Niacin and Stroke: The Role of Supplementation and Emerging Concepts in Clinical Practice, a Narrative Review
Abstract
:1. Introduction
2. The Traditional Use of Niacin for Stroke Prevention
2.1. Niacin and Lipid Modulation
2.2. Niacin Supplementation vs. Dietary Niacin for Stroke Prevention
2.3. Niacin in Combination with Statins for Lowering Stroke Risk
2.4. AIM-HIGH Trial
2.5. HPS2-THRIVE Trial
3. The Case Against Niacin for Stroke Prevention
3.1. Considerations for Niacin Increasing Stroke Risk
3.2. Niacin’s Metabolism Regulations
3.3. Fluctuations in Blood Pressure
3.4. Terminal Metabolites 2PY and 4PY
3.5. The Role of Niacin in Patients with Pre-Existing Cardiovascular Disease
3.6. Dietary Niacin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Office of Dietary Supplements-Niacin. Available online: https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/ (accessed on 28 December 2024).
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK114310/ (accessed on 28 December 2024).
- Freese, R.; Lysne, V. Niacin-a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 10–29219. [Google Scholar] [CrossRef] [PubMed]
- 13-CRNVMS3-NIACIN. Available online: https://www.crnusa.org/sites/default/files/files/resources/13-CRNVMS3-NIACIN.pdf (accessed on 28 December 2024).
- Peechakara, B.V.; Gupta, M. Vitamin B3. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: http://www.ncbi.nlm.nih.gov/books/NBK526107/ (accessed on 28 December 2024).
- Makarov, M.V.; Trammell, S.A.J.; Migaud, M.E. The chemistry of the vitamin B3 metabolome. Biochem. Soc. Trans. 2019, 47, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.S. PGD2 DP1 receptor stimulation following stroke ameliorates cerebral blood flow and outcomes. Neuroscience 2014, 279, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Kuvin, J.T.; Rämet, M.E.; Patel, A.R.; Pandian, N.G.; Mendelsohn, M.E.; Karas, R.H. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: Enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am. Heart J. 2002, 144, 165–172. [Google Scholar] [CrossRef]
- Zhu, J.; Song, W.; Li, L.; Fan, X. Endothelial nitric oxide synthase: A potential therapeutic target for cerebrovascular diseases. Mol. Brain. 2016, 9, 30. [Google Scholar] [CrossRef]
- Wu, B.J.; Yan, L.; Charlton, F.; Witting, P.; Barter, P.J.; Rye, K.A. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 968–975. [Google Scholar] [CrossRef]
- Mineo, C.; Deguchi, H.; Griffin, J.H.; Shaul, P.W. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006, 98, 1352–1364. [Google Scholar] [CrossRef]
- Grysiewicz, R.A.; Thomas, K.; Pandey, D.K. Epidemiology of Ischemic and Hemorrhagic Stroke: Incidence, Prevalence, Mortality, and Risk Factors. Neurol. Clin. 2008, 26, 871–895. [Google Scholar] [CrossRef]
- Djadjo, S.; Bajaj, T. Niacin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: http://www.ncbi.nlm.nih.gov/books/NBK541036/ (accessed on 29 December 2024).
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef]
- Park, K.H.; Park, W.J. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J. Korean Med Sci. 2015, 30, 1213–1225. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in Atherosclerosis: From Pathophysiology to Practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Pratico, D.; Lin, L.; Mantzoros, C.S.; Bahijri, S.; Tuomilehto, J.; Ren, J. Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 2024, 15, 817. [Google Scholar] [CrossRef]
- Tadi, P.; Lui, F. Acute Stroke. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: http://www.ncbi.nlm.nih.gov/books/NBK535369/ (accessed on 29 December 2024).
