The Struggle Between Chimeric Antigen Receptor T-Cell Therapy and Neurological Complications in Acute Lymphoblastic Leukemia Treatment
Abstract
:1. Introduction
2. CAR T-Cell Therapy Process for ALL
2.1. Current Status of CAR T-Cell Therapy
2.2. Complications of CAR T-Cell Therapy
2.3. Clinical and Therapeutic Risk Factors of Immune Effector Cell-Associated Neurotoxicity Syndrome
2.4. Molecular and Mechanistic Contributors to Immune Effector Cell-Associated Neurotoxicity Syndrome
Factor | Key Outcomes/Implications | References |
---|---|---|
Disease Burden | Early CAR T therapy may improve long-term outcomes and reduce toxicity. | [34,35,36,37,38,39,40] |
Cytokine Release and Neurotoxicity | Increased risk of ICANS, neurological dysfunction, microthrombosis (VWF elevation). | [35,36,37,38,39,40] |
Genetic Factors | Linked to higher cytokine release, CRS severity, CNS infiltration, and possible neuroinflammation. | [41,42,43,44] |
Autologous vs. Allogeneic CAR T Therapy | Autologous preferred for better persistence, less systemic inflammation, and reduced neurotoxicity. | [43,45,46] |
Prior Drug Exposure | Careful sequencing of therapies could optimize outcomes and minimize neurotoxicity. | [47,48,49] |
Prior Stem Cell Transplantation | Protective effect possible, but neurological impacts unclear and need more research. | [50,51,52,53] |
Cytokine Biomarkers for Neurotoxicity | Cytokine monitoring could predict and mitigate neurotoxicity. | [54,55,56] |
New Biomarkers (S100A8/S100A9) | Potential early predictors for relapse and neurological toxicity. | [57] |
Neurofilament Light Chain (NfL) | NfL can be used as an early biomarker for identifying at-risk patients. | [58,59,60,61] |
CRS–ICANS Continuum | CRS severity directly affects ICANS risk; interventions should target this cascade. | [62,63,64] |
2.5. Options for Reducing CAR T-Cell Complications
2.6. Cutting-Edge Developments
3. Conclusions
Funding
Conflicts of Interest
References
- Jackson, H.J.; Rafiq, S.; Brentjens, R.J. Driving CAR T-Cells Forward. Nat. Rev. Clin. Oncol. 2016, 13, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, A.; Laskin, B.L.; Stephens, J.M.; Botteman, M.F.; Pashos, C.L. A Systematic Literature Review of the Clinical and Epidemiological Burden of Acute Lymphoblastic Leukaemia (ALL). Eur. J. Cancer Care 2005, 14, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Pui, C.-H. Comparative Features and Outcomes between Paediatric T-Cell and B-Cell Acute Lymphoblastic Leukaemia. Lancet Oncol. 2019, 20, e142–e154. [Google Scholar] [CrossRef] [PubMed]
- Malouf, C.; Ottersbach, K. Molecular Processes Involved in B Cell Acute Lymphoblastic Leukaemia. Cell. Mol. Life Sci. 2018, 75, 417–446. [Google Scholar] [CrossRef]
- Paganin, M.; Ferrando, A. Molecular Pathogenesis and Targeted Therapies for NOTCH1-Induced T-Cell Acute Lymphoblastic Leukemia. Blood Rev. 2011, 25, 83–90. [Google Scholar] [CrossRef]
- Yin, T.; Han, J.; Hao, J.; Yu, H.; Qiu, Y.; Xu, J.; Peng, Y.; Wu, X.; Jin, R.; Zhou, F. Clinical Characteristics and Risk Factors of Acute Lymphoblastic Leukemia in Children with Severe Infection during Maintenance Treatment. Cancer Med. 2023, 12, 19372–19382. [Google Scholar] [CrossRef]
- Ma, H.; Sun, H.; Sun, X. Survival Improvement by Decade of Patients Aged 0–14 Years with Acute Lymphoblastic Leukemia: A SEER Analysis. Sci. Rep. 2014, 4, 4227. [Google Scholar] [CrossRef]
- Hunger, S.P.; Raetz, E.A. How I Treat Relapsed Acute Lymphoblastic Leukemia in the Pediatric Population. Blood 2020, 136, 1803–1812. [Google Scholar] [CrossRef]
- Thomas, D.A.; Kantarjian, H.; Smith, T.L.; Koller, C.; Cortes, J.; O’Brien, S.; Giles, F.J.; Gajewski, J.; Pierce, S.; Keating, M.J. Primary Refractory and Relapsed Adult Acute Lymphoblastic Leukemia. Cancer 1999, 86, 1216–1230. [Google Scholar] [CrossRef]
