Relevance of Glucagon-Like Peptide 1 (GLP-1) in Inflammatory Bowel Diseases: A Narrative Review
Abstract
1. Introduction
2. GLP-1: General Characteristics and Production
2.1. Principles of GLP-1 Structure and Primary Metabolic Effects
2.2. Gastrointestinal Regulation Induced by GLP-1
3. Effectiveness of GLP-1 RAs for T2DM Treatment and Weight Loss in Patients with IBD
4. Impact of GLP-1 RAs on the Disease Course and Safety in IBD
What Is the Safety Profile for GLP-1 RAs?
5. What Is the Role and Impact of GLP-1 RAs on the Optical Parameters Associated with Endoscopic Examinations and Adequate Bowel Preparation?
6. Therapeutic Potential of GLP-1 Modulation in IBD
6.1. What Are Preclinical Potentials and Underlying Mechanisms?
6.2. What Data Are Already Available in Human Contexts, and What Are the Possible Considerations?
7. Conclusions
- GLP-1 RAs have demonstrated efficacy in controlling body weight and improving glycaemic parameters in patients with IBD, with a performance comparable to that observed in the general population.
- GLP-1 RAs appear to possess various anti-inflammatory properties and potentials within the gastrointestinal tract, modulating the mucosal immune response and positively influencing epithelial barrier homeostasis. This is further supported by the expression of GLP-1 receptors in segments highly affected by IBD, such as the terminal ileum and the rectum.
- Initial and preliminary evidence seems to suggest that patients with IBD treated with GLP-1 RAs may experience a benefit in terms of reduced surgery rates and hospitalisations, although further studies are warranted.
- Although GLP-1 RAs are overall drugs with an acceptable safety profile, they do present a non-negligible risk of gastrointestinal adverse events and a potential impact on bowel preparation for endoscopic procedures, aspects that must be considered when used in patients with IBD.
- In the future, large-scale prospective randomised clinical trials are therefore needed to assess the efficacy and safety of GLP-1 RAs in terms of clinically, endoscopically, and histologically relevant outcomes specific to IBD. It is necessary to understand the long-term effects of IBD on the natural history of GLP-1 receptor modulation.
Author Contributions
Funding
Conflicts of Interest
References
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.G.; Panarese, I.; Trotta, M.C.; D’Amico, M.; Pellegrino, R.; Ferraraccio, F.; Galdiero, M.; Alfano, R.; Grieco, P.; Federico, A. Melanocortin 3,5 Receptors Immunohistochemical Expression in Colonic Mucosa of Inflammatory Bowel Disease Patients: A Matter of Disease Activity? World J. Gastroenterol. 2024, 30, 1132–1142. [Google Scholar] [CrossRef]
- Liu, J.; Di, B.; Xu, L.-L. Recent Advances in the Treatment of IBD: Targets, Mechanisms and Related Therapies. Cytokine Growth Factor Rev. 2023, 71–72, 1–12. [Google Scholar] [CrossRef]
- Adamina, M.; Minozzi, S.; Warusavitarne, J.; Buskens, C.J.; Chaparro, M.; Verstockt, B.; Kopylov, U.; Yanai, H.; Vavricka, S.R.; Sigall-Boneh, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Surgical Treatment. J. Crohn’s Colitis 2024, 18, 1556–1582. [Google Scholar] [CrossRef]
- Gordon, H.; Minozzi, S.; Kopylov, U.; Verstockt, B.; Chaparro, M.; Buskens, C.; Warusavitarne, J.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2024, 18, 1531–1555. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Spinelli, A.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Surgical Treatment. J. Crohn’s Colitis 2022, 16, 179–189. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology Consensus Guidelines on the Management of Inflammatory Bowel Disease in Adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef]
- Raine, T.; Danese, S. Breaking Through the Therapeutic Ceiling: What Will It Take? Gastroenterology 2022, 162, 1507–1511. [Google Scholar] [CrossRef]
- Fuschillo, G.; Celentano, V.; Rottoli, M.; Sciaudone, G.; Gravina, A.G.; Pellegrino, R.; Marfella, R.; Romano, M.; Selvaggi, F.; Pellino, G. Influence of Diabetes Mellitus on Inflammatory Bowel Disease Course and Treatment Outcomes. A Systematic Review with Meta-Analysis. Dig. Liver Dis. 2023, 55, 580–586. [Google Scholar] [CrossRef]
- Jess, T.; Jensen, B.W.; Andersson, M.; Villumsen, M.; Allin, K.H. Inflammatory Bowel Diseases Increase Risk of Type 2 Diabetes in a Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2020, 18, 881–888.e1. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qiao, L.; Yun, X.; Du, F.; Xing, S.; Yang, M. Increased Risk of Ischemic Heart Disease and Diabetes in Inflammatory Bowel Disease. Z. Für Gastroenterol. 2021, 59, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, G.; La Fortezza, R.F.; Iannone, A.; Contaldo, A.; Barone, M.; Ierardi, E.; Di Leo, A.; Principi, M. Prevalence and Associated Factors of Obesity in Inflammatory Bowel Disease: A Case-Control Study. World J. Gastroenterol. 2020, 26, 7528–7537. [Google Scholar] [CrossRef]
