Decoding Hepatocellular Carcinoma Metastasis: Molecular Mechanisms, Targeted Therapies, and Potential Biomarkers
Abstract
:1. Introduction
2. Key Molecular Events and Regulatory Mechanisms in Hepatocellular Carcinoma Metastasis
2.1. Genetic Alterations
2.2. Epigenetic Abnormalities
2.2.1. DNA Methylation
2.2.2. Histone Modifications
2.2.3. MicroRNA
2.3. Signaling Pathway Dysregulation
2.3.1. Wnt/β-Catenin Pathway
2.3.2. TGF-β/Smad Pathway
2.3.3. EGFR/PI3K/AKT/mTOR Pathway
2.3.4. JAK/STAT Pathway
2.3.5. Hippo Pathway
2.3.6. Hedgehog Pathway
2.3.7. Notch Pathway
2.3.8. The Signaling Pathway Network and Interactions Associated with the Metastasis of HCC
2.4. Alterations in Three-Dimensional Genomic Architecture
3. Targeted Therapies Associated with HCC Metastasis
3.1. First-Line Targeted Therapy
3.1.1. Sorafenib
3.1.2. Lenvatinib
3.1.3. Bevacizumab
3.1.4. Donafenib
3.2. Second-Line Targeted Therapies
3.2.1. Regorafenib
3.2.2. Cabozantinib
3.2.3. Ramucirumab
3.2.4. Apatinib
4. Potential Biomarkers Associated with HCC Metastasis
4.1. Potential Metastasis-Related Biomarkers Based on Genetic Mutations
4.2. Potential Metastasis-Related Biomarkers Based on Epigenetic Abnormalities
4.2.1. Methylation-Based Potential Biomarkers for HCC Metastasis
4.2.2. Histone Modification-Based Potential Biomarkers for HCC Metastasis
4.2.3. Epigenetic Modification-Based miRNA Potential Biomarkers for HCC Metastasis
4.3. Potential Metastasis-Related Biomarkers in HCC Based on Aberrant Signaling Pathways
4.4. Potential Emerging Biomarkers Implicated in HCC Metastasis
4.4.1. Circulating Tumor Cells as Potential Biomarkers of HCC Metastasis
4.4.2. Circulating Tumor DNA as a Potential Biomarker for HCC Metastasis
4.4.3. Exosomal Contents as Potential Biomarkers for HCC Metastasis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Me, J.F.; Siegel, R.L.; Soerjomataram, I.; Dvm, A.J. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2022, 74, 229–263. [Google Scholar]
- Hsu, C.-Y.; Liu, P.-H.; Ho, S.-Y.; Huang, Y.-H.; Lee, Y.-H.; Lee, R.-C.; Nagaria, T.S.; Hou, M.-C.; Huo, T.-I. Metastasis in Patients with Hepatocellular Carcinoma: Prevalence, Determinants, Prognostic Impact and Ability to Improve the Barcelona Clinic Liver Cancer System. Liver Int. 2018, 38, 1803–1811. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhuang, M.; Zhu, X.; Cheng, D.; Liu, J.; Sun, D.; Qiu, X.; Lu, Y.; Sartorius, K. Emerging Perspectives of Bone Metastasis in Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 943866. [Google Scholar] [CrossRef]
- Arora, S.; Harmath, C.; Catania, R.; Mandler, A.; Fowler, K.J.; Borhani, A.A. Hepatocellular Carcinoma: Metastatic Pathways and Extra-Hepatic Findings. Abdom. Radiol. 2021, 46, 3698–3707. [Google Scholar] [CrossRef]
- Khemlina, G.; Ikeda, S.; Kurzrock, R. The Biology of Hepatocellular Carcinoma: Implications for Genomic and Immune Therapies. Mol. Cancer 2017, 16, 149. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; He, X.; Zhang, X.; Zhao, X.; Zhang, Y.; Shi, Y.; Hua, S. Hepatocellular Carcinoma: Signaling Pathways, Targeted Therapy, and Immunotherapy. MedComm 2024, 5, e474. [Google Scholar] [CrossRef]
- Dong, Z. Highlights of Recent Cancer Research. Holist. Integ Oncol. 2022, 1, 2. [Google Scholar] [CrossRef]