- Oskarsson, T.; Söderhäll, S.; Arvidson, J.; Forestier, E.; Frandsen, T.L.; Hellebostad, M.; Lähteenmäki, P.; Jónsson, Ó.G.; Myrberg, I.H.; Heyman, M. Treatment-related Mortality in Relapsed Childhood Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2018, 65, e26909. [Google Scholar] [CrossRef]
- Gabriel, M.; Hoeben, B.A.W.; Uhlving, H.H.; Zajac-Spychala, O.; Lawitschka, A.; Bresters, D.; Ifversen, M. A Review of Acute and Long-Term Neurological Complications Following Haematopoietic Stem Cell Transplant for Paediatric Acute Lymphoblastic Leukaemia. Front. Pediatr. 2021, 9, 774853. [Google Scholar] [CrossRef]
- Park, J.H.; Romero, F.A.; Taur, Y.; Sadelain, M.; Brentjens, R.J.; Hohl, T.M.; Seo, S.K. Cytokine Release Syndrome Grade as a Predictive Marker for Infections in Patients With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia Treated with Chimeric Antigen Receptor T Cells. Clin. Infect. Dis. 2018, 67, 533–540. [Google Scholar] [CrossRef]
- Rubin, D.B.; Vaitkevicius, H. Neurological Complications of Cancer Immunotherapy (CAR T Cells). J. Neurol. Sci. 2021, 424, 117405. [Google Scholar] [CrossRef]
- Neill, L.; Rees, J.; Roddie, C. Neurotoxicity—CAR T-Cell Therapy: What the Neurologist Needs to Know. Pract. Neurol. 2020, 20, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. B-Cell Depletion and Remissions of Malignancy along with Cytokine-Associated Toxicity in a Clinical Trial of Anti-CD19 Chimeric-Antigen-Receptor–Transduced T Cells. Blood 2012, 119, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Kowolik, C.M.; Topp, M.S.; Gonzalez, S.; Pfeiffer, T.; Olivares, S.; Gonzalez, N.; Smith, D.D.; Forman, S.J.; Jensen, M.C.; Cooper, L.J.N. CD28 Costimulation Provided through a CD19-Specific Chimeric Antigen Receptor Enhances In Vivo Persistence and Antitumor Efficacy of Adoptively Transferred T Cells. Cancer Res. 2006, 66, 10995–11004. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tan, Y.; Wang, G.; Deng, B.; Ling, Z.; Song, W.; Seery, S.; Zhang, Y.; Peng, S.; Xu, J.; et al. Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-in-Human, Phase I Trial. J. Clin. Oncol. 2021, 39, 3340–3351. [Google Scholar] [CrossRef]
- Wilkie, S.; Picco, G.; Foster, J.; Davies, D.M.; Julien, S.; Cooper, L.; Arif, S.; Mather, S.J.; Taylor-Papadimitriou, J.; Burchell, J.M.; et al. Retargeting of Human T Cells to Tumor-Associated MUC1: The Evolution of a Chimeric Antigen Receptor. J. Immunol. 2008, 180, 4901–4909. [Google Scholar] [CrossRef]
- Schultz, L.M.; Jeyakumar, N.; Kramer, A.M.; Sahaf, B.; Srinagesh, H.; Shiraz, P.; Agarwal, N.; Hamilton, M.; Erickson, C.; Jacobs, A.; et al. CD22 CAR T Cells Demonstrate High Response Rates and Safety in Pediatric and Adult B-ALL: Phase 1b Results. Leukemia 2024, 38, 963–968. [Google Scholar] [CrossRef]
- Srinagesh, H.; Jackson, C.; Shiraz, P.; Jeyakumar, N.; Hamilton, M.; Egeler, E.; Mavroukakis, S.; Kuo, A.; Cancilla, J.; Sahaf, B.; et al. A Phase 1 Clinical Trial of NKTR-255 with CD19-22 CAR T-Cell Therapy for Refractory B-Cell Acute Lymphoblastic Leukemia. Blood 2024, 144, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Xu, H.; Cinquina, A.; Wu, Z.; Chen, Q.; Zhang, P.; Wang, X.; Shan, H.; Xu, L.; Zhang, Q.; et al. Treatment of Aggressive T Cell Lymphoblastic Lymphoma/Leukemia Using Anti-CD5 CAR T Cells. Stem Cell Rev. Rep. 2021, 17, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, R.; Georgiadis, C.; Syed, F.; Zhan, H.; Etuk, A.; Gkazi, S.A.; Preece, R.; Ottaviano, G.; Braybrook, T.; Chu, J.; et al. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2023, 389, 899–910. [Google Scholar] [CrossRef]