- Zou, Z.-Y.; Shen, B.; Fan, J.-G. Systematic Review With Meta-Analysis: Epidemiology of Nonalcoholic Fatty Liver Disease in Patients With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 1764–1772. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, M.; Liu, Y.; Ge, C.; Lu, Y.; Shen, H.; Zhu, L. Prevalence of Metabolic Syndrome in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. BMJ Open 2024, 14, e074659. [Google Scholar] [CrossRef]
- Njeim, R.; Pannala, S.S.S.; Zaidan, N.; Habib, T.; Rajamanuri, M.; Moussa, E.; Deeb, L.; El-Sayegh, S. Prevalence of Metabolic Syndrome and Its Association with Cardiovascular Outcomes in Hospitalized Patients with Inflammatory Bowel Disease. J. Clin. Med. 2024, 13, 6908. [Google Scholar] [CrossRef]
- Landgraf, R.; Aberle, J.; Birkenfeld, A.L.; Gallwitz, B.; Kellerer, M.; Klein, H.; Müller-Wieland, D.; Nauck, M.A.; Reuter, H.-M.; Siegel, E. Therapy of Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2019, 127, S73–S92. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef]
- Drucker, D.J.; Habener, J.F.; Holst, J.J. Discovery, Characterization, and Clinical Development of the Glucagon-like Peptides. J. Clin. Investig. 2017, 127, 4217–4227. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes—State-of-the-Art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed]
- Sjøberg, K.A.; Holst, J.J.; Rattigan, S.; Richter, E.A.; Kiens, B. GLP-1 Increases Microvascular Recruitment but Not Glucose Uptake in Human and Rat Skeletal Muscle. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E355–E362. [Google Scholar] [CrossRef]
- Kanoski, S.E.; Hayes, M.R.; Skibicka, K.P. GLP-1 and Weight Loss: Unraveling the Diverse Neural Circuitry. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R885–R895. [Google Scholar] [CrossRef]
- Ard, J.; Fitch, A.; Fruh, S.; Herman, L. Weight Loss and Maintenance Related to the Mechanism of Action of Glucagon-Like Peptide 1 Receptor Agonists. Adv. Ther. 2021, 38, 2821–2839. [Google Scholar] [CrossRef]
- Tack, J.; Verbeure, W.; Mori, H.; Schol, J.; Van den Houte, K.; Huang, I.-H.; Balsiger, L.; Broeders, B.; Colomier, E.; Scarpellini, E.; et al. The Gastrointestinal Tract in Hunger and Satiety Signalling. United Eur. Gastroenterol. J. 2021, 9, 727–734. [Google Scholar] [CrossRef]
- Engevik, A.C.; Kaji, I.; Goldenring, J.R. The Physiology of the Gastric Parietal Cell. Physiol. Rev. 2020, 100, 573–602. [Google Scholar] [CrossRef]
- Rotondo, A.; Janssen, P.; Mulè, F.; Tack, J. Effect of the GLP-1 Analog Liraglutide on Satiation and Gastric Sensorimotor Function during Nutrient-Drink Ingestion. Int. J. Obes. 2013, 37, 693–698. [Google Scholar] [CrossRef]
- Andrews, C.N.; Bharucha, A.E.; Camilleri, M.; Low, P.A.; Seide, B.; Burton, D.; Baxter, K.; Zinsmeister, A.R. Nitrergic Contribution to Gastric Relaxation Induced by Glucagon-like Peptide-1 (GLP-1) in Healthy Adults. Am. J. Physiol. Liver Physiol. 2007, 292, G1359–G1365. [Google Scholar] [CrossRef]
- Delgado-Aros, S.; Kim, D.-Y.; Burton, D.D.; Thomforde, G.M.; Stephens, D.; Brinkmann, B.H.; Vella, A.; Camilleri, M. Effect of GLP-1 on Gastric Volume, Emptying, Maximum Volume Ingested, and Postprandial Symptoms in Humans. Am. J. Physiol. Liver Physiol. 2002, 282, G424–G431. [Google Scholar] [CrossRef]
- Schirra, J.; Wank, U.; Arnold, R.; Göke, B.; Katschinski, M. Effects of Glucagon-like Peptide-1(7-36)Amide on Motility and Sensation of the Proximal Stomach in Humans. Gut 2002, 50, 341–348. [Google Scholar] [CrossRef]
- Hellström, P.M.; Näslund, E.; Edholm, T.; Schmidt, P.T.; Kristensen, J.; Theodorsson, E.; Holst, J.J.; Efendic, S. GLP-1 Suppresses Gastrointestinal Motility and Inhibits the Migrating Motor Complex in Healthy Subjects and Patients with Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2008, 20, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Tolessa, T.; Gutniak, M.; Holst, J.J.; Efendic, S.; Hellström, P.M. Inhibitory Effect of Glucagon-like Peptide-1 on Small Bowel Motility. Fasting but Not Fed Motility Inhibited via Nitric Oxide Independently of Insulin and Somatostatin. J. Clin. Investig. 1998, 102, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Winkler, G.; Hajós, P.; Kiss, J.T. Glucagon-like peptide-1 (GLP1) and the gastrointestinal tract. GLP1 receptor agonists: Overemphasized gastric, forgotten intestinal (“ileal brake”) effect? Orvosi Hetil. 2019, 160, 1927–1934. [Google Scholar] [CrossRef]
- Schirra, J.; Göke, B. The Physiological Role of GLP-1 in Human: Incretin, Ileal Brake or More? Regul. Pept. 2005, 128, 109–115. [Google Scholar] [CrossRef]
- EU Actions to Tackle Shortages of GLP-1 Receptor Agonists | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/news/eu-actions-tackle-shortages-glp-1-receptor-agonists (accessed on 5 April 2025).