- Birkbak, N.J.; McGranahan, N. Cancer Genome Evolutionary Trajectories in Metastasis. Cancer Cell 2020, 37, 8–19. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, P.; Zhang, Z.; Wang, Z.; Zhou, K.; Song, M.; Ji, Y.; Zang, F.; Lou, L.; Rao, K.; et al. Integrated Multi-Omics Profiling to Dissect the Spatiotemporal Evolution of Metastatic Hepatocellular Carcinoma. Cancer Cell 2024, 42, 135–156.e17. [Google Scholar] [CrossRef]
- Wu, Q.; Li, L.; Miao, C.; Hasnat, M.; Sun, L.; Jiang, Z.; Zhang, L. Osteopontin Promotes Hepatocellular Carcinoma Progression through Inducing JAK2/STAT3/NOX1-Mediated ROS Production. Cell Death Dis. 2022, 13, 341. [Google Scholar] [CrossRef]
- He, S.; Tang, S. WNT/β-Catenin Signaling in the Development of Liver Cancers. Biomed. Pharmacother. 2020, 132, 110851. [Google Scholar] [CrossRef]
- He, F.; Li, J.; Xu, J.; Zhang, S.; Xu, Y.; Zhao, W.; Yin, Z.; Wang, X. Decreased Expression of ARID1A Associates with Poor Prognosis and Promotes Metastases of Hepatocellular Carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 47. [Google Scholar] [CrossRef]
- Chromatin Remodeling Factor ARID2 Suppresses Hepatocellular Carcinoma Metastasis via DNMT1-Snail Axis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32071245/ (accessed on 22 February 2025).
- Xia, W.; Lo, C.M.; Poon, R.Y.C.; Cheung, T.T.; Chan, A.C.Y.; Chen, L.; Yang, S.; Tsao, G.S.W.; Wang, X.Q. Smad Inhibitor Induces CSC Differentiation for Effective Chemosensitization in Cyclin D1-and TGF-β/Smad-Regulated Liver Cancer Stem Cell-like Cells. Oncotarget 2017, 8, 38811–38824. [Google Scholar] [CrossRef]
- Qin, A.; Wu, J.; Zhai, M.; Lu, Y.; Huang, B.; Lu, X.; Jiang, X.; Qiao, Z. Axin1 Inhibits Proliferation, Invasion, Migration and EMT of Hepatocellular Carcinoma by Targeting miR-650. Am. J. Transl. Res. 2020, 12, 1114–1122. [Google Scholar]
- Huang, F.W.; Hodis, E.; Xu, M.J.; Kryukov, G.V.; Chin, L.; Garraway, L.A. Highly Recurrent TERT Promoter Mutations in Human Melanoma. Science 2013, 339, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Nault, J.C.; Calderaro, J.; Di Tommaso, L.; Balabaud, C.; Zafrani, E.S.; Bioulac-Sage, P.; Roncalli, M.; Zucman-Rossi, J. Telomerase Reverse Transcriptase Promoter Mutation Is an Early Somatic Genetic Alteration in the Transformation of Premalignant Nodules in Hepatocellular Carcinoma on Cirrhosis. Hepatology 2014, 60, 1983–1992. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Liu, Z.; Wang, Z.; Tao, C.; Wu, A.; Li, H.; Xiao, T.; Li, Z.; Rong, W. Identification of Molecular Characteristics of Hepatocellular Carcinoma with Microvascular Invasion Based on Deep Targeted Sequencing. Cancer Med. 2024, 13, e7043. [Google Scholar] [CrossRef]
- Dong, Q.; Zhu, X.; Dai, C.; Zhang, X.; Gao, X.; Wei, J.; Sheng, Y.; Zheng, Y.; Yu, J.; Xie, L.; et al. Osteopontin Promotes Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma through Regulating Vimentin. Oncotarget 2016, 7, 12997–13012. [Google Scholar] [CrossRef]
- AFP Deletion Leads to Anti-Tumorigenic but pro-Metastatic Roles in Liver Cancers with Concomitant CTNNB1 Mutations—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/37217071/ (accessed on 22 February 2025).