- Brandt, L.J.B.; Barnkob, M.B.; Michaels, Y.S.; Heiselberg, J.; Barington, T. Emerging Approaches for Regulation and Control of CAR T Cells: A Mini Review. Front. Immunol. 2020, 11, 326. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, J.; Läubli, H.; Khanna, N.; Jeker, L.T.; Holbro, A. Basic Concepts and Indications of CAR T Cells. Hamostaseologie 2025, 45, 014–023. [Google Scholar] [CrossRef]
- Fry, T.J.; Mackall, C.L. T-Cell Adoptive Immunotherapy for Acute Lymphoblastic Leukemia. Hematology 2013, 2013, 348–353. [Google Scholar] [CrossRef]
- Brentjens, R.; Yeh, R.; Bernal, Y.; Riviere, I.; Sadelain, M. Treatment of Chronic Lymphocytic Leukemia With Genetically Targeted Autologous T Cells: Case Report of an Unforeseen Adverse Event in a Phase I Clinical Trial. Mol. Ther. 2010, 18, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef]
- Tan, Y.; Shan, L.; Zhao, L.; Deng, B.; Ling, Z.; Zhang, Y.; Peng, S.; Xu, J.; Duan, J.; Wang, Z.; et al. Long-Term Follow-up of Donor-Derived CD7 CAR T-Cell Therapy in Patients with T-Cell Acute Lymphoblastic Leukemia. J. Hematol. Oncol. 2023, 16, 34. [Google Scholar] [CrossRef]
- Prudent, V.; Breitbart, W.S. Chimeric Antigen Receptor T-Cell Neuropsychiatric Toxicity in Acute Lymphoblastic Leukemia. Palliat. Support. Care 2017, 15, 499–503. [Google Scholar] [CrossRef]
- Corona, M.; Shouval, R.; Alarcón, A.; Flynn, J.; Devlin, S.; Batlevi, C.; Mantha, S.; Palomba, M.L.; Scordo, M.; Shah, G.; et al. Management of Prolonged Cytopenia Following CAR T-Cell Therapy. Bone Marrow Transplant. 2022, 57, 1839–1841. [Google Scholar] [CrossRef]
- Gabelli, M.; Oporto-Espuelas, M.; Burridge, S.; Chu, J.; Farish, S.; Hedges, E.; Ware, K.; Williams, L.; Young, L.; Alajangi, R.; et al. Maintenance Therapy for Early Loss of B-Cell Aplasia after Anti-CD19 CAR T-Cell Therapy. Blood Adv. 2024, 8, 1959–1963. [Google Scholar] [CrossRef] [PubMed]
- Ottaviano, G.; Georgiadis, C.; Gkazi, S.A.; Syed, F.; Zhan, H.; Etuk, A.; Preece, R.; Chu, J.; Kubat, A.; Adams, S.; et al. Phase 1 Clinical Trial of CRISPR-Engineered CAR19 Universal T Cells for Treatment of Children with Refractory B Cell Leukemia. Sci. Transl. Med. 2022, 14, eabq3010. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhou, Y.; Zhang, M.; Ge, W.; Li, Y.; Yang, L.; Wei, G.; Han, L.; Wang, H.; Yu, S.; et al. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2021, 27, 2764–2772. [Google Scholar] [CrossRef]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Freyer, C.W.; Porter, D.L. Cytokine Release Syndrome and Neurotoxicity Following CAR T-Cell Therapy for Hematologic Malignancies. J. Allergy Clin. Immunol. 2020, 146, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Ventin, M.; Cattaneo, G.; Maggs, L.; Arya, S.; Wang, X.; Ferrone, C.R. Implications of High Tumor Burden on Chimeric Antigen Receptor T-Cell Immunotherapy. JAMA Oncol. 2024, 10, 115. [Google Scholar] [CrossRef]
- Huang, X.; Hussain, B.; Chang, J. Peripheral Inflammation and Blood–Brain Barrier Disruption: Effects and Mechanisms. CNS Neurosci. Ther. 2021, 27, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, R.; Shang, S.; Yang, X.; Li, L.; Wang, W.; Wang, Y. Therapeutic Potential of TNFα and IL1β Blockade for CRS/ICANS in CAR-T Therapy via Ameliorating Endothelial Activation. Front. Immunol. 2021, 12, 623610. [Google Scholar] [CrossRef]
- Dong, R.; Wang, Y.; Lin, Y.; Sun, X.; Xing, C.; Zhang, Y.; Wang, H.; Dai, L.; Yu, K.; Jiang, S. The Correlation Factors and Prognostic Significance of Coagulation Disorders after Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies: A Cohort Study. Ann. Transl. Med. 2022, 10, 975. [Google Scholar] [CrossRef]
- Noone, D.G.; Riedl, M.; Licht, C. The Role of von Willebrand Factor in Thrombotic Microangiopathy. Pediatr. Nephrol. 2018, 33, 1297–1307. [Google Scholar] [CrossRef]