- Collins, L.; Costello, R.A. Glucagon-Like Peptide-1 Receptor Agonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- GBD 2021 Diseases and Injuries Collaborators. Global Incidence, Prevalence, Years Lived with Disability (YLDs), Disability-Adjusted Life-Years (DALYs), and Healthy Life Expectancy (HALE) for 371 Diseases and Injuries in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- GBD 2021 Diabetes Collaborators. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Singh, S.; Dulai, P.S.; Zarrinpar, A.; Ramamoorthy, S.; Sandborn, W.J. Obesity in IBD: Epidemiology, Pathogenesis, Disease Course and Treatment Outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 110–121. [Google Scholar] [CrossRef]
- Valvano, M.; Capannolo, A.; Cesaro, N.; Stefanelli, G.; Fabiani, S.; Frassino, S.; Monaco, S.; Magistroni, M.; Viscido, A.; Latella, G. Nutrition, Nutritional Status, Micronutrients Deficiency, and Disease Course of Inflammatory Bowel Disease. Nutrients 2023, 15, 3824. [Google Scholar] [CrossRef]
- Mahmoud, M.; Syn, W.-K. Impact of Obesity and Metabolic Syndrome on IBD Outcomes. Dig. Dis. Sci. 2024, 69, 2741–2753. [Google Scholar] [CrossRef]
- Erhayiem, B.; Dhingsa, R.; Hawkey, C.J.; Subramanian, V. Ratio of Visceral to Subcutaneous Fat Area Is a Biomarker of Complicated Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2011, 9, 684–687.e1. [Google Scholar] [CrossRef]
- Sehgal, P.; Su, S.; Zech, J.; Nobel, Y.; Luk, L.; Economou, I.; Shen, B.; Lewis, J.D.; Freedberg, D.E. Visceral Adiposity Independently Predicts Time to Flare in Inflammatory Bowel Disease but Body Mass Index Does Not. Inflamm. Bowel Dis. 2024, 30, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.-Z.; Wan, J.-Y.; Yuan, C.-S. Comparative Effectiveness of GLP-1 Receptor Agonists on Glycaemic Control, Body Weight, and Lipid Profile for Type 2 Diabetes: Systematic Review and Network Meta-Analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 Mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Frías, J.P.; Auerbach, P.; Bajaj, H.S.; Fukushima, Y.; Lingvay, I.; Macura, S.; Søndergaard, A.L.; Tankova, T.I.; Tentolouris, N.; Buse, J.B. Efficacy and Safety of Once-Weekly Semaglutide 2·0 Mg versus 1·0 Mg in Patients with Type 2 Diabetes (SUSTAIN FORTE): A Double-Blind, Randomised, Phase 3B Trial. Lancet Diabetes Endocrinol. 2021, 9, 563–574. [Google Scholar] [CrossRef]
- Desai, A.; Khataniar, H.; Hashash, J.G.; Farraye, F.A.; Regueiro, M.; Kochhar, G.S. Effectiveness and Safety of Semaglutide for Weight Loss in Patients With Inflammatory Bowel Disease and Obesity. Inflamm. Bowel Dis. 2025, 31, 696–705. [Google Scholar] [CrossRef]
- Ramos Belinchón, C.; Martínez-Lozano, H.; Serrano Moreno, C.; Hernández Castillo, D.; Lois Chicharro, P.; Ferreira Ocampo, P.; Marín-Jiménez, I.; Bretón Lesmes, I.; Menchén, L. Effectiveness and Safety of a GLP-1 Agonist in Obese Patients with Inflammatory Bowel Disease. Rev. Esp. Enferm. Dig. 2024, 116, 478–483. [Google Scholar] [CrossRef]
- St-Pierre, J.; Klein, J.; Choi, N.K.; Fear, E.; Pannain, S.; Rubin, D.T. Efficacy and Safety of GLP-1 Agonists on Metabolic Parameters in Non-Diabetic Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2024, 69, 4437–4445. [Google Scholar] [CrossRef]
- Forzano, I.; Varzideh, F.; Avvisato, R.; Jankauskas, S.S.; Mone, P.; Santulli, G. Tirzepatide: A Systematic Update. Int. J. Mol. Sci. 2022, 23, 14631. [Google Scholar] [CrossRef]
- Drucker, D.J. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef]
- Bray, J.J.H.; Foster-Davies, H.; Salem, A.; Hoole, A.L.; Obaid, D.R.; Halcox, J.P.J.; Stephens, J.W. Glucagon-like Peptide-1 Receptor Agonists Improve Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Diabetes Obes. Metab. 2021, 23, 1806–1822. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, P.; Lichtenstein, G.R.; Khanna, T.; Profka, K.; Pickett-Blakely, O.; Nandi, N.; Hossain, F.R.; Bewtra, M.; Lewis, J.D.; Aberra, F. Sa1950 Impact of GLP1 agonists on inflammatory biomarkers in patients with inflammatory bowel disease. Gastroenterology 2024, 166, S-591. [Google Scholar] [CrossRef]