- CCND1 Silencing Suppresses Liver Cancer Stem Cell Differentiation and Overcomes 5-Fluorouracil Resistance in Hepatocellular Carcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32418739/ (accessed on 22 February 2025).
- Kastenhuber, E.R.; Lowe, S.W. Putting P53 in Context. Cell 2017, 170, 1062–1078. [Google Scholar] [CrossRef]
- Cv, R.; As, A.; Hy, Y. Frequently Mutated Genes/Pathways and Genomic Instability as Prevention Targets in Liver Cancer. Carcinogenesis 2017, 38, 2–11. [Google Scholar] [CrossRef]
- Long, J.; Wang, A.; Bai, Y.; Lin, J.; Yang, X.; Wang, D.; Yang, X.; Jiang, Y.; Zhao, H. Development and Validation of a TP53-Associated Immune Prognostic Model for Hepatocellular Carcinoma. EBioMedicine 2019, 42, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-C.; Wang, T.-L.; Shih, I.-M. The Emerging Roles of ARID1A in Tumor Suppression. Cancer Biol. Ther. 2014, 15, 655–664. [Google Scholar] [CrossRef]
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-Regulation and Roles in Cancer Formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-P.; Wang, J.; Huang, J.-H. CDKN2A Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Hepatocellular Carcinoma. Biosci. Rep. 2021, 41, BSR20211103. [Google Scholar] [CrossRef]
- Cai, N.; Cheng, K.; Ma, Y.; Liu, S.; Tao, R.; Li, Y.; Li, D.; Guo, B.; Jia, W.; Liang, H.; et al. Targeting MMP9 in CTNNB1 Mutant Hepatocellular Carcinoma Restores CD8+ T Cell-Mediated Antitumour Immunity and Improves Anti-PD-1 Efficacy. Gut 2024, 73, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, D.; Zhang, T.; Xia, L. FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers 2021, 13, 1360. [Google Scholar] [CrossRef]
- Yu, Y.; Peng, X.-D.; Qian, X.-J.; Zhang, K.-M.; Huang, X.; Chen, Y.-H.; Li, Y.-T.; Feng, G.-K.; Zhang, H.-L.; Xu, X.-L.; et al. Fis1 Phosphorylation by Met Promotes Mitochondrial Fission and Hepatocellular Carcinoma Metastasis. Signal Transduct. Target. Ther. 2021, 6, 401. [Google Scholar] [CrossRef]
- Wang, T.; Jin, H.; Hu, J.; Li, X.; Ruan, H.; Xu, H.; Wei, L.; Dong, W.; Teng, F.; Gu, J.; et al. COL4A1 Promotes the Growth and Metastasis of Hepatocellular Carcinoma Cells by Activating FAK-Src Signaling. J. Exp. Clin. Cancer Res. 2020, 39, 148. [Google Scholar] [CrossRef]
- He, Q.; Lin, Z.; Wang, Z.; Huang, W.; Tian, D.; Liu, M.; Xia, L. SIX4 Promotes Hepatocellular Carcinoma Metastasis through Upregulating YAP1 and C-MET. Oncogene 2020, 39, 7279–7295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, Y.; Liao, B.; Zhang, H.; Yang, Z.; Xia, P.; Jiang, X.; Ma, W.; Wu, X.; Mei, C.; et al. A Positive Feedback Loop of CENPU/E2F6/E2F1 Facilitates Proliferation and Metastasis via Ubiquitination of E2F6 in Hepatocellular Carcinoma. Int. J. Biol. Sci. 2022, 18, 4071–4087. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, T.; Chen, X.; Zhang, B.; Wang, Y.; Xie, M.; Ji, X.; Sun, M.; Huang, W.; Xia, L. ONECUT2 Facilitates Hepatocellular Carcinoma Metastasis by Transcriptionally Upregulating FGF2 and ACLY. Cell Death Dis. 2021, 12, 1113. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, D. High CENPM mRNA Expression and Its Prognostic Significance in Hepatocellular Carcinoma: A Study Based on Data Mining. Cancer Cell Int. 2020, 20, 406. [Google Scholar] [CrossRef]
