu, X.; Yuan, S.; Dong, H.; Zhou, C.; Feng, S.; Zhao, Z.; Si, L. Chronic Heat Stress Induces Oxidative Stress and Induces Inflammatory Injury in Broiler Spleen via TLRs/MyD88/NF-κB Signaling Pathway in Broilers. Vet. Sci. 2024, 11, 293. [Google Scholar] [CrossRef]
- Kogame, T.; Kabashima, K.; Egawa, G. Putative Immunological Functions of Inducible Skin-Associated Lymphoid Tissue in the Context of Mucosa-Associated Lymphoid Tissue. Front. Immunol. 2021, 12, 733484. [Google Scholar] [CrossRef]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef]
- Niu, Z.; Liu, F.; Yan, Q.; Li, L. Effects of different levels of selenium on growth performance and immunocompetence of broilers under heat stress. Arch. Anim. Nutr. 2009, 63, 56–65. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Mansbridge, S.C.; Westbrook, C.A.; Woods, S.L.; Rose, S.P.; Whiting, I.M.; Yovchev, D.G.; Atanasov, A.G.; Kljak, K.; Staykova, G.P.; et al. Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. Arch. Anim. Nutr. 2020, 74, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef]
- Hui, L.; Diandong, H.; Baoxia, Z.; Da, W.; Hong, Y.; Xiaoyi, W. Serum proteomic profiling associated with immune system impaired by stress using ProteinChip technology. Neuroimmunomodulation 2007, 14, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, Y.K.; Lee, S.D.; Kim, S.H.; Lee, K.W. Physiological and behavioral responses of laying hens exposed to long-term high temperature. J. Therm. Biol. 2021, 99, 103017. [Google Scholar] [CrossRef]
- Al-Ramamneh, D.S.; Makagon, M.M.; Hester, P.Y. The ability of White Leghorn hens with trimmed comb and wattles to thermoregulate. Poult. Sci. 2016, 95, 1726–1735. [Google Scholar] [CrossRef]
- Brugaletta, G.; Teyssier, J.R.; Rochell, S.J.; Dridi, S.; Sirri, F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 2022, 13, 934381. [Google Scholar] [CrossRef]
- Li, X.; Bian, J.; Xing, T.; Zhao, L.; Li, J.; Zhang, L.; Gao, F. Effects of guanidinoacetic acid supplementation on growth performance, hypothalamus-pituitary-adrenal axis, and immunity of broilers challenged with chronic heat stress. Poult. Sci. 2023, 102, 103114. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Xing, T.; Li, J.; Zhang, L.; Zhao, L.; Gao, F. Effects of chronic heat stress on Ca(2+) homeostasis, apoptosis, and protein carbonylation profiles in the breast muscle of broilers. Poult. Sci. 2024, 103, 104342. [Google Scholar] [CrossRef]
- Fathi, M.M.; Galal, A.; Radwan, L.M.; Abou-Emera, O.K.; Al-Homidan, I.H. Using major genes to mitigate the deleterious effects of heat stress in poultry: An updated review. Poult. Sci. 2022, 101, 102157. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic Heat Stress Impairs the Quality of Breast-Muscle Meat in Broilers by Affecting Redox Status and Energy-Substance Metabolism. J. Agric. Food Chem. 2017, 65, 11251–11258. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult. Sci. 2021, 100, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Habashy, W.S.; Milfort, M.C.; Fuller, A.L.; Attia, Y.A.; Rekaya, R.; Aggrey, S.E. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. Int. J. Biometeorol. 2017, 61, 2111–2118. [Google Scholar] [CrossRef]
- Seo, Y.J.; Lim, C.; Lim, B.; Kim, J.M. Microbial-transcriptome integrative analysis of heat stress effects on amino acid metabolism and lipid peroxidation in poultry jejunum. Anim. Biotechnol. 2024, 35, 2331179. [Google Scholar] [CrossRef]