- Anbazhagan, A.N.; Thaqi, M.; Priyamvada, S.; Jayawardena, D.; Kumar, A.; Gujral, T.; Chatterjee, I.; Mugarza, E.; Saksena, S.; Onyuksel, H.; et al. GLP-1 Nanomedicine Alleviates Gut Inflammation. Nanomedicine 2017, 13, 659–665. [Google Scholar] [CrossRef]
- Al-Dwairi, A.; Alqudah, T.E.; Al-Shboul, O.; Alqudah, M.; Mustafa, A.G.; Alfaqih, M.A. Glucagon-like Peptide-1 Exerts Anti-Inflammatory Effects on Mouse Colon Smooth Muscle Cells through the Cyclic Adenosine Monophosphate/Nuclear Factor-κB Pathway in Vitro. J. Inflamm. Res. 2018, 11, 95–109. [Google Scholar] [CrossRef]
- Paternoster, S.; Falasca, M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front. Endocrinol. 2018, 9, 584. [Google Scholar] [CrossRef]
- Desai, A.; Petrov, J.; Hashash, J.G.; Patel, H.; Brahmbhatt, B.; Kochhar, G.S.; Farraye, F.A. Use of Glucagon-like Peptide-1 Receptor Agonists for Type 2 Diabetes Mellitus and Outcomes of Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2024, 60, 620–632. [Google Scholar] [CrossRef]
- Villumsen, M.; Schelde, A.B.; Jimenez-Solem, E.; Jess, T.; Allin, K.H. GLP-1 Based Therapies and Disease Course of Inflammatory Bowel Disease. EClinicalMedicine 2021, 37, 100979. [Google Scholar] [CrossRef]
- Levine, I.; Sekhri, S.; Schreiber-Stainthorp, W.; Locke, B.; Delau, O.; Elhawary, M.; Pandit, K.; Meng, X.; Axelrad, J. GLP-1 Receptor Agonists Confer No Increased Rates of IBD Exacerbation Among Patients With IBD. Inflamm. Bowel Dis. 2025, 31, 467–475. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse Effects of GLP-1 Receptor Agonists. Rev. Diabet. Stud. 2014, 11, 202–230. [Google Scholar] [CrossRef]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; Wadden, T.A.; et al. Semaglutide 2·4 Mg Once a Week in Adults with Overweight or Obesity, and Type 2 Diabetes (STEP 2): A Randomised, Double-Blind, Double-Dummy, Placebo-Controlled, Phase 3 Trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef]
- Gorgojo-Martínez, J.J.; Mezquita-Raya, P.; Carretero-Gómez, J.; Castro, A.; Cebrián-Cuenca, A.; de Torres-Sánchez, A.; García-de-Lucas, M.D.; Núñez, J.; Obaya, J.C.; Soler, M.J.; et al. Clinical Recommendations to Manage Gastrointestinal Adverse Events in Patients Treated with Glp-1 Receptor Agonists: A Multidisciplinary Expert Consensus. J. Clin. Med. 2023, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Lando, H.M.; Alattar, M.; Dua, A.P. Elevated Amylase and Lipase Levels in Patients Using Glucagonlike Peptide-1 Receptor Agonists or Dipeptidyl-Peptidase-4 Inhibitors in the Outpatient Setting. Endocr. Pr. 2012, 18, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, W.M.; Nauck, M.A.; Zinman, B.; Daniels, G.H.; Bergenstal, R.M.; Mann, J.F.E.; Steen Ravn, L.; Moses, A.C.; Stockner, M.; Baeres, F.M.M.; et al. LEADER 3--Lipase and Amylase Activity in Subjects with Type 2 Diabetes: Baseline Data from over 9000 Subjects in the LEADER Trial. Pancreas 2014, 43, 1223–1231. [Google Scholar] [CrossRef]
- Katz, S.; Bank, S.; Greenberg, R.E.; Lendvai, S.; Lesser, M.; Napolitano, B. Hyperamylasemia in Inflammatory Bowel Disease. J. Clin. Gastroenterol. 1988, 10, 627–630. [Google Scholar] [CrossRef]
- Montenegro, M.L.; Corral, J.E.; Lukens, F.J.; Ji, B.; Kröner, P.T.; Farraye, F.A.; Bi, Y. Pancreatic Disorders in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2022, 67, 423–436. [Google Scholar] [CrossRef]
- Pan, J.; Li, Z.; Ye, C.; Zhang, X.; Yang, Q.; Zhang, X.; Zhou, Y.; Zhang, J. Mesalazine-Induced Acute Pancreatitis in Inflammatory Bowel Disease Patients: A Systematic Review. Ther. Clin. Risk Manag. 2025, 21, 113–123. [Google Scholar] [CrossRef]
- Eskazan, T.; Bozcan, S.; Atay, K.; Yildirim, S.; Demir, N.; Celik, S.; Tuncer, M.; Hatemi, I.; Celik, A.F.; Erzin, Y. Frequency, Predisposing Factors, and Clinical Outcome of Azathioprine-Induced Pancreatitis Among Patients With Inflammatory Bowel Disease: Results From a Tertiary Referral Center. Pancreas 2021, 50, 1274–1280. [Google Scholar] [CrossRef]
- Scheen, A. Gliptins (Dipeptidyl Peptidase-4 Inhibitors) and Risk of Acute Pancreatitis. Expert Opin. Drug Saf. 2013, 12, 545–557. [Google Scholar] [CrossRef]