- Dopler, B. Stroke Prevention. Del. J. Public Health. 2023, 9, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. Role of Blood Lipid Levels and Lipid-Lowering Therapy in Stroke Patients with Different Levels of Cerebral Artery Diseases: Reconsidering Recent Stroke Guidelines. J. Stroke 2021, 23, 149–161. [Google Scholar] [CrossRef]
- Superko, H.R.; Zhao, X.Q.; Hodis, H.N.; Guyton, J.R. Niacin and heart disease prevention: Engraving its tombstone is a mistake. J. Clin. Lipidol. 2017, 11, 1309–1317. [Google Scholar] [CrossRef]
- Sahebkar, A. Effect of niacin on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Vasc. Med. 2014, 19, 54–66. [Google Scholar] [CrossRef]
- Berge, K.G.; Canner, P.L. Coronary drug project: Experience with niacin. Coronary Drug Project Research Group. Eur. J. Clin. Pharmacol. 1991, 40 (Suppl. S1), S49–S51. [Google Scholar] [CrossRef]
- Levy, D.R.; Pearson, T.A. Combination niacin and statin therapy in primary and secondary prevention of cardiovascular disease. Clin. Cardiol. 2005, 28, 317–320. [Google Scholar] [CrossRef]
- Altschul, R.; Hoffer, A.; Stephen, J.D. Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. Biophys. 1955, 54, 558–559. [Google Scholar] [CrossRef]
- Russman, A.N.; Silver, B.; Katramados, A.; Chopp, M.; Burmeister, C.; Schultz, L.; Mitsias, P. A phase IIa double-blind, placebo controlled study of extended-release niacin for stroke recovery. Stroke 2018, 49 (Suppl. S1), WP156. [Google Scholar] [CrossRef]
- D’Andrea, E.; Hey, S.P.; Ramirez, C.L.; Kesselheim, A.S. Assessment of the Role of Niacin in Managing Cardiovascular Disease Outcomes: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e192224. [Google Scholar] [CrossRef] [PubMed]
- Guyton, J.R.; Slee, A.E.; Anderson, T.; Fleg, J.L.; Goldberg, R.B.; Kashyap, M.L.; Marcovina, S.M.; Nash, S.D.; O’Brien, K.D.; Weintraub, W.S.; et al. Relationship of lipoproteins to cardiovascular events: The AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes). J. Am. Coll. Cardiol. 2013, 62, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
- HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: Trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 2013, 34, 1279–1291. [Google Scholar] [CrossRef]
- Ferrell, M.; Wang, Z.; Anderson, J.T.; Li, X.S.; Witkowski, M.; DiDonato, J.A.; Hilser, J.R.; Hartiala, J.A.; Haghikia, A.; Cajka, T.; et al. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat. Med. 2024, 30, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Kamanna, V.S.; Kashyap, M.L. Mechanism of Action of Niacin. Am. J. Cardiol. 2008, 101, S20–S26. [Google Scholar] [CrossRef]
- Birjmohun, R.S.; Hutten, B.A.; Kastelein, J.J.P.; Stroes, E.S.G. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds. J. Am. Coll. Cardiol. 2005, 45, 185–197. [Google Scholar] [CrossRef]
- Feingold, K.R. Triglyceride Lowering Drugs. In Endotext; Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., Herder, W., Dhatariya, K., Dungan, K., Hofland, J., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; Available online: http://www.ncbi.nlm.nih.gov/books/NBK425699/ (accessed on 22 December 2024).
- McKenney, J. Niacin for dyslipidemia: Considerations in product selection. Am. J. Health Syst. Pharm. 2003, 60, 995–1005. [Google Scholar] [CrossRef]
- Navab, M.; Reddy, S.T.; Van Lenten, B.J.; Fogelman, A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 2011, 8, 222–232. [Google Scholar] [CrossRef]
- Capuzzi, D.M.; Morgan, J.M.; Brusco, O.A.; Intenzo, C.M. Niacin dosing: Relationship to benefits and adverse effects. Curr. Atheroscler. Rep. 2000, 2, 64–71. [Google Scholar] [CrossRef]
- Guyton, J.R.; Bays, H.E. Safety Considerations with Niacin Therapy. Am. J. Cardiol. 2007, 99, S22–S31. [Google Scholar] [CrossRef]
- AIM-HIGH Investigators; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar] [PubMed]