- An, F.; Wang, H.; Liu, Z.; Wu, F.; Zhang, J.; Tao, Q.; Li, Y.; Shen, Y.; Ruan, Y.; Zhang, Q.; et al. Influence of Patient Characteristics on Chimeric Antigen Receptor T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Nat. Commun. 2020, 11, 5928. [Google Scholar] [CrossRef] [PubMed]
- Hurtz, C.; Wertheim, G.B.; Loftus, J.P.; Blumenthal, D.; Lehman, A.; Li, Y.; Bagashev, A.; Manning, B.; Cummins, K.D.; Burkhardt, J.K.; et al. Oncogene-Independent BCR-like Signaling Adaptation Confers Drug Resistance in Ph-like ALL. J. Clin. Investig. 2020, 130, 3637–3653. [Google Scholar] [CrossRef]
- Ridha, N.R.; Mustakim, G.A.; Ganda, I.J. Evaluation of Interleukin-6 Level Before Chemotherapy in Acute Lymphoblastic Leukemia L1 Standard-Risk and High-Risk Patients. Open Access Maced. J. Med. Sci. 2022, 10, 2586–2590. [Google Scholar] [CrossRef]
- Shand, J.C.; Magno, J.; Winter, M.W.; Toia, L.M. MLL-Rearranged Infant ALL, but Not Standard-Risk ALL, Induces Inflammasome Signaling and Immune Activation. Blood 2014, 124, 3660. [Google Scholar] [CrossRef]
- Anagnostou, T.; Riaz, I.B.; Hashmi, S.K.; Murad, M.H.; Kenderian, S.S. Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy in Acute Lymphocytic Leukaemia: A Systematic Review and Meta-Analysis. Lancet Haematol. 2020, 7, e816–e826. [Google Scholar] [CrossRef]
- del Bufalo, F.; Becilli, M.; Rosignoli, C.; De Angelis, B.; Algeri, M.; Hanssens, L.; Gunetti, M.; Iacovelli, S.; Li Pira, G.; Girolami, E.; et al. Allogeneic, Donor-Derived, Second-Generation, CD19-CAR-T Cell for the Treatment of Pediatric Relapsed/Refractory BCP-ALL. Blood J. 2023, 142, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Lee, D.W.; Yates, B.; Yuan, C.M.; Shalabi, H.; Martin, S.; Wolters, P.L.; Steinberg, S.M.; Baker, E.H.; Delbrook, C.P.; et al. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. J. Clin. Oncol. 2021, 39, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.I.; Castleton, A.Z. Impact of Prior Treatment on CAR T-Cell Outcome in Adult ALL. Blood Adv. 2024, 8, 6137–6138. [Google Scholar] [CrossRef]
- Ceolin, V.; Brivio, E.; van Tinteren, H.; Rheingold, S.R.; Leahy, A.; Vormoor, B.; O’Brien, M.M.; Rubinstein, J.D.; Kalwak, K.; De Moerloose, B.; et al. Outcome of Chimeric Antigen Receptor T-Cell Therapy Following Treatment with Inotuzumab Ozogamicin in Children with Relapsed or Refractory Acute Lymphoblastic Leukemia. Leukemia 2023, 37, 53–60. [Google Scholar] [CrossRef]
- Jacoby, E.; Ghorashian, S.; Vormoor, B.; De Moerloose, B.; Bodmer, N.; Molostova, O.; Yanir, A.D.; Buechner, J.; Elhasid, R.; Bielorai, B.; et al. CD19 CAR T-Cells for Pediatric Relapsed Acute Lymphoblastic Leukemia with Active CNS Involvement: A Retrospective International Study. Leukemia 2022, 36, 1525–1532. [Google Scholar] [CrossRef]
- Jensen, M.C.; Popplewell, L.; Cooper, L.J.; DiGiusto, D.; Kalos, M.; Ostberg, J.R.; Forman, S.J. Antitransgene Rejection Responses Contribute to Attenuated Persistence of Adoptively Transferred CD20/CD19-Specific Chimeric Antigen Receptor Redirected T Cells in Humans. Biol. Blood Marrow Transplant. 2010, 16, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.J.N.; Jena, B.; Bollard, C.M. Good T Cells for Bad B Cells. Blood 2012, 119, 2700–2702. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-Escalation Trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Frey, N.V.; Maude, S.L.; Barrett, D.M.; Aplenc, R.; Chen, F.; Fitzgerald, J.; et al. Biomarkers Accurately Predict Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Acute Lymphoblastic Leukemia (ALL). Blood 2015, 126, 1334. [Google Scholar] [CrossRef]