- Richardson, A.; Park, W.G. Acute Pancreatitis and Diabetes Mellitus: A Review. Korean J. Intern. Med. 2021, 36, 15–24. [Google Scholar] [CrossRef]
- Kucharzik, T.; Ellul, P.; Greuter, T.; Rahier, J.F.; Verstockt, B.; Abreu, C.; Albuquerque, A.; Allocca, M.; Esteve, M.; Farraye, F.A.; et al. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J. Crohns Colitis 2021, 15, 879–913. [Google Scholar] [CrossRef]
- Anderson, S.R.; Ayoub, M.; Coats, S.; McHenry, S.; Tan, T.; Deepak, P. Safety and Effectiveness of Glucagon-like Peptide-1 Receptor Agonists in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2024. [Google Scholar] [CrossRef]
- Gudin, B.; Ladhari, C.; Robin, P.; Laroche, M.-L.; Babai, S.; Hillaire-Buys, D.; Faillie, J.-L. Incretin-Based Drugs and Intestinal Obstruction: A Pharmacovigilance Study. Therapie 2020, 75, 641–647. [Google Scholar] [CrossRef]
- Sodhi, M.; Rezaeianzadeh, R.; Kezouh, A.; Etminan, M. Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA 2023, 330, 1795–1797. [Google Scholar] [CrossRef] [PubMed]
- Ueda, P.; Wintzell, V.; Melbye, M.; Eliasson, B.; Söderling, J.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Svanström, H.; Hviid, A.; et al. Use of DPP4 Inhibitors and GLP-1 Receptor Agonists and Risk of Intestinal Obstruction: Scandinavian Cohort Study. Clin. Gastroenterol. Hepatol. 2024, 22, 1226–1237.e14. [Google Scholar] [CrossRef]
- Nielsen, J.; Friedman, S.; Nørgård, B.M.; Knudsen, T.; Kjeldsen, J.; Wod, M. Glucagon-Like Peptide 1 Receptor Agonists Are Not Associated With an Increased Risk of Ileus or Intestinal Obstruction in Patients with Inflammatory Bowel Disease-A Danish Nationwide Cohort Study. Inflamm. Bowel Dis. 2024, izae276. [Google Scholar] [CrossRef]
- Harbord, M.; Eliakim, R.; Bettenworth, D.; Karmiris, K.; Katsanos, K.; Kopylov, U.; Kucharzik, T.; Molnár, T.; Raine, T.; Sebastian, S.; et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J. Crohn’s Colitis 2017, 11, 769–784. [Google Scholar] [CrossRef]
- Feakins, R.; Torres, J.; Borralho-Nunes, P.; Burisch, J.; Cúrdia Gonçalves, T.; De Ridder, L.; Driessen, A.; Lobatón, T.; Menchén, L.; Mookhoek, A.; et al. ECCO Topical Review on Clinicopathological Spectrum and Differential Diagnosis of Inflammatory Bowel Disease. J. Crohns Colitis 2022, 16, 343–368. [Google Scholar] [CrossRef]
- Gordon, H.; Biancone, L.; Fiorino, G.; Katsanos, K.H.; Kopylov, U.; Al Sulais, E.; Axelrad, J.E.; Balendran, K.; Burisch, J.; de Ridder, L.; et al. ECCO Guidelines on Inflammatory Bowel Disease and Malignancies. J. Crohns Colitis 2023, 17, 827–854. [Google Scholar] [CrossRef]
- Odah, T.; Vattikonda, A.; Stark, M.; Brahmbhatt, B.; Lukens, F.J.; Badurdeen, D.; Hashash, J.G.; Farraye, F.A. Glucagon-like Peptide-1 Receptor Agonists and Capsule Endoscopy in Patients with Diabetes: A Matched Cohort Study. Gastrointest. Endosc. 2025, 101, 393–401. [Google Scholar] [CrossRef]
- Gravina, A.G.; Pellegrino, R.; Romeo, M.; Palladino, G.; Cipullo, M.; Iadanza, G.; Olivieri, S.; Zagaria, G.; De Gennaro, N.; Santonastaso, A.; et al. Quality of Bowel Preparation in Patients with Inflammatory Bowel Disease Undergoing Colonoscopy: What Factors to Consider? World J. Gastrointest. Endosc. 2023, 15, 133–145. [Google Scholar] [CrossRef]
- Pellegrino, R.; Gravina, A.G. Emerging Space for Non-Polyethene-Glycol Bowel Preparations in Inflammatory Bowel Disease-Related Colonoscopy: Veering toward Better Adherence and Palatability. World J. Gastroenterol. 2023, 29, 6022–6027. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Palladino, G.; Izzo, M.; De Costanzo, I.; Landa, F.; Federico, A.; Gravina, A.G. Water-Assisted Colonoscopy in Inflammatory Bowel Diseases: From Technical Implications to Diagnostic and Therapeutic Potentials. World J. Gastrointest. Endosc. 2024, 16, 647–660. [Google Scholar] [CrossRef]
- Gala, K.; Tome, J.; Krall, M.; Tian, D.; League, J.B.; Vargas, E.J.; Pardi, D.S.; Johnson, A.M.; Coelho-Prabhu, N. Quality of Bowel Preparation for Colonoscopy in Patients on Glucagon-like Peptide-1 Receptor Agonists. Gastrointest. Endosc. 2024, S0016-5107(24)03734-9. [Google Scholar] [CrossRef]