- Bao, G.; Wei, H.; Yan, J.; Li, Y.; Xue, C.; Fu, R.; Zhang, M.; Ding, J.; He, H.; Yu, D.; et al. HOXA9 Promotes Proliferation, Metastasis and Prevents Apoptosis in Hepatocellular Carcinoma. J. Cancer Res. Clin. Oncol. 2024, 150, 422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Huang, C.; Lu, L.; Yu, K.; Zhao, J.; Chen, M.; Liu, L.; Sun, Q.; Lin, Z.; Zheng, J.; et al. STOML2 Potentiates Metastasis of Hepatocellular Carcinoma by Promoting PINK1-Mediated Mitophagy and Regulates Sensitivity to Lenvatinib. J. Hematol. Oncol. 2021, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ning, D.; Du, P.; Liu, Q.; Mo, J.; Liang, H.; Zhang, W.; Zhang, M.; Jiang, L.; Zhang, B.; et al. USP11 Potentiates HGF/AKT Signaling and Drives Metastasis in Hepatocellular Carcinoma. Oncogene 2024, 43, 123–135. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Ni, Q.-Z.; Zhang, X.-P.; Ma, N.; Feng, J.-K.; Wang, K.; Li, J.-J.; Xie, D.; Ma, X.-Y.; Cheng, S.-Q. NET1 Promotes HCC Growth and Metastasis in Vitro and in Vivo via Activating the Akt Signaling Pathway. Aging 2021, 13, 10672–10687. [Google Scholar] [CrossRef]
- Liang, J.; Yao, N.; Deng, B.; Li, J.; Jiang, Y.; Liu, T.; Hu, Y.; Cao, M.; Hong, J. GINS1 Promotes ZEB1-Mediated Epithelial-Mesenchymal Transition and Tumor Metastasis via β-Catenin Signaling in Hepatocellular Carcinoma. J. Cell Physiol. 2024, 239, e31237. [Google Scholar] [CrossRef]
- Ho, D.W.H.; Chan, L.K.; Chiu, Y.T.; Xu, I.M.J.; Poon, R.T.P.; Cheung, T.T.; Tang, C.N.; Tang, V.W.L.; Lo, I.L.O.; Lam, P.W.Y.; et al. TSC1/2 Mutations Define a Molecular Subset of HCC with Aggressive Behaviour and Treatment Implication. Gut 2017, 66, 1496–1506. [Google Scholar] [CrossRef]
- Mayhew, C.N.; Carter, S.L.; Fox, S.R.; Sexton, C.R.; Reed, C.A.; Srinivasan, S.V.; Liu, X.; Wikenheiser-Brokamp, K.; Boivin, G.P.; Lee, J.-S.; et al. RB Loss Abrogates Cell Cycle Control and Genome Integrity to Promote Liver Tumorigenesis. Gastroenterology 2007, 133, 976–984. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, G.; Wang, L.; Sang, Q.; Xu, G.; Zhang, N. APEX1 Promotes the Oncogenicity of Hepatocellular Carcinoma via Regulation of MAP2K6. Aging 2022, 14, 7959–7971. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, Y.; Guo, X.; Tan, C.; Zhu, X.; Liu, G.; Lyu, X.; Bei, C. Methylation-Regulated Tumor Suppressor Gene PDE7B Promotes HCC Invasion and Metastasis through the PI3K/AKT Signaling Pathway. BMC Cancer 2024, 24, 624. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, C.; Xue, R.; Liu, M.; Bai, J.; Bao, J.; Wang, Y.; Jiang, N.; Li, Z.; Wang, W.; et al. Deep Whole-Genome Analysis of 494 Hepatocellular Carcinomas. Nature 2024, 627, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Tsui, Y.-M.; Zhang, V.X.; Yu, T.C.-Y.; Husain, A.; Chiu, Y.-T.; Tian, L.; Lee, E.; Lee, J.M.-F.; Ma, H.-T.; et al. Nuclear Localization of BRCA1-Associated Protein 1 Is Important in Suppressing Hepatocellular Carcinoma Metastasis via CTCF and NRF1/OGT Axis. Cell Death Dis. 2025, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Andrisani, O. Epigenetic Mechanisms in Hepatitis B Virus-Associated Hepatocellular Carcinoma. Hepatoma Res. 2021, 7, 12. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W.; Yang, Y.; Zhang, S.; Li, C.; Yang, W. DNA Methylation in the Genesis, Progress and Prognosis of Head and Neck Cancer. Holist. Integ Oncol. 2023, 2, 23. [Google Scholar] [CrossRef]
- Cui, H.; Kong, Y.; Xu, M.; Zhang, H. Notch3 Functions as a Tumor Suppressor by Controlling Cellular Senescence. Cancer Res. 2013, 73, 3451–3459. [Google Scholar] [CrossRef]
- Dual Targeting of Histone Methyltransferase G9a and DNA-Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30014490/ (accessed on 22 January 2025).
- New Insights into the Epigenetics of Hepatocellular Carcinoma—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5376429/ (accessed on 23 February 2025).
- Gao, X.; Sheng, Y.; Yang, J.; Wang, C.; Zhang, R.; Zhu, Y.; Zhang, Z.; Zhang, K.; Yan, S.; Sun, H.; et al. Osteopontin Alters DNA Methylation through Up-Regulating DNMT1 and Sensitizes CD133+/CD44+ Cancer Stem Cells to 5 Azacytidine in Hepatocellular Carcinoma. J. Exp. Clin. Cancer Res. 2018, 37, 179. [Google Scholar] [CrossRef]
- Ogunwobi, O.O.; Puszyk, W.; Dong, H.-J.; Liu, C. Epigenetic Upregulation of HGF and C-Met Drives Metastasis in Hepatocellular Carcinoma. PLoS ONE 2013, 8, e63765. [Google Scholar] [CrossRef]
- Xie, C.-R.; Sun, H.; Wang, F.-Q.; Li, Z.; Yin, Y.-R.; Fang, Q.-L.; Sun, Y.; Zhao, W.-X.; Zhang, S.; Zhao, W.-X.; et al. Integrated Analysis of Gene Expression and DNA Methylation Changes Induced by Hepatocyte Growth Factor in Human Hepatocytes. Mol. Med. Rep. 2015, 12, 4250–4258. [Google Scholar] [CrossRef] [PubMed]
- Kurdistani, S.K. Histone Modifications as Markers of Cancer Prognosis: A Cellular View. Br. J. Cancer 2007, 97, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic Protein Families: A New Frontier for Drug Discovery. Nat. Rev. Drug Discov. 2012, 11, 384–400. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T.; Allis, C.D. Translating the Histone Code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef]
- Emerging Role of SETDB1 as a Therapeutic Target—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28076698/ (accessed on 23 February 2025).
- Histone Methyltransferase SETDB1 Promotes Cells Proliferation and Migration by Interacting withTiam1 in Hepatocellular Carcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29739365/ (accessed on 23 February 2025).
- Kim, S.-K.; Kim, K.; Ryu, J.-W.; Ryu, T.-Y.; Lim, J.H.; Oh, J.-H.; Min, J.-K.; Jung, C.-R.; Hamamoto, R.; Son, M.-Y.; et al. The Novel Prognostic Marker, EHMT2, Is Involved in Cell Proliferation via HSPD1 Regulation in Breast Cancer. Int. J. Oncol. 2019, 54, 65–76. [Google Scholar] [CrossRef]
- Feng, B.; Zhu, Y.; Su, Z.; Tang, L.; Sun, C.; Li, C.; Zheng, G. Basil Polysaccharide Attenuates Hepatocellular Carcinoma Metastasis in Rat by Suppressing H3K9me2 Histone Methylation under Hepatic Artery Ligation-Induced Hypoxia. Int. J. Biol. Macromol. 2018, 107, 2171–2179. [Google Scholar] [CrossRef]
- Fan, D.N.-Y.; Tsang, F.H.-C.; Tam, A.H.-K.; Au, S.L.-K.; Wong, C.C.-L.; Wei, L.; Lee, J.M.-F.; He, X.; Ng, I.O.-L.; Wong, C.-M. Histone Lysine Methyltransferase, Suppressor of Variegation 3-9 Homolog 1, Promotes Hepatocellular Carcinoma Progression and Is Negatively Regulated by microRNA-125b. Hepatology 2013, 57, 637–647. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Q. The Emerging Role of Histone Demethylases in Renal Cell Carcinoma. J. Kidney Cancer VHL 2017, 4, 1–5. [Google Scholar] [CrossRef]
- Harmeyer, K.M.; Facompre, N.D.; Herlyn, M.; Basu, D. JARID1 Histone Demethylases: Emerging Targets in Cancer. Trends Cancer 2017, 3, 713–725. [Google Scholar] [CrossRef]
- Ji, X.; Jin, S.; Qu, X.; Li, K.; Wang, H.; He, H.; Guo, F.; Dong, L. Lysine-Specific Demethylase 5C Promotes Hepatocellular Carcinoma Cell Invasion through Inhibition BMP7 Expression. BMC Cancer 2015, 15, 801. [Google Scholar] [CrossRef]
- Tang, B.; Qi, G.; Tang, F.; Yuan, S.; Wang, Z.; Liang, X.; Li, B.; Yu, S.; Liu, J.; Huang, Q.; et al. JARID1B Promotes Metastasis and Epithelial-Mesenchymal Transition via PTEN/AKT Signaling in Hepatocellular Carcinoma Cells. Oncotarget 2015, 6, 12723–12739. [Google Scholar] [CrossRef] [PubMed]
- Janowski, B.A.; Younger, S.T.; Hardy, D.B.; Ram, R.; Huffman, K.E.; Corey, D.R. Activating Gene Expression in Mammalian Cells with Promoter-Targeted Duplex RNAs. Nat. Chem. Biol. 2007, 3, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Llave, C.; Xie, Z.; Kasschau, K.D.; Carrington, J.C. Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science 2002, 297, 2053–2056. [Google Scholar] [CrossRef]
- Goldberg, D.J.; Schwartz, J.H. Fast Axonal Transport of Foreign Transmitters in an Identified Serotonergic Neurone of Aplysia Californica. J. Physiol. 1980, 307, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Lou, W.; Chen, J.; Ding, B.; Chen, D.; Zheng, H.; Jiang, D.; Xu, L.; Bao, C.; Cao, G.; Fan, W. Identification of Invasion-Metastasis-Associated microRNAs in Hepatocellular Carcinoma Based on Bioinformatic Analysis and Experimental Validation. J. Transl. Med. 2018, 16, 266. [Google Scholar] [CrossRef]
- Khare, S.; Khare, T.; Ramanathan, R.; Ibdah, J.A. Hepatocellular Carcinoma: The Role of MicroRNAs. Biomolecules 2022, 12, 645. [Google Scholar] [CrossRef]
- Wong, K.K. DNMT1 as a Therapeutic Target in Pancreatic Cancer: Mechanisms and Clinical Implications. Cell. Oncol. 2020, 43, 779–792. [Google Scholar] [CrossRef]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-Beta-Induced Epithelial to Mesenchymal Transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, W.; Meng, W.; Zhao, H.; Yang, Q.; Gu, S.; Xiao, C.; Jia, C.; Fu, B. Downregulation of miR-542-3p Promotes Cancer Metastasis through Activating TGF-β/Smad Signaling in Hepatocellular Carcinoma. Onco Targets Ther. 2018, 11, 1929–1939. [Google Scholar] [CrossRef]
- Yu, Q.; Xiang, L.; Yin, L.; Liu, X.; Yang, D.; Zhou, J. Loss-of-Function of miR-142 by Hypermethylation Promotes TGF-β-Mediated Tumour Growth and Metastasis in Hepatocellular Carcinoma. Cell Prolif. 2017, 50, e12384. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Ooi, L.L.P.J.; Hui, K.M. MicroRNA-216a/217-Induced Epithelial-Mesenchymal Transition Targets PTEN and SMAD7 to Promote Drug Resistance and Recurrence of Liver Cancer. Hepatology 2013, 58, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, Q.; Shen, D.; Sun, X.; Cao, X.; Wu, D. Downregulation of microRNA-122 Promotes Proliferation, Migration, and Invasion of Human Hepatocellular Carcinoma Cells by Activating Epithelial–Mesenchymal Transition. Onco Targets Ther. 2016, 9, 2035–2047. [Google Scholar] [CrossRef]
- Yan, H.; Dong, X.; Zhong, X.; Ye, J.; Zhou, Y.; Yang, X.; Shen, J.; Zhang, J. Inhibitions of Epithelial to Mesenchymal Transition and Cancer Stem Cells-like Properties Are Involved in miR-148a-Mediated Anti-Metastasis of Hepatocellular Carcinoma. Mol. Carcinog. 2014, 53, 960–969. [Google Scholar] [CrossRef]
- Lv, D.; Chen, L.; Du, L.; Zhou, L.; Tang, H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front. Cell Dev. Biol. 2021, 9, 691410. [Google Scholar] [CrossRef]
- Liao, X.; Song, G.; Xu, Z.; Bu, Y.; Chang, F.; Jia, F.; Xiao, X.; Ren, X.; Zhang, M.; Jia, Q. Oxaliplatin Resistance Is Enhanced by Saracatinib via Upregulation Wnt-ABCG1 Signaling in Hepatocellular Carcinoma. BMC Cancer 2020, 20, 31. [Google Scholar] [CrossRef]
- Lo, R.C.-L.; Leung, C.O.-N.; Chan, K.K.-S.; Ho, D.W.-H.; Wong, C.-M.; Lee, T.K.-W.; Ng, I.O.-L. Cripto-1 Contributes to Stemness in Hepatocellular Carcinoma by Stabilizing Dishevelled-3 and Activating Wnt/β-Catenin Pathway. Cell Death Differ. 2018, 25, 1426. [Google Scholar] [CrossRef]
- Fan, Z.; Duan, J.; Wang, L.; Xiao, S.; Li, L.; Yan, X.; Yao, W.; Wu, L.; Zhang, S.; Zhang, Y.; et al. PTK2 Promotes Cancer Stem Cell Traits in Hepatocellular Carcinoma by Activating Wnt/β-Catenin Signaling. Cancer Lett. 2019, 450, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Liu, C.; Liu, C.; Xi, W.; Sun, S.; Gao, Z. lncRNA SNHG7 Sponges miR-425 to Promote Proliferation, Migration, and Invasion of Hepatic Carcinoma Cells via Wnt/Β-catenin/EMT Signalling Pathway. Cell Biochem. Funct. 2019, 37, 525. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Hou, B.; Wang, Y.; Deng, D.; Fu, Z.; Xu, Z. A SOX9-AS1/miR-5590-3p/SOX9 Positive Feedback Loop Drives Tumor Growth and Metastasis in Hepatocellular Carcinoma through the Wnt/β-Catenin Pathway. Mol. Oncol. 2019, 13, 2194–2210. [Google Scholar] [CrossRef]
- Prud’homme, G.J.; Kurt, M.; Wang, Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Front. Aging 2022, 3, 931331. [Google Scholar] [CrossRef]
- Tu, S.; Huang, W.; Huang, C.; Luo, Z.; Yan, X. Contextual Regulation of TGF-β Signaling in Liver Cancer. Cells 2019, 8, 1235. [Google Scholar] [CrossRef]
- Xin, X.; Cheng, X.; Zeng, F.; Xu, Q.; Hou, L. The Role of TGF-β/SMAD Signaling in Hepatocellular Carcinoma: From Mechanism to Therapy and Prognosis. Int. J. Biol. Sci. 2024, 20, 1436–1451. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, K.; Zheng, J.; Zhang, J.; Zhang, L. TGF-