- Tang, L.P.; Liu, Y.L.; Ding, K.N.; Hou, X.J.; Qin, J.J.; Zhang, Y.A.; Liu, H.X.; Shen, X.L.; He, Y.M. Chai Hu oral liquid enhances the immune functions of both spleen and bursa of Fabricius in heat-stressed broilers through strengthening TLR4-TBK1 signaling pathway. Poult. Sci. 2021, 100, 101302. [Google Scholar] [CrossRef]
- Calefi, A.S.; de Siqueira, A.; Namazu, L.B.; Costola-de-Souza, C.; Honda, B.B.; Ferreira, A.J.; Quinteiro-Filho, W.M.; da Silva Fonseca, J.G.; Palermo-Neto, J. Effects of heat stress on the formation of splenic germinal centres and immunoglobulins in broilers infected by Clostridium perfringens type A. Vet. Immunol. Immunopathol. 2016, 171, 38–46. [Google Scholar] [CrossRef]
- Habibian, M.; Ghazi, S.; Moeini, M.M.; Abdolmohammadi, A. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int. J. Biometeorol. 2014, 58, 741–752. [Google Scholar] [CrossRef]
- Sun, S.; Li, B.; Wu, M.; Deng, Y.; Li, J.; Xiong, Y.; He, S. Effect of dietary supplemental vitamin C and betaine on the growth performance, humoral immunity, immune organ index, and antioxidant status of broilers under heat stress. Trop. Anim. Health Prod. 2023, 55, 96. [Google Scholar] [CrossRef]
- Bartlett, J.R.; Smith, M.O. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 2003, 82, 1580–1588. [Google Scholar] [CrossRef]
- Honda, B.T.; Calefi, A.S.; Costola-de-Souza, C.; Quinteiro-Filho, W.M.; da Silva Fonseca, J.G.; de Paula, V.F.; Palermo-Neto, J. Effects of heat stress on peripheral T and B lymphocyte profiles and IgG and IgM serum levels in broiler chickens vaccinated for Newcastle disease virus. Poult. Sci. 2015, 94, 2375–2381. [Google Scholar] [CrossRef]
- Rocchi, A.J.; Santamaria, J.M.; Beck, C.N.; Sales, M.A.; Hargis, B.M.; Tellez-Isaias, G.; Erf, G.F. The Immuno-Suppressive Effects of Cyclic, Environmental Heat Stress in Broiler Chickens: Local and Systemic Inflammatory Responses to an Intradermal Injection of Lipopolysaccharide. Vet. Sci. 2023, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.H.; Yong, Y.H.; Xu, H.J.; An, L.I.; Xu, Y. Impacts of heat stress on baseline immune measures and a subset of T cells in Bama miniature pigs. Livest. Sci. 2011, 135, 289–292. [Google Scholar]
- Huo, C.; Xiao, C.; She, R.; Liu, T.; Tian, J.; Dong, H.; Tian, H.; Hu, Y. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microb. Pathog. 2019, 136, 103672. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Li, M.; Sun, Y.; Liao, Y.; Wu, X.; Zhong, R.; Chen, L.; Zhang, H. Effects of chronic heat stress on the immunophenotyping of lymphocytes in immune organs of growing pigs. J. Anim. Sci. 2022, 100, skac317. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Liu, F.Z.; Yan, Q.L.; Li, W.C. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poult. Sci. 2009, 88, 2101–2107. [Google Scholar] [CrossRef]
- Akinyemi, F.; Adewole, D. Effects of brown seaweed products on growth performance, plasma biochemistry, immune response, and antioxidant capacity of broiler chickens challenged with heat stress. Poult. Sci. 2022, 101, 102215. [Google Scholar] [CrossRef]
- Hu, J.Y.; Mohammed, A.A.; Murugesan, G.R.; Cheng, H.W. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult. Sci. 2022, 101, 101769. [Google Scholar] [CrossRef]
- He, S.; Yu, Q.; He, Y.; Hu, R.; Xia, S.; He, J. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poult. Sci. 2019, 98, 6378–6387. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Calefi, A.S.; Cruz, D.S.G.; Aloia, T.P.A.; Zager, A.; Astolfi-Ferreira, C.S.; Piantino Ferreira, J.A.; Sharif, S.; Palermo-Neto, J. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Vet. Immunol. Immunopathol. 2017, 186, 19–28. [Google Scholar] [CrossRef]