- Zatorski, H.; Sałaga, M.; Fichna, J. Role of Glucagon-like Peptides in Inflammatory Bowel Diseases-Current Knowledge and Future Perspectives. Naunyn Schmiedeberg Arch. Pharmacol. 2019, 392, 1321–1330. [Google Scholar] [CrossRef]
- Alharbi, S.H. Anti-Inflammatory Role of Glucagon-like Peptide 1 Receptor Agonists and Its Clinical Implications. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222367. [Google Scholar] [CrossRef]
- Zietek, T.; Rath, E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front. Immunol. 2016, 7, 154. [Google Scholar] [CrossRef]
- Lebrun, L.J.; Lenaerts, K.; Kiers, D.; Pais de Barros, J.-P.; Le Guern, N.; Plesnik, J.; Thomas, C.; Bourgeois, T.; Dejong, C.H.C.; Kox, M.; et al. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Rep. 2017, 21, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, C.; Zhang, H.; Li, L.; Fan, T.; Jin, Z. The Alleviating Effect and Mechanism of GLP-1 on Ulcerative Colitis. Aging 2023, 15, 8044–8060. [Google Scholar] [CrossRef]
- Filidou, E.; Kandilogiannakis, L.; Shrewsbury, A.; Kolios, G.; Kotzampassi, K. Probiotics: Shaping the Gut Immunological Responses. World J. Gastroenterol. 2024, 30, 2096–2108. [Google Scholar] [CrossRef]
- Hamade, D.F.; Espinal, A.; Yu, J.; Leibowitz, B.J.; Fisher, R.; Hou, W.; Shields, D.; van Pijkeren, J.-P.; Mukherjee, A.; Epperly, M.W.; et al. Lactobacillus Reuteri Releasing IL-22 (LR-IL-22) Facilitates Intestinal Radioprotection for Whole-Abdomen Irradiation (WAI) of Ovarian Cancer. Radiat. Res. 2022, 198, 89–105. [Google Scholar] [CrossRef]
- Hou, Q.; Ye, L.; Liu, H.; Huang, L.; Yang, Q.; Turner, J.R.; Yu, Q. Lactobacillus Accelerates ISCs Regeneration to Protect the Integrity of Intestinal Mucosa through Activation of STAT3 Signaling Pathway Induced by LPLs Secretion of IL-22. Cell Death Differ. 2018, 25, 1657–1670. [Google Scholar] [CrossRef]
- Suo, C.; Fan, Z.; Zhou, L.; Qiu, J. Perfluorooctane Sulfonate Affects Intestinal Immunity against Bacterial Infection. Sci. Rep. 2017, 7, 5166. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Wang, T.; Sun, J.; Dai, H.; Zhang, Y.; Liu, N.; Liu, H. Postbiotics from Lactobacillus Johnsonii Activates Gut Innate Immunity to Mitigate Alcohol-Associated Liver Disease. Adv. Sci. 2025, 12, e2405781. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.G.; Pellegrino, R.; Palladino, G.; Imperio, G.; Calabrese, F.; Pasta, A.; Giannini, E.G.; Federico, A.; Bodini, G. Are Small Molecules Effective in Treating Inflammatory Pouch Disorders Following Ileal Pouch-Anal Anastomosis for Ulcerative Colitis? Here Is Where We Stand. Biomolecules 2024, 14, 1164. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Imperio, G.; De Costanzo, I.; Izzo, M.; Landa, F.; Tambaro, A.; Gravina, A.G.; Federico, A. Small Molecules in the Treatment of Acute Severe Ulcerative Colitis: A Review of Current Evidence. Pharmaceuticals 2025, 18, 308. [Google Scholar] [CrossRef]
- Sun, H.; Shu, J.; Tang, J.; Li, Y.; Qiu, J.; Ding, Z.; Xuan, B.; Chen, M.; Gan, C.; Lin, J.; et al. GLP-1 Receptor Agonists Alleviate Colonic Inflammation by Modulating Intestinal Microbiota and the Function of Group 3 Innate Lymphoid Cells. Immunology 2024, 172, 451–468. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Parian, A.M.; Shah, N.D.; Colombel, J.-F. Short Bowel Syndrome and Intestinal Failure in Crohn’s Disease. Inflamm. Bowel Dis. 2016, 22, 1209–1218. [Google Scholar] [CrossRef]
- Aksan, A.; Farrag, K.; Blumenstein, I.; Schröder, O.; Dignass, A.U.; Stein, J. Chronic Intestinal Failure and Short Bowel Syndrome in Crohn’s Disease. World J. Gastroenterol. 2021, 27, 3440–3465. [Google Scholar] [CrossRef]
- Pessarelli, T.; Topa, M.; Sorge, A.; Nandi, N.; Pugliese, D.; Macaluso, F.S.; Orlando, A.; Saibeni, S.; Costantino, A.; Stalla, F.; et al. The Epidemiology and Clinical Management of Short Bowel Syndrome and Chronic Intestinal Failure in Crohn’s Disease in Italy: An IG-IBD Survey. Nutrients 2024, 16, 3311. [Google Scholar] [CrossRef]