- Teachey, D.T.; Lacey, S.F.; Shaw, P.A.; Melenhorst, J.J.; Maude, S.L.; Frey, N.; Pequignot, E.; Gonzalez, V.E.; Chen, F.; Finklestein, J.; et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discov. 2016, 6, 664–679. [Google Scholar] [CrossRef] [PubMed]
- Velasco, R.; Mussetti, A.; Villagrán-García, M.; Sureda, A. CAR T-Cell-Associated Neurotoxicity in Central Nervous System Hematologic Disease: Is It Still a Concern? Front. Neurol. 2023, 14, 1144414. [Google Scholar] [CrossRef]
- Chen, W.; Shi, H.; Liu, Z.; Yang, F.; Liu, J.; Zhang, L.; Wu, Y.; Xia, Y.; Ou, Y.; Li, R.; et al. Single-Cell Transcriptomics Reveals Immune Reconstitution in Patients with R/R T-ALL/LBL Treated with Donor-Derived CD7 CAR-T Therapy. Clin. Cancer Res. 2023, 29, 1484–1495. [Google Scholar] [CrossRef]
- Schmitt, C.; Müller, K.J.; Tiedt, S.; Kramer, N.; Manger, I.; Knauss, S.; Müller-Jensen, L.; Huehnchen, P.; Boehmerle, W.; Schöberl, F.; et al. Increased Serum NfL and GFAP Levels Indicate Different Subtypes of Neurologic Immune-related Adverse Events during Treatment with Immune Checkpoint Inhibitors. Int. J. Cancer 2025, 156, 1961–1971. [Google Scholar] [CrossRef]
- Gust, J.; Rawlings-Rhea, S.D.; Wilson, A.L.; Tulberg, N.M.; Sherman, A.L.; Seidel, K.D.; Wu, Q.V.; Park, J.R.; Gardner, R.A.; Annesley, C.E. GFAP and NfL Increase during Neurotoxicity from High Baseline Levels in Pediatric CD19-CAR T-Cell Patients. Blood Adv. 2023, 7, 1001–1010. [Google Scholar] [CrossRef]
- Larue, M.; Bouvier, A.; Maillard, A.; Cuffel, A.; Allain, V.; Ursu, R.; Carpentier, A.F.; Azoulay, E.; Thieblemont, C.; Di Blasi, R.; et al. Neurofilament Light Chain Levels as an Early Predictive Biomarker of Neurotoxicity after CAR T-Cell Therapy. J. Immunother. Cancer 2024, 12, e009525. [Google Scholar] [CrossRef]
- Schoeberl, F.; Tiedt, S.; Schmitt, A.; Blumenberg, V.; Karschnia, P.; Burbano, V.G.; Bücklein, V.L.; Rejeski, K.; Schmidt, C.; Busch, G.; et al. Neurofilament Light Chain Serum Levels Correlate with the Severity of Neurotoxicity after CAR T-Cell Treatment. Blood Adv. 2022, 6, 3022–3026. [Google Scholar] [CrossRef] [PubMed]
- Genoud, V.; Migliorini, D. Novel Pathophysiological Insights into CAR-T Cell Associated Neurotoxicity. Front. Neurol. 2023, 14, 1108297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, X.; Xiao, Y. The Critical Role of Endothelial Cell in the Toxicity Associated with Chimeric Antigen Receptor T Cell Therapy and Intervention Strategies. Ann. Hematol. 2024, 103, 2197–2206. [Google Scholar] [CrossRef]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine Release Syndrome and Associated Neurotoxicity in Cancer Immunotherapy. Nat. Rev. Immunol. 2022, 22, 85–96. [Google Scholar] [CrossRef]
- Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015, 5, 1282–1295. [Google Scholar] [CrossRef] [PubMed]
- Kurzer, J.H.; Weinberg, O.K. To B- or Not to B-: A Review of Lineage Switched Acute Leukemia. Int. J. Lab. Hematol. 2022, 44, 64–70. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Zhang, S.; Liang, Y.; Xiao, M.; Hao, Y.; Guan, Y. A Case Report of Lineage Switch from T-Cell Acute Leukemia to B-Cell Acute Leukemia. Medicine 2020, 99, e22490. [Google Scholar] [CrossRef]
- Wang, T.; Tang, Y.; Cai, J.; Wan, X.; Hu, S.; Lu, X.; Xie, Z.; Qiao, X.; Jiang, H.; Shao, J.; et al. Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. J. Clin. Oncol. 2023, 41, 1670–1683. [Google Scholar] [CrossRef]
- Zebley, C.C.; Brown, C.; Mi, T.; Fan, Y.; Alli, S.; Boi, S.; Galletti, G.; Lugli, E.; Langfitt, D.; Metais, J.-Y.; et al. CD19-CAR T Cells Undergo Exhaustion DNA Methylation Programming in Patients with Acute Lymphoblastic Leukemia. Cell Rep. 2021, 37, 110079. [Google Scholar] [CrossRef]
- Gumber, D.; Wang, L.D. Improving CAR-T Immunotherapy: Overcoming the Challenges of T Cell Exhaustion. eBioMedicine 2022, 77, 103941. [Google Scholar] [CrossRef]