- Hassan, S.; Habashy, W.; Ghoname, M.; Elnaggar, A. Blood hematology and biochemical of four laying hen strains exposed to acute heat stress. Int. J. Biometeorol. 2023, 67, 675–686. [Google Scholar] [CrossRef]
- Li, Q.; Ouyang, J.; Deng, C.; Zhou, H.; You, J.; Li, G. Effects of dietary tryptophan supplementation on rectal temperature, humoral immunity, and cecal microflora composition of heat-stressed broilers. Front. Vet. Sci. 2023, 10, 1247260. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tan, G.Y.; Fu, Y.Q.; Feng, J.H.; Zhang, M.H. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Aengwanich, W.; Wandee, J. The effect of increased ambient temperature on Hsp70, superoxide dismutase, nitric oxide, malondialdehyde, and caspase activity in relation to the intrinsic and extrinsic apoptosis pathway of broiler blood cells. J. Therm. Biol. 2022, 105, 103211. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, M.; Zheng, S.; Xie, P.; Ma, A. Effects of high temperature on multiple parameters of broilers in vitro and in vivo. Poult. Sci. 2008, 87, 2133–2139. [Google Scholar] [CrossRef]
- Brannan, K.E.; Helfrich, K.K.; Flentke, G.R.; Smith, S.M.; Livingston, K.A.; Jansen van Rensburg, C. Influence of incubation, diet, and sex on avian uncoupling protein expression and oxidative stress in market age broilers following exposure to acute heat stress. Poult. Sci. 2022, 101, 101748. [Google Scholar] [CrossRef]
- Liu, L.L.; He, J.H.; Xie, H.B.; Yang, Y.S.; Li, J.C.; Zou, Y. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 2014, 93, 54–62. [Google Scholar] [CrossRef]
- Mao, Y.; Kong, X.; Liang, Z.; Yang, C.; Wang, S.; Fan, H.; Ning, C.; Xiao, W.; Wu, Y.; Wu, J.; et al. Viola yedoensis Makino alleviates heat stress-induced inflammation, oxidative stress, and cell apoptosis in the spleen and thymus of broilers. J. Ethnopharmacol. 2024, 319, 117350. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Li, S.; Wu, Q.; Guo, H.; Wang, H.; Su, P.; Wang, J. Research Note: Heat stress affects immune and oxidative stress indices of the immune organs of broilers by changing the expressions of adenosine triphosphate-binding cassette subfamily G member 2, sodium-dependent vitamin C transporter-2, and mitochondrial calcium uniporter. Poult. Sci. 2023, 102, 102814. [Google Scholar]
- Zhang, C.; Chen, K.; Zhao, X.; Geng, Z. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis. J. Sci. Food Agric. 2018, 98, 5409–5417. [Google Scholar] [CrossRef]
- Xu, D.; Li, B.; Cao, N.; Li, W.; Tian, Y.; Huang, Y. The protective effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on the chicken spleen under heat stress via antagonizing apoptosis and restoring the immune function. Oncotarget 2017, 8, 70394–70405. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Deng, J.; Xiao, D.; Arowolo, M.A.; Liu, C.; Chen, L.; Deng, W.; He, S.; He, J. Protective Effects and Potential Mechanisms of Dietary Resveratrol Supplementation on the Spleen of Broilers Under Heat Stress. Front. Nutr. 2022, 9, 821272. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wu, G.; Wang, Z.; Huang, F.; Ning, Z.; Chu, L.; Yang, S.; Lv, Q.; Hu, J. Effects of Taurine on Broiler Aortic Endothelial Apoptosis Induced by Heat Stress. Adv. Exp. Med. Biol. 2019, 1155, 391–406. [Google Scholar] [PubMed]