- Sasson, A.N.; Noelting, J.; Schwenger, K.J.P.; Ghorbani, Y.; Armstrong, D.; Raman, M.; Duerksen, D.R.; Whittaker, S.; Lu, Y.; Jurewitsch, B.; et al. Clinical Outcomes in Crohn’s Disease Patients with Short Bowel Syndrome on Home Parenteral Nutrition Are Comparable to Those with Short Bowel Syndrome from Other Etiologies. Clin. Nutr. 2025, 49, 149–156. [Google Scholar] [CrossRef]
- Kunkel, D.; Basseri, B.; Low, K.; Lezcano, S.; Soffer, E.E.; Conklin, J.L.; Mathur, R.; Pimentel, M. Efficacy of the Glucagon-like Peptide-1 Agonist Exenatide in the Treatment of Short Bowel Syndrome. Neurogastroenterol. Motil. 2011, 23, 739-e328. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.B.; Askov-Hansen, C.; Naimi, R.M.; Brandt, C.F.; Hartmann, B.; Holst, J.J.; Mortensen, P.B.; Jeppesen, P.B. Acute Effects of Continuous Infusions of Glucagon-like Peptide (GLP)-1, GLP-2 and the Combination (GLP-1+GLP-2) on Intestinal Absorption in Short Bowel Syndrome (SBS) Patients. A Placebo-Controlled Study. Regul. Pept. 2013, 184, 30–39. [Google Scholar] [CrossRef]
- Kochar, B.; Long, M.D.; Shelton, E.; Young, L.; Farraye, F.A.; Yajnik, V.; Herfarth, H. Safety and Efficacy of Teduglutide (Gattex) in Patients With Crohn’s Disease and Need for Parenteral Support Due to Short Bowel Syndrome-Associated Intestinal Failure. J. Clin. Gastroenterol. 2017, 51, 508–511. [Google Scholar] [CrossRef]
- Hunt, J.E.; Holst, J.J.; Jeppesen, P.B.; Kissow, H. GLP-1 and Intestinal Diseases. Biomedicines 2021, 9, 383. [Google Scholar] [CrossRef]
- Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; et al. A Genome-Wide Association Study Identifies Three New Susceptibility Loci for Ulcerative Colitis in the Japanese Population. Nat. Genet. 2009, 41, 1325–1329. [Google Scholar] [CrossRef]
- Jeffrey, L. A Novel Use of Liraglutide: Induction of Partial Remission in Ulcerative Colitis and Ankylosing Spondylitis. Clin. Med. Rev. Case Rep. 2019, 6. [Google Scholar] [CrossRef]
- Gorelik, Y.; Ghersin, I.; Lujan, R.; Shlon, D.; Loewenberg Weisband, Y.; Ben-Tov, A.; Matz, E.; Zacay, G.; Dotan, I.; Turner, D.; et al. GLP-1 Analog Use Is Associated With Improved Disease Course in Inflammatory Bowel Disease: A Report from the Epi-IIRN. J. Crohns Colitis 2025, 19, jjae160. [Google Scholar] [CrossRef]
- Lim, S.B.; Rubinstein, I.; Sadikot, R.T.; Artwohl, J.E.; Önyüksel, H. A Novel Peptide Nanomedicine against Acute Lung Injury: GLP-1 in Phospholipid Micelles. Pharm. Res. 2011, 28, 662–672. [Google Scholar] [CrossRef]
- Hildebrandt, M.; Rose, M.; Rüter, J.; Salama, A.; Mönnikes, H.; Klapp, B.F. Dipeptidyl Peptidase IV (DP IV, CD26) in Patients with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 2001, 36, 1067–1072. [Google Scholar] [CrossRef]
- Xiao, Q.; Boushey, R.P.; Cino, M.; Drucker, D.J.; Brubaker, P.L. Circulating Levels of Glucagon-like Peptide-2 in Human Subjects with Inflammatory Bowel Disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1057–R1063. [Google Scholar] [CrossRef]
- Boonacker, E.; Van Noorden, C.J.F. The Multifunctional or Moonlighting Protein CD26/DPPIV. Eur. J. Cell. Biol. 2003, 82, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Klemann, C.; Wagner, L.; Stephan, M.; von Hörsten, S. Cut to the Chase: A Review of CD26/Dipeptidyl Peptidase-4’s (DPP4) Entanglement in the Immune System. Clin. Exp. Immunol. 2016, 185, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.-M.; Yee, J.; Gwak, H.S. Dipeptidyl Peptidase-4 Inhibitors Lower the Risk of Autoimmune Disease in Patients with Type 2 Diabetes Mellitus: A Nationwide Population-Based Cohort Study. Br. J. Clin. Pharmacol. 2019, 85, 1719–1727. [Google Scholar] [CrossRef]
- Ng, L.; Wong, S.K.-M.; Huang, Z.; Lam, C.S.-C.; Chow, A.K.-M.; Foo, D.C.-C.; Lo, O.S.-H.; Pang, R.W.-C.; Law, W.-L. CD26 Induces Colorectal Cancer Angiogenesis and Metastasis through CAV1/MMP1 Signaling. Int. J. Mol. Sci. 2022, 23, 1181. [Google Scholar] [CrossRef]
- Arab, H.H.; Eid, A.H.; Mahmoud, A.M.; Senousy, M.A. Linagliptin Mitigates Experimental Inflammatory Bowel Disease in Rats by Targeting Inflammatory and Redox Signaling. Life Sci. 2021, 273, 119295. [Google Scholar] [CrossRef]
- Ban, H.; Bamba, S.; Imaeda, H.; Inatomi, O.; Kobori, A.; Sasaki, M.; Tsujikawa, T.; Andoh, A.; Fujiyama, Y. The DPP-IV Inhibitor ER-319711 Has a Proliferative Effect on the Colonic Epithelium and a Minimal Effect in the Amelioration of Colitis. Oncol. Rep. 2011, 25, 1699–1703. [Google Scholar] [CrossRef]
- Wang, D.; Li, D.; Zhang, Y.; Chen, J.; Zhang, Y.; Liao, C.; Qin, S.; Tian, Y.; Zhang, Z.; Xu, F. Functional Metabolomics Reveal the Role of AHR/GPR35 Mediated Kynurenic Acid Gradient Sensing in Chemotherapy-Induced Intestinal Damage. Acta Pharm. Sin. B 2021, 11, 763–780. [Google Scholar] [CrossRef]
- Rodriguez-Pacheco, F.; Garcia-Serrano, S.; Garcia-Escobar, E.; Gutierrez-Repiso, C.; Garcia-Arnes, J.; Valdes, S.; Gonzalo, M.; Soriguer, F.; Moreno-Ruiz, F.J.; Rodriguez-Cañete, A.; et al. Effects of Obesity/Fatty Acids on the Expression of GPR120. Mol. Nutr. Food Res. 2014, 58, 1852–1860. [Google Scholar] [CrossRef]
- Yang, W.; Liu, H.; Xu, L.; Yu, T.; Zhao, X.; Yao, S.; Zhao, Q.; Barnes, S.; Cohn, S.M.; Dann, S.M.; et al. GPR120 Inhibits Colitis Through Regulation of CD4+ T Cell Interleukin 10 Production. Gastroenterology 2022, 162, 150–165. [Google Scholar] [CrossRef]
- Ghislain, J.; Poitout, V. Targeting Lipid GPCRs to Treat Type 2 Diabetes Mellitus—Progress and Challenges. Nat. Rev. Endocrinol. 2021, 17, 162–175. [Google Scholar] [CrossRef]
- Chen, L.; He, Z.; Reis, B.S.; Gelles, J.D.; Chipuk, J.E.; Ting, A.T.; Spicer, J.A.; Trapani, J.A.; Furtado, G.C.; Lira, S.A. IFN-Γ+ Cytotoxic CD4+ T Lymphocytes Are Involved in the Pathogenesis of Colitis Induced by IL-23 and the Food Colorant Red 40. Cell. Mol. Immunol. 2022, 19, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Fredborg, M.; Theil, P.K.; Jensen, B.B.; Purup, S. G Protein-Coupled Receptor120 (GPR120) Transcription in Intestinal Epithelial Cells Is Significantly Affected by Bacteria Belonging to the Bacteroides, Proteobacteria, and Firmicutes Phyla. J. Anim. Sci. 2012, 90 (Suppl. 4), 10–12. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [PubMed]
ID 1 | Title | Design (Phase) | Arm(s) | Primary Outcomes |
---|---|---|---|---|
NCT06774079 | A Randomized Clinical Trial to Determine the Effect of Dual Glucose-dependent Insulinotropic Polypeptide (GIP)/GLP-1 Receptor Agonist-mediated Weight Loss and Diet on Crohn’s Disease Clinical Response: a Pilot Study | RCT (Phase 4) | (1) Tirzepatide and Mediterranean diet versus (2) Mediterranean diet | Change in percentage of participants retained; number of patients who adhere to diet measured by 24 h dietary recall; number of patients who adhere to medications measured by self-report |
NCT05196958 | Interest of GLP1 Analogues (aGLP1) in Overweight Type 2 Diabetic Patients With Chronic Inflammatory Bowel Disease (IBD) (DiagMICI) | nRCT (N/A) | (1) GLP-1 analogues | Glycaemic control; weight loss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gravina, A.G.; Pellegrino, R.; Izzo, M.; De Costanzo, I.; Imperio, G.; Landa, F.; Tambaro, A.; Federico, A. Relevance of Glucagon-Like Peptide 1 (GLP-1) in Inflammatory Bowel Diseases: A Narrative Review. Curr. Issues Mol. Biol. 2025, 47, 383. https://doi.org/10.3390/cimb47050383
Gravina AG, Pellegrino R, Izzo M, De Costanzo I, Imperio G, Landa F, Tambaro A, Federico A. Relevance of Glucagon-Like Peptide 1 (GLP-1) in Inflammatory Bowel Diseases: A Narrative Review. Current Issues in Molecular Biology. 2025; 47(5):383. https://doi.org/10.3390/cimb47050383
Chicago/Turabian StyleGravina, Antonietta Gerarda, Raffaele Pellegrino, Michele Izzo, Ilaria De Costanzo, Giuseppe Imperio, Fabio Landa, Assunta Tambaro, and Alessandro Federico. 2025. "Relevance of Glucagon-Like Peptide 1 (GLP-1) in Inflammatory Bowel Diseases: A Narrative Review" Current Issues in Molecular Biology 47, no. 5: 383. https://doi.org/10.3390/cimb47050383
APA StyleGravina, A. G., Pellegrino, R., Izzo, M., De Costanzo, I., Imperio, G., Landa, F., Tambaro, A., & Federico, A. (2025). Relevance of Glucagon-Like Peptide 1 (GLP-1) in Inflammatory Bowel Diseases: A Narrative Review. Current Issues in Molecular Biology, 47(5), 383. https://doi.org/10.3390/cimb47050383