- Lynn, R.C.; Weber, E.W.; Sotillo, E.; Gennert, D.; Xu, P.; Good, Z.; Anbunathan, H.; Lattin, J.; Jones, R.; Tieu, V.; et al. C-Jun Overexpression in CAR T Cells Induces Exhaustion Resistance. Nature 2019, 576, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-Cell Therapy in Patients with B-Cell Acute Lymphoblastic Leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2014, 6, 224ra25. [Google Scholar] [CrossRef] [PubMed]
- Tallantyre, E.C.; Evans, N.A.; Parry-Jones, J.; Morgan, M.P.G.; Jones, C.H.; Ingram, W. Neurological Updates: Neurological Complications of CAR-T Therapy. J. Neurol. 2021, 268, 1544–1554. [Google Scholar] [CrossRef] [PubMed]
- Davila, M.L.; Papapetrou, E.P. CARs Move To the Fast Lane. Mol. Ther. 2014, 22, 477–478. [Google Scholar] [CrossRef]
- Fitzgerald, J.C.; Weiss, S.L.; Maude, S.L.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; Shaw, P.; Berg, R.A.; June, C.H.; Porter, D.L.; et al. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Crit. Care Med. 2017, 45, e124–e131. [Google Scholar] [CrossRef]
- Landry, K.; Thomas, A.A. Neurological Complications of CAR T Cell Therapy. Curr. Oncol. Rep. 2020, 22, 83. [Google Scholar] [CrossRef]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Stefanski, J.; He, Q.; Borquez-Ojeda, O.; Taylor, C.; Wasielewska, T.; Qu, J.; et al. Safe and Effective Re-Induction Of Complete Remissions In Adults With Relapsed B-ALL Using 19-28z CAR CD19-Targeted T Cell Therapy. Blood 2013, 122, 69. [Google Scholar] [CrossRef]
- Lee, D.W.; Shah, N.N.; Stetler-Stevenson, M.; Sabatino, M.; Delbrook, C.; Richards, K.; Kochenderfer, J.N.; Rosenberg, S.A.; Stroncek, D.; Wayne, A.S.; et al. Anti-CD19 Chimeric Antigen Receptor (CAR) T Cells Produce Complete Responses with Acceptable Toxicity But Without Chronic B-Cell Aplasia in Children with Relapsed Or Refractory Acute Lymphoblastic Leukemia (ALL) Even After Allogeneic Hematopoietic Stem Ce. Blood 2013, 122, 68. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef]
- Testa, U.; Sica, S.; Pelosi, E.; Castelli, G.; Leone, G. CAR-T CELL THERAPY IN B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA. Mediterr. J. Hematol. Infect. Dis. 2024, 16, e2024010. [Google Scholar] [CrossRef]
- Pan, J.; Yang, J.F.; Deng, B.P.; Zhao, X.J.; Zhang, X.; Lin, Y.H.; Wu, Y.N.; Deng, Z.L.; Zhang, Y.L.; Liu, S.H.; et al. High Efficacy and Safety of Low-Dose CD19-Directed CAR-T Cell Therapy in 51 Refractory or Relapsed B Acute Lymphoblastic Leukemia Patients. Leukemia 2017, 31, 2587–2593. [Google Scholar] [CrossRef]
- Schultz, L.M.; Muffly, L.S.; Spiegel, J.Y.; Ramakrishna, S.; Hossain, N.; Baggott, C.; Sahaf, B.; Patel, S.; Craig, J.; Yoon, J.; et al. Phase I Trial Using CD19/CD22 Bispecific CAR T Cells in Pediatric and Adult Acute Lymphoblastic Leukemia (ALL). Blood 2019, 134, 744. [Google Scholar] [CrossRef]
- Frey, N.V.; Shaw, P.A.; Hexner, E.O.; Pequignot, E.; Gill, S.; Luger, S.M.; Mangan, J.K.; Loren, A.W.; Perl, A.E.; Maude, S.L.; et al. Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2020, 38, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.D.; Bishop, M.R.; Oluwole, O.O.; Logan, A.C.; Baer, M.R.; Donnellan, W.B.; O’Dwyer, K.M.; Holmes, H.; Arellano, M.L.; Ghobadi, A.; et al. KTE-X19 Anti-CD19 CAR T-Cell Therapy in Adult Relapsed/Refractory Acute Lymphoblastic Leukemia: ZUMA-3 Phase 1 Results. Blood 2021, 138, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Celichowski, P.; Turi, M.; Charvátová, S.; Radhakrishnan, D.; Feizi, N.; Chyra, Z.; Šimíček, M.; Jelínek, T.; Bago, J.R.; Hájek, R.; et al. Tuning CARs: Recent Advances in Modulating Chimeric Antigen Receptor (CAR) T Cell Activity for Improved Safety, Efficacy, and Flexibility. J. Transl. Med. 2023, 21, 197. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, L.; Zhao, L.; Guo, Q.; Li, J.; Liu, Z.; Guo, Z.; Cao, Y.J. Split-Design Approach Enhances the Therapeutic Efficacy of Ligand-Based CAR-T Cells against Multiple B-Cell Malignancies. Nat. Commun. 2024, 15, 9751. [Google Scholar] [CrossRef]