- Guo, X.; Ma, A.; Huang, Z.; Wang, X.A.; Yang, K.; Liu, Z.; Zhang, J.; Cui, W. Molecular characterization of ubiquitin-conjugating enzyme gene ube2h and siRNA-mediated regulation on targeting p53 in turbot, Scophthalmus maximus. J. Therm. Biol. 2021, 99, 102938. [Google Scholar] [CrossRef]
- Ma, D.; Liu, Q.; Zhang, M.; Feng, J.; Li, X.; Zhou, Y.; Wang, X. iTRAQ-based quantitative proteomics analysis of the spleen reveals innate immunity and cell death pathways associated with heat stress in broilers (Gallus gallus). J. Proteomics 2019, 196, 11–21. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, S.; He, Y.; Tang, J.; Pu, J.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; et al. Hydroxy-Selenomethionine Mitigated Chronic Heat Stress-Induced Porcine Splenic Damage via Activation of Nrf2/Keap1 Signal and Suppression of NFκb and STAT Signal. Int. J. Mol. Sci. 2023, 24, 6461. [Google Scholar] [CrossRef]
- Wang, L.I.; Liu, F.; Luo, Y.; Zhu, L.; Li, G. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomed. Rep. 2015, 3, 425–429. [Google Scholar] [CrossRef]
- Liu, W.C.; Zhuang, D.P.; Zhao, Y.; Balasubramanian, B.; Zhao, Z.H. Seaweed-Derived Polysaccharides Attenuate Heat Stress-Induced Splenic Oxidative Stress and Inflammatory Response via Regulating Nrf2 and NF-κB Signaling Pathways. Mar. Drug 2022, 20, 358. [Google Scholar] [CrossRef]
- Badr, G.; Ramadan, N.K.; Abdel-Tawab, H.S.; Ahmed, S.F.; Mahmoud, M.H. Camel whey protein protects lymphocytes from apoptosis via the PI3K-AKT, NF-κB, ATF-3, and HSP-70 signaling pathways in heat-stressed male mice. Biochem. Cell Biol. 2018, 96, 407–416. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, M.; Feng, J. Dietary Peppermint Extract Inhibits Chronic Heat Stress-Induced Activation of Innate Immunity and Inflammatory Response in the Spleen of Broiler Chickens. Animals 2024, 14, 1157. [Google Scholar] [CrossRef]
- Ding, M.; Yu, Y.; Zhu, Z.; Tian, H.; Guo, Y.; Zan, R.; Tian, Y.; Jiang, R.; Li, K.; Sun, G.; et al. Regulation of the MyD88 gene in chicken spleen inflammation induced by stress. J. Anim. Sci. 2023, 101, skad060. [Google Scholar] [CrossRef] [PubMed]
- Nanto-Hara, F.; Ohtsu, H.; Yamazaki, M.; Hirakawa, T.; Sato, K.; Murakami, H. Effects of Dietary Brown Rice on the Growth Performance, Systemic Oxidative Status, and Splenic Inflammatory Responses of Broiler Chickens under Chronic Heat Stress. J. Poult. Sci. 2021, 58, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, S.; Ma, Y.; Bai, X.Y.; Chen, X. Role of Toll-like receptors in diabetic renal lesions in a miniature pig model. Sci. Adv. 2015, 1, e1400183. [Google Scholar] [CrossRef]
- Lee, W.; Moon, M.; Kim, H.G.; Lee, T.H.; Oh, M.S. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J. Neuroinflamm. 2015, 12, 102. [Google Scholar] [CrossRef]
- Gouda, A.; Tolba, S.; Mahrose, K.; Felemban, S.G.; Khafaga, A.F.; Khalifa, N.E.; Jaremko, M.; Moustafa, M.; Alshaharni, M.O.; Algopish, U.; et al. Heat shock proteins as a key defense mechanism in poultry production under heat stress conditions. Poult. Sci. 2024, 103, 103537. [Google Scholar] [CrossRef]
- Alzarah, M.I.; Althobiati, F.; Abbas, A.O.; Mehaisen, G.M.K.; Kamel, N.N. Citrullus colocynthis Seeds: A Potential Natural Immune Modulator Source for Broiler Reared under Chronic Heat Stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of Feeding Different Postbiotics Produced by Lactobacillus plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers under Heat Stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Z. The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress. J. Anim. Physiol. Anim. Nutr. 2016, 100, 768–777. [Google Scholar] [CrossRef]
- Ouchi, Y.; Tanizawa, H.; Shiraishi, J.I.; Cockrem, J.F.; Chowdhury, V.S.; Bungo, T. Repeated thermal conditioning during the neonatal period affects behavioral and physiological responses to acute heat stress in chicks. J. Therm. Biol. 2020, 94, 102759. [Google Scholar] [CrossRef]
- McQueen, A.; Klaassen, M.; Tattersall, G.J.; Atkinson, R.; Jessop, R.; Hassell, C.J.; Christie, M.; Symonds, M.R.E. Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds. Nat. Commun. 2022, 13, 4727. [Google Scholar] [CrossRef]
- Shi, S.; Shao, D.; Yang, L.; Liang, Q.; Han, W.; Xue, Q.; Qu, L.; Leng, L.; Li, Y.; Zhao, X.; et al. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. J. Adv. Res. 2023, 47, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 82-83, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J. Dairy. Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Stiening, C.M.; Pollard, B.C.; VanBaale, M.J.; Baumgard, L.H.; Gentry, P.C.; Coussens, P.M. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J. Anim. Sci. 2006, 84 (Suppl. S13), E1–E13. [Google Scholar] [CrossRef]
- Jing, J.; Zeng, H.; Shao, Q.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; et al. Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox Biol. 2023, 67, 102912. [Google Scholar] [CrossRef]
Indicator Changes | Key Pathways | Mitigation Strategies | |
---|---|---|---|
Organization Structure | Spleen index ↓ [17] Number of parenchymal cells ↓ [17] | -- | -- |
Physiological Effects | Respiratory rate ↑ [24] Vasodilation [25,26] | Hypothalamic–Pituitary–Adrenal Axis [27] | GAA [27] |
Adrenocortical Hormones ↑ [27] Cortisol ↑ [27] Blood glucose ↑ [30] | |||
Splenic germinal center formation ↓ [35] Splenic lymphocytes ↓ [36] | TLR4-TBK1 [35] | Tryptophan [51] GABA [78] | |
Proportion of B lymphocytes ↓ [40] | |||
IgG ↑ [46] IgM ↑ [46] C3 ↓ [47] | |||
Molecular Mechanism | ROS ↑ [52] SOD ↑ [53]/↓ [17] | Mitochondrial electron transport chain [54] | SeO [66] CWP [69] Citrullus colocynthis seeds [76] Resveratrol [48] Seaweed Polysaccharides [68] Mentha piperita [70] |
Bax/Bcl-2 ↑ [61,62] | Mitochondria-dependent apoptosis pathway [60,61] | ||
IL-4 ↓ [17], IL-6 ↑ [17], TNF-α ↑ [17], DAI ↑ [70] | TLR2/4-MyD88-NF-κB [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Ma, L.; Liu, L.; Guan, D.; Zhu, Z.; Hu, X. Molecular Pathogenesis of Avian Splenic Injury Under Thermal Challenge: Integrated Mitigation Strategies for Poultry Heat Stress. Curr. Issues Mol. Biol. 2025, 47, 410. https://doi.org/10.3390/cimb47060410
Liu Q, Ma L, Liu L, Guan D, Zhu Z, Hu X. Molecular Pathogenesis of Avian Splenic Injury Under Thermal Challenge: Integrated Mitigation Strategies for Poultry Heat Stress. Current Issues in Molecular Biology. 2025; 47(6):410. https://doi.org/10.3390/cimb47060410
Chicago/Turabian StyleLiu, Qing, Lizhen Ma, Lili Liu, Ding Guan, Zhen Zhu, and Xiangjun Hu. 2025. "Molecular Pathogenesis of Avian Splenic Injury Under Thermal Challenge: Integrated Mitigation Strategies for Poultry Heat Stress" Current Issues in Molecular Biology 47, no. 6: 410. https://doi.org/10.3390/cimb47060410
APA StyleLiu, Q., Ma, L., Liu, L., Guan, D., Zhu, Z., & Hu, X. (2025). Molecular Pathogenesis of Avian Splenic Injury Under Thermal Challenge: Integrated Mitigation Strategies for Poultry Heat Stress. Current Issues in Molecular Biology, 47(6), 410. https://doi.org/10.3390/cimb47060410