Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Begonia semperflorens Reveals Promising Candidates for Heat Tolerance
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Gene Family Members
2.2. Localization and Numbering of BsHSFs
2.3. Physicochemical Properties
2.4. Phylogenetic Tree Construction
2.5. Collinearity Analysis
2.6. Gene Structure Analysis
2.7. Conserved Motif and Domain Analysis
2.8. Cis-Acting Element Analysis in the Promoter Region
2.9. Plant Materials and Treatment
2.10. RNA Extraction and Real-Time Quantitative PCR Analysis
3. Results
3.1. Identification and Physicochemical Characterization of the BsHSF Gene Family
3.2. Localization of BsHSF Genes
3.3. Phylogenetic Analysis of BsHSF
3.4. Protein Motifs and Gene Structure of BsHSF Genes
3.5. Analysis of Cis-Acting Elements in the Promoters of BsHSF Genes
3.6. Gene Duplication Events and Collinearity of BsHSF Genes
3.7. Expression Patterns of BsHSF Genes in Different Tissues
3.8. Expression Patterns of BsHSF Genes Under Heat Stress Treatment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tebbitt, M. Begonias: Cultivation, Natural History, and Identification; Timber Press: Portland, OR, USA, 2005. [Google Scholar]
- Lim, T. Begonia cucullata var. cucullata. In Edible Medicinal and Non-Medicinal Plants: Volume 7, Flowers; Springer: Dordrecht, The Netherlands, 2014; pp. 551–555. [Google Scholar]
- Qu, A.-L.; Ding, Y.-F.; Jiang, Q.; Zhu, C. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 2013, 432, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Koyama, T. Regulatory mechanisms of transcription factors in plant morphology and function. Int. J. Mol. Sci. 2023, 24, 7039. [Google Scholar] [CrossRef] [PubMed]
- Ohama, N.; Kusakabe, K.; Mizoi, J.; Zhao, H.; Kidokoro, S.; Koizumi, S.; Takahashi, F.; Ishida, T.; Yanagisawa, S.; Shinozaki, K. The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 2016, 28, 181–201. [Google Scholar] [CrossRef]
- Panchuk, I.I.; Volkov, R.A.; Schöffl, F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 2002, 129, 838–853. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.-H.; Ma, X.; Luo, D.-X.; Gong, Z.-H.; Lu, M.-H. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 2016, 7, 114. [Google Scholar] [CrossRef]
- Song, X.; Liu, G.; Duan, W.; Liu, T.; Huang, Z.; Ren, J.; Li, Y.; Hou, X. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Mol. Genet. Genom. 2014, 289, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Scharf, K.-D.; Berberich, T.; Ebersberger, I.; Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2012, 1819, 104–119. [Google Scholar] [CrossRef]
- Li, W.; Wan, X.-L.; Yu, J.-Y.; Wang, K.-L.; Zhang, J. Genome-wide identification, classification, and expression analysis of the Hsf gene family in carnation (Dianthus caryophyllus). Int. J. Mol. Sci. 2019, 20, 5233. [Google Scholar] [CrossRef]
- Kang, Y.; Sun, P.; Yang, Y.; Li, M.; Wang, H.; Sun, X.; Jin, W. Genome-Wide Analysis of the Hsf Gene Family in Rosa chinensis and RcHsf17 Function in Thermotolerance. Int. J. Mol. Sci. 2025, 26, 287. [Google Scholar] [CrossRef]
- Guo, S.; Chen, H.; Wu, H.; Xu, Z.; Yang, H.; Lin, Q.; Feng, H.; Zeng, Z.; Wang, S.; Liu, H.; et al. Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Betula platyphylla Reveals Promising Candidates for Heat Tolerance. Int. J. Mol. Sci. 2025, 26, 172. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Xu, Z.; Kong, Y.; Yang, L.; Dou, H.; Zhang, D.; Li, M.; Chen, Y.; Ding, S.; Yang, C.; et al. Genome-Wide Identification of the Heat Shock Transcription Factor Gene Family in Rosemary (Salvia rosmarinus). Horticulturae 2024, 10, 1250. [Google Scholar] [CrossRef]
- Zhao, S.; Qing, J.; Yang, Z.; Tian, T.; Yan, Y.; Li, H.; Bai, Y.E. Genome-Wide Identification and Expression Analysis of the HSF Gene Family in Ammopiptanthus mongolicus. Curr. Issues Mol. Biol. 2024, 46, 11375–11393. [Google Scholar] [CrossRef]
- Yu, T.; Bai, Y.; Liu, Z.; Wang, Z.; Yang, Q.; Wu, T.; Feng, S.; Zhang, Y.; Shen, S.; Li, Q. Large-scale analyses of heat shock transcription factors and database construction based on whole-genome genes in horticultural and representative plants. Hortic. Res. 2022, 9, uhac035. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Niu, C.-Y.; Yang, C.-R.; Jinn, T.-L. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 2016, 172, 1182–1199. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, A.; Yabuta, Y.; Yoshida, E.; Maruta, T.; Yoshimura, K.; Shigeoka, S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006, 48, 535–547. [Google Scholar] [CrossRef]
- Guo, M.; Lu, J.-P.; Zhai, Y.-F.; Chai, W.-G.; Gong, Z.-H.; Lu, M.-H. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 2015, 15, 151. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, W.; Qian, Y.; Ren, Q.; Zhang, J. Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene 2021, 770, 145348. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, X.; Wang, D.; Li, L.; Zhou, W.; Zhang, Q.; Wang, X.; Ye, S.; Wang, Z. Genome-wide identification, classification and expression profile analysis of the HSF gene family in Hypericum perforatum. PeerJ 2021, 9, e11345. [Google Scholar] [CrossRef]
- Shujuan, W.; Feng, X.; Guangan, W.; Chen, W. Identification of HSF Gene Family in Eucommia ulmoides and Its Expression Analysis under Adverse Stresses. J. Henan Agric. Sci. 2024, 53, 46–56. [Google Scholar] [CrossRef]
- Swarbreck, D.; Wilks, C.; Lamesch, P.; Berardini, T.Z.; Garcia-Hernandez, M.; Foerster, H.; Li, D.; Meyer, T.; Muller, R.; Ploetz, L. The Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Res. 2007, 36, D1009–D1014. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; De Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qu, Y.; Wang, Y.; Bai, X.; Tian, G.; Liu, Z.; Li, Y.; Zhang, K. Selection of suitable reference genes for qRT-PCR analysis of Begonia semperflorens under stress conditions. Mol. Biol. Rep. 2019, 46, 6027–6037. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, A.; Zhang, Y.; Yang, X.; Yang, S.; Zhao, K. Effects of Progressive Drought Stress on the Growth, Ornamental Values, and Physiological Properties of Begonia semperflorens. Horticulturae 2024, 10, 405. [Google Scholar] [CrossRef]
- Sankoff, D.; Zheng, C. Whole genome duplication in plants: Implications for evolutionary analysis. In Comparative Genomics: Methods and Protocols; Humana Press: New York, NY, USA, 2018; pp. 291–315. [Google Scholar]
- Godfree, R.C.; Marshall, D.J.; Young, A.G.; Miller, C.H.; Mathews, S. Empirical evidence of fixed and homeostatic patterns of polyploid advantage in a keystone grass exposed to drought and heat stress. R. Soc. Open Sci. 2017, 4, 170934. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Nie, F.; Chen, W.; Ma, X.; Gong, K.; Yang, Q.; Wang, J.; Li, N.; Sun, P.; Pei, Q. Coriander Genomics Database: A genomic, transcriptomic, and metabolic database for coriander. Hortic. Res. 2020, 7, 55. [Google Scholar] [CrossRef]
- Kotak, S.; Port, M.; Ganguli, A.; Bicker, F.; Von Koskull-Döring, P. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 2004, 39, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Xing, D.; Gao, C. Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J. Exp. Bot. 2009, 60, 2073–2091. [Google Scholar] [CrossRef]
- Liu, H.C.; Liao, H.T.; Charng, Y.Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 2011, 34, 738–751. [Google Scholar] [CrossRef]
- Nishizawa-Yokoi, A.; Nosaka, R.; Hayashi, H.; Tainaka, H.; Maruta, T.; Tamoi, M.; Ikeda, M.; Ohme-Takagi, M.; Yoshimura, K.; Yabuta, Y. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 2011, 52, 933–945. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, J.; Wang, C.; Zhao, X.; Zhong, X.; Cao, X.; Li, G.; He, J.; Yi, M. Overexpression of lily HsfA3 s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. J. Exp. Bot. 2018, 69, 2005–2021. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Ohme-Takagi, M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 2009, 50, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Mitsuda, N.; Ohme-Takagi, M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 2011, 157, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Chen, D.; Lynne Mclntyre, C.; Fernanda Dreccer, M.; Zhang, Z.B.; Drenth, J.; Kalaipandian, S.; Chang, H.; Xue, G.P. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ. 2018, 41, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, T.; Ding, L.; Wang, C.; Teng, R.; Xu, S.; Cao, X.; Teng, N. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. New Phytol. 2024, 241, 2124–2142. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, Y.; Huang, D.; Qi, Y.; Chen, M. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 2011, 98, 128–136. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Guo, C.; Zhao, X.; Li, Z.; Mou, Y.; Sun, Q.; Wang, J.; Yuan, C.; Li, C. Hsf transcription factor gene family in peanut (Arachis hypogaea L.): Genome-wide characterization and expression analysis under drought and salt stresses. Front. Plant Sci. 2023, 14, 1214732. [Google Scholar] [CrossRef]
- Begum, T.; Reuter, R.; Schöffl, F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis. Mech. Dev. 2013, 130, 54–60. [Google Scholar] [CrossRef]
- Yu, H.-D.; Yang, X.-F.; Chen, S.-T.; Wang, Y.-T.; Li, J.-K.; Shen, Q.; Liu, X.-L.; Guo, F.-Q. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet. 2012, 8, e1002669. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Gao, X.; Qi, B.; Chen, N.; Xu, S.; Chen, J.; Wang, X. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci. China Ser. C Life Sci. 2005, 48, 540–550. [Google Scholar] [CrossRef] [PubMed]
Rename | Gene ID | Number of Amino Acid | Molecular Weight | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
BsHSF1 | g2919.t1 | 385 | 44,307.25 | 5.38 | 54.6 | 74.42 | −0.794 | Nuclear |
BsHSF2 | g4110.t1 | 246 | 28,643.14 | 7.69 | 49.15 | 66.59 | −0.985 | Nuclear |
BsHSF3 | g6017.t1 | 243 | 28,082.52 | 8.62 | 54.74 | 60.95 | −1.03 | Nuclear |
BsHSF4 | g7033.t2 | 458 | 52,759.41 | 5.15 | 66.23 | 68.76 | −0.689 | Nuclear |
BsHSF5 | g7541.t1 | 376 | 43,643.24 | 5.84 | 50.77 | 80.61 | −0.67 | Nuclear |
BsHSF6 | g7952.t1 | 390 | 44,297.31 | 5.43 | 54.34 | 73.74 | −0.794 | Nuclear |
BsHSF7 | g9408.t1 | 81 | 9621.97 | 9.86 | 32.63 | 68.64 | −0.56 | Cytoplasmic |
BsHSF8 | g10132.t1 | 346 | 39,200.81 | 4.8 | 58.47 | 76.91 | −0.618 | Nuclear |
BsHSF9 | g11656.t1 | 480 | 53,724.09 | 5.34 | 56.47 | 74.92 | −0.614 | Nuclear |
BsHSF10 | g11734.t1 | 310 | 35,367.96 | 5.76 | 61.04 | 69.13 | −0.561 | Nuclear |
BsHSF11 | g12866.t1 | 508 | 56,333.3 | 4.63 | 53.03 | 67.15 | −0.726 | Nuclear |
BsHSF12 | g12999.t1 | 322 | 35,388.58 | 5.05 | 59.62 | 71.74 | −0.541 | Nuclear |
BsHSF13 | g13272.t1 | 330 | 39,491.62 | 5.91 | 58.01 | 65.55 | −0.898 | Nuclear |
BsHSF14 | g13857.t1 | 335 | 39,352.21 | 5.61 | 53.66 | 64 | −0.857 | Nuclear |
BsHSF15 | g16136.t1 | 331 | 37,427.53 | 8.8 | 55.03 | 71.27 | −0.501 | Nuclear |
BsHSF16 | g16542.t1 | 474 | 53,737.31 | 5.21 | 64.51 | 70.97 | −0.826 | Nuclear |
BsHSF17 | g17820.t1 | 521 | 57,480.9 | 4.66 | 63.41 | 66.76 | −0.643 | Nuclear |
BsHSF18 | g17877.t2 | 333 | 36,687.07 | 4.97 | 55.75 | 78.47 | −0.504 | Nuclear |
BsHSF19 | g17997.t1 | 318 | 37,858.8 | 5.81 | 64.24 | 67.7 | −0.846 | Nuclear |
BsHSF20 | g18359.t1 | 480 | 54,441.75 | 5.87 | 62.63 | 73.52 | −0.752 | Nuclear |
BsHSF21 | g23282.t1 | 339 | 38,820.51 | 6.53 | 55.13 | 66.73 | −0.6 | Nuclear |
BsHSF22 | g25236.t1 | 399 | 45,983.14 | 4.74 | 48.14 | 75.04 | −0.584 | Nuclear |
BsHSF23 | g25942.t1 | 342 | 39,151.85 | 5.02 | 68.5 | 70.41 | −0.714 | Nuclear |
BsHSF24 | g26841.t1 | 343 | 39,072.9 | 6.73 | 55 | 73.03 | −0.549 | Nuclear |
BsHSF25 | g29399.t1 | 334 | 37,450.29 | 8.14 | 59.39 | 71.26 | −0.578 | Nuclear |
BsHSF26 | g30373.t1 | 520 | 57,020.55 | 5 | 60.02 | 67.87 | −0.594 | Nuclear |
BsHSF27 | g31168.t1 | 330 | 36,756.36 | 6.94 | 55.84 | 73.88 | −0.534 | Nuclear |
BsHSF28 | g31755.t1 | 344 | 40,447.32 | 5.42 | 54.09 | 64.88 | −0.872 | Nuclear |
BsHSF29 | g33546.t1 | 338 | 37,620.03 | 5.52 | 49.37 | 70.47 | −0.693 | Nuclear |
BsHSF30 | g34334.t1 | 312 | 35,559.17 | 5 | 73.79 | 68.4 | −0.546 | Nuclear |
BsHSF31 | g36487.t1 | 346 | 39,476.21 | 5.02 | 56.16 | 67.57 | −0.804 | Nuclear |
BsHSF32 | g36767.t1 | 281 | 31,424.19 | 7.59 | 43.38 | 61.42 | −0.829 | Nuclear |
BsHSF33 | g38782.t1 | 434 | 48,995.12 | 7.11 | 62.01 | 65.37 | −0.614 | Nuclear |
BsHSF34 | g38809.t1 | 318 | 36,390.19 | 5.67 | 60.89 | 68.71 | −0.559 | Nuclear |
BsHSF35 | g39393.t1 | 276 | 32,442.08 | 5.36 | 58.69 | 85.76 | −0.592 | Nuclear |
BsHSF36 | g40203.t1 | 326 | 37,186.68 | 6.46 | 54.7 | 67.61 | −0.598 | Nuclear |
BsHSF37 | g40444.t1 | 464 | 51,457.67 | 5.59 | 57.65 | 69.29 | −0.486 | Nuclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Lin, N.; Wang, Q.; Xu, E.; Zhang, K. Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Begonia semperflorens Reveals Promising Candidates for Heat Tolerance. Curr. Issues Mol. Biol. 2025, 47, 398. https://doi.org/10.3390/cimb47060398
Liu Z, Lin N, Wang Q, Xu E, Zhang K. Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Begonia semperflorens Reveals Promising Candidates for Heat Tolerance. Current Issues in Molecular Biology. 2025; 47(6):398. https://doi.org/10.3390/cimb47060398
Chicago/Turabian StyleLiu, Zhirou, Nan Lin, Qirui Wang, Enkai Xu, and Kaiming Zhang. 2025. "Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Begonia semperflorens Reveals Promising Candidates for Heat Tolerance" Current Issues in Molecular Biology 47, no. 6: 398. https://doi.org/10.3390/cimb47060398
APA StyleLiu, Z., Lin, N., Wang, Q., Xu, E., & Zhang, K. (2025). Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Begonia semperflorens Reveals Promising Candidates for Heat Tolerance. Current Issues in Molecular Biology, 47(6), 398. https://doi.org/10.3390/cimb47060398