- Haynes, R.; Valdes-Marquez, E.; Hopewell, J.C.; Chen, F.; Li, J.; Parish, S.; Landray, M.; Armitage, J. Serious Adverse Effects of Extended-release Niacin/Laropiprant: Results from the Heart Protection Study 2–Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) Trial. Clin. Ther. 2019, 41, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Etchason, J.A.; Miller, T.D.; Squires, R.W.; Allison, T.G.; Gau, G.T.; Marttila, J.K.; Kottke, B.A. Niacin-Induced Hepatitis: A Potential Side Effect with Low-Dose Time-Release Niacin. Mayo Clin. Proc. 1991, 66, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.K.; Goldstein, L.B.; Chaitman, B.R.; Grant, S.; Weintraub, W.S.; Anderson, D.C.; Sila, C.A.; Cruz-Flores, S.; Padley, R.J.; Kostuk, W.J.; et al. Extended-Release Niacin Therapy and Risk of Ischemic Stroke in Patients with Cardiovascular Disease: The Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcome (AIM–HIGH) Trial. Stroke 2013, 44, 2688–2693. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshino, J. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy. BioEssays 2017, 39, 1600227. [Google Scholar] [CrossRef]
- Katsyuba, E.; Romani, M.; Hofer, D.; Auwerx, J. NAD+ homeostasis in health and disease. Nat. Metab. 2020, 2, 9–31. [Google Scholar] [CrossRef]
- Roberti, A.; Fernández, A.F.; Fraga, M.F. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Mol. Metab. 2021, 45, 101165. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Jacobson, T.A. Effects of Niacin on Glucose Control in Patients with Dyslipidemia. Mayo Clin. Proc. 2008, 83, 470–478. [Google Scholar] [CrossRef]
- Effects of NAD+ Precursors on Blood Pressure, C-Reactive Protein Concentration and Carotid Intima-Media Thickness: A Meta-Analysis of Randomized Controlled Trials-Lei-2023-European Journal of Clinical Investigation-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/eci.14078 (accessed on 23 December 2024).
- Bays, H.E.; Rader, D.J. Does nicotinic acid (niacin) lower blood pressure? Int. J. Clin. Pract. 2009, 63, 151–159. [Google Scholar] [CrossRef]
- Zeman, M.; Vecka, M.; Perlík, F.; Staňková, B.; Hromádka, R.; Tvrzická, E.; Širc, J.; Hrib, J.; Žák, A. Pleiotropic effects of niacin: Current possibilities for its clinical use. Acta Pharm. 2016, 66, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Ganji, S.H.; Qin, S.; Zhang, L.; Kamanna, V.S.; Kashyap, M.L. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 2009, 202, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, M.; Zhou, C.; He, P.; Zhang, Y.; Li, H.; Li, Q.; Liu, C.; Qin, X. Evaluation of Dietary Niacin and New-Onset Hypertension Among Chinese Adults. JAMA Netw. Open 2021, 4, e2031669. [Google Scholar] [CrossRef]
- Maciejewski-Lenoir, D.; Richman, J.G.; Hakak, Y.; Gaidarov, I.; Behan, D.P.; Connolly, D.T. Langerhans Cells Release Prostaglandin D2 in Response to Nicotinic Acid. J. Invest. Dermatol. 2006, 126, 2637–2646. [Google Scholar] [CrossRef] [PubMed]
- Digby, J.E.; Ruparelia, N.; Choudhury, R.P. Niacin in Cardiovascular Disease: Recent Preclinical and Clinical Developments. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 582–588. [Google Scholar] [CrossRef]
- Schandelmaier, S.; Briel, M.; Saccilotto, R.; Olu, K.K.; Arpagaus, A.; Hemkens, L.G.; Nordmann, A.J. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database. Syst. Rev. 2017, 6, CD009744. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M. Niacin and HDL Cholesterol—Time to Face Facts. N. Engl. J. Med. 2014, 371, 271–273. [Google Scholar] [CrossRef]
- The HPS2-THRIVE Collaborative Group. Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Aparicio-Ugarriza, R.; Olza, J.; Aranceta, J.; Gil, Á.; Ortega, R.M.; Serra-MajemL.; Varela-Moreiras; González-Gross, M. Dietary Intake and Food Sources of Niacin, Riboflavin, Thiamin and Vitamin B6 in a Representative Sample of the Spanish Population. The ANIBES Study. Nutrients 2018, 10, 846. [Google Scholar] [CrossRef]
- Koh, Y.; Bidstrup, H.; Nichols, D.L. Niacin increased glucose, insulin, and C-peptide levels in sedentary nondiabetic postmenopausal women. Int. J. Womens Health 2014, 6, 913–920. [Google Scholar] [CrossRef]
- Hu, M.; Yang, Y.L.; Ng, C.F.; Lee, C.P.; Lee, V.W.Y.; Hanada, H.; Masuda, D.; Yamashita, S.; Tomlinson, B. Effects of phenotypic and genotypic factors on the lipid responses to niacin in Chinese patients with dyslipidemia. Medicine 2015, 94, e881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Adverse Effects of Niacin: Possible Increase to Stroke Risk | |||
---|---|---|---|
Author | Groups Studied and Intervention | Results and Findings | Conclusions |
Zhang Z et al. 2021. [51] | Dietary intake of niacin in Chinese adults. | J-shaped association with dietary niacin and new-onset hypertension, with the inflection point at 15.6 mg/d. | While niacin has beneficial vasodilatory properties, it is possible too much daily dietary niacin can cause new-onset hypertension not seen in supplemental niacin. |
HPS2-THRIVE Collaborative. 2014. [56] | Different types of niacin therapy in adults with pre-existing cardiovascular disease. | While niacin therapy increased HDL and decreased LDL, niacin-laropiprant was associated with increase incidences of decreased diabetes control, increased diabetes diagnoses, increased serious adverse events in the gastrointestinal system and musculoskeletal system, increased infection, increased bleeding risk. | Adding niacin plus laropiprant to a statin-based therapy did not decrease the risk of major vascular events in patients with pre-existing cardiovascular disease but increased the risk of serious adverse events. |
AIM-HIGH Investigators. 2011. [39] | Patients over 45 years old with pre-existing cardiovascular disease and low-baseline HDL and LDL levels. These patients had Niacin added to their Simvastatin regimen to determine if niacin had any cardiovascular significance. | Among these patients there was no significant benefit to adding niacin to the statin therapy, even though there were improvements to HDL cholesterol and triglycerides. There was also an unexpected rise in the number of ischemic strokes in the niacin-added group. | The overall rate of strokes was low in the niacin group but the number was higher than that of the placebo group. While no evidence can be found from this study about the correlation between niacin and ischemic stroke, there is now reason for this finding to be examined further in the future. |
Koh Y et al. 2014. [58] | The effect of niacin therapy in sedentary nondiabetic postmenopausal women. | Niacin significantly increased glucose, insulin, and C-peptide levels. | While it has been known that niacin has tolerable effects in certain populations, this study shows that niacin use in certain populations can have more serious effects. When prescribing niacin to different populations, caution should be taken. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaye, A.D.; Coffman, G.D.; Mashaw, S.A.; Thomassen, A.S.; Broocks, K.M.; Anwar, A.I.; Ahmadzadeh, S.; Shekoohi, S. Niacin and Stroke: The Role of Supplementation and Emerging Concepts in Clinical Practice, a Narrative Review. Curr. Issues Mol. Biol. 2025, 47, 400. https://doi.org/10.3390/cimb47060400
Kaye AD, Coffman GD, Mashaw SA, Thomassen AS, Broocks KM, Anwar AI, Ahmadzadeh S, Shekoohi S. Niacin and Stroke: The Role of Supplementation and Emerging Concepts in Clinical Practice, a Narrative Review. Current Issues in Molecular Biology. 2025; 47(6):400. https://doi.org/10.3390/cimb47060400
Chicago/Turabian StyleKaye, Alan D., Grant D. Coffman, Sydney A. Mashaw, Austin S. Thomassen, Kalob M. Broocks, Ahmed I. Anwar, Shahab Ahmadzadeh, and Sahar Shekoohi. 2025. "Niacin and Stroke: The Role of Supplementation and Emerging Concepts in Clinical Practice, a Narrative Review" Current Issues in Molecular Biology 47, no. 6: 400. https://doi.org/10.3390/cimb47060400
APA StyleKaye, A. D., Coffman, G. D., Mashaw, S. A., Thomassen, A. S., Broocks, K. M., Anwar, A. I., Ahmadzadeh, S., & Shekoohi, S. (2025). Niacin and Stroke: The Role of Supplementation and Emerging Concepts in Clinical Practice, a Narrative Review. Current Issues in Molecular Biology, 47(6), 400. https://doi.org/10.3390/cimb47060400