- Kondo, T.; Bourassa, F.X.P.; Achar, S.; DuSold, J.; Céspedes, P.F.; Ando, M.; Dwivedi, A.; Moraly, J.; Chien, C.; Majdoul, S.; et al. Engineering TCR-Controlled Fuzzy Logic into CAR T Cells Enhances Therapeutic Specificity. Cell 2025, 188, 2372–2389.e35. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, Y.; Chai, X.; Wang, Y.; Zhao, M.; Guo, S.; Zhang, Y.; Zhao, M. Modified CD15/CD16-CLL1 Inhibitory CAR-T Cells for Mitigating Granulocytopenia Toxicities in the Treatment of Acute Myeloid Leukemia. Transl. Oncol. 2025, 52, 102225. [Google Scholar] [CrossRef]
- Seo, Y.R.; Lee, H.J.; Yu, S.R.; Lee, H.B.; Lee, J.H.; Kim, H.C.; Lee, Y. Multi-Armored Allogeneic CD5 Γδ CAR T Cells Enhance Anti-Tumor Efficacy in T Cell Malignancies. Cancer Res. 2025, 85, 4813. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, M.; Zhang, J. Intelligent Tunable CAR-T Cell Therapy Leads the New Trend. Synth. Syst. Biotechnol. 2023, 8, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yin, J.; Wu, J.; Qiao, L.; Zhao, E.M.; Cai, F.; Ye, H. Engineering Genetic Devices for in Vivo Control of Therapeutic T Cell Activity Triggered by the Dietary Molecule Resveratrol. Proc. Natl. Acad. Sci. USA 2021, 118, e2106612118. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wu, Y.; Allen, M.E.; Pan, Y.; Kyriakakis, P.; Lu, S.; Chang, Y.-J.; Wang, X.; Chien, S.; Wang, Y. Engineering Light-Controllable CAR T Cells for Cancer Immunotherapy. Sci. Adv. 2020, 6, eaay9209. [Google Scholar] [CrossRef]
- Shirzadian, M.; Moori, S.; Rabbani, R.; Rahbarizadeh, F. SynNotch CAR-T Cell, When Synthetic Biology and Immunology Meet Again. Front. Immunol. 2025, 16, 1545270. [Google Scholar] [CrossRef]
- Tousley, A.M.; Rotiroti, M.C.; Labanieh, L.; Rysavy, L.W.; Kim, W.-J.; Lareau, C.; Sotillo, E.; Weber, E.W.; Rietberg, S.P.; Dalton, G.N.; et al. Co-Opting Signalling Molecules Enables Logic-Gated Control of CAR T Cells. Nature 2023, 615, 507–516. [Google Scholar] [CrossRef]
- DiAndreth, B.; Nesterenko, P.A.; Winters, A.G.; Flynn, A.D.; Jette, C.A.; Suryawanshi, V.; Shafaattalab, S.; Martire, S.; Daris, M.; Moore, E.; et al. Multi-Targeted, NOT Gated CAR-T Cells as a Strategy to Protect Normal Lineages for Blood Cancer Therapy. Front. Immunol. 2025, 16, 1493329. [Google Scholar] [CrossRef]
- Fedorov, V.D.; Themeli, M.; Sadelain, M. PD-1– and CTLA-4–Based Inhibitory Chimeric Antigen Receptors (ICARs) Divert Off-Target Immunotherapy Responses. Sci. Transl. Med. 2013, 5, 215ra172. [Google Scholar] [CrossRef]
- Li, Y.; Basar, R.; Wang, G.; Liu, E.; Moyes, J.S.; Li, L.; Kerbauy, L.N.; Uprety, N.; Fathi, M.; Rezvan, A.; et al. KIR-Based Inhibitory CARs Overcome CAR-NK Cell Trogocytosis-Mediated Fratricide and Tumor Escape. Nat. Med. 2022, 28, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Kojima, R.; Scheller, L.; Fussenegger, M. Nonimmune Cells Equipped with T-Cell-Receptor-like Signaling for Cancer Cell Ablation. Nat. Chem. Biol. 2018, 14, 42–49. [Google Scholar] [CrossRef]
- Wang, X.; Kang, L.; Kong, D.; Wu, X.; Zhou, Y.; Yu, G.; Dai, D.; Ye, H. A Programmable Protease-Based Protein Secretion Platform for Therapeutic Applications. Nat. Chem. Biol. 2024, 20, 432–442. [Google Scholar] [CrossRef]
- Itohara, S.; Mombaerts, P.; Lafaille, J.; Iacomini, J.; Nelson, A.; Clarke, A.R.; Hooper, M.L.; Farr, A.; Tonegawa, S. T Cell Receptor δ Gene Mutant Mice: Independent Generation of Aβ T Cells and Programmed Rearrangements of Γδ TCR Genes. Cell 1993, 72, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Kang, N.; Gao, Y.-A.; Cui, L.-X.; Ba, D.-N.; He, W. Potential Regulatory Role of in Vitro-Expanded Vδ1 T Cells from Human Peripheral Blood. Immunol. Res. 2013, 56, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Traxlmayr, M.W.; Wesch, D.; Dohnal, A.M.; Funovics, P.; Fischer, M.B.; Kabelitz, D.; Felzmann, T. Immune Suppression by Γδ T-Cells as a Potential Regulatory Mechanism After Cancer Vaccination With IL-12 Secreting Dendritic Cells. J. Immunother. 2010, 33, 40–52. [Google Scholar] [CrossRef]
- Mirzaei, H.R.; Mirzaei, H.; Lee, S.Y.; Hadjati, J.; Till, B.G. Prospects for Chimeric Antigen Receptor (CAR) Γδ T Cells: A Potential Game Changer for Adoptive T Cell Cancer Immunotherapy. Cancer Lett. 2016, 380, 413–423. [Google Scholar] [CrossRef] [PubMed]
Cytokine Release Syndrome Grading and Management | |||
---|---|---|---|
Grade | Clinical Presentation | Key Features | Management |
Grade 1 | Mild symptoms (fever, fatigue) | No hypotension or hypoxia | Supportive care (fluids, antipyretics) |
Grade 2 | Moderate symptoms | Hypotension responsive to fluids or low-dose vasopressors, mild hypoxia | Tocilizumab ± corticosteroids, IV fluids, oxygen if needed |
Grade 3 | Severe symptoms | Requires high-dose vasopressors, severe hypoxia requiring oxygen | Tocilizumab + corticosteroids (dexamethasone/methylprednisolone), ICU care |
Grade 4 | Life-threatening symptoms | Shock requiring multiple vasopressors, mechanical ventilation | High-dose corticosteroids, IL-6 blockade (tocilizumab, siltuximab), ICU care |
ICANS (Neurotoxicity) Grading and Management | |||
Grade 1 | Mild confusion, attention deficits | No impact on daily function | Supportive care, close monitoring |
Grade 2 | Moderate cognitive impairment, speech issues | Interferes with daily activities but no life-threatening symptoms | Dexamethasone 10 mg every 6 h |
Grade 3 | Severe confusion, seizures, motor impairment | Requires hospitalization | High-dose steroids (methylprednisolone 1g/day), ICU if needed |
Grade 4 | Life-threatening symptoms | Coma, cerebral edema, status epilepticus | ICU care, aggressive steroid therapy, neuroprotective strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubick, N.; Łazarczyk, M.; Awad, O.; Ławiński, M.; Horbańczuk, J.O.; Sacharczuk, M.; Atanasov, A.G.; Religa, P.; Mickael, M.E. The Struggle Between Chimeric Antigen Receptor T-Cell Therapy and Neurological Complications in Acute Lymphoblastic Leukemia Treatment. Curr. Issues Mol. Biol. 2025, 47, 381. https://doi.org/10.3390/cimb47050381
Kubick N, Łazarczyk M, Awad O, Ławiński M, Horbańczuk JO, Sacharczuk M, Atanasov AG, Religa P, Mickael ME. The Struggle Between Chimeric Antigen Receptor T-Cell Therapy and Neurological Complications in Acute Lymphoblastic Leukemia Treatment. Current Issues in Molecular Biology. 2025; 47(5):381. https://doi.org/10.3390/cimb47050381
Chicago/Turabian StyleKubick, Norwin, Marzena Łazarczyk, Omar Awad, Michał Ławiński, Jarosław Olav Horbańczuk, Mariusz Sacharczuk, Atanas G. Atanasov, Piotr Religa, and Michel Edwar Mickael. 2025. "The Struggle Between Chimeric Antigen Receptor T-Cell Therapy and Neurological Complications in Acute Lymphoblastic Leukemia Treatment" Current Issues in Molecular Biology 47, no. 5: 381. https://doi.org/10.3390/cimb47050381
APA StyleKubick, N., Łazarczyk, M., Awad, O., Ławiński, M., Horbańczuk, J. O., Sacharczuk, M., Atanasov, A. G., Religa, P., & Mickael, M. E. (2025). The Struggle Between Chimeric Antigen Receptor T-Cell Therapy and Neurological Complications in Acute Lymphoblastic Leukemia Treatment. Current Issues in Molecular Biology, 47(5), 381. https://doi.org/10.3390/cimb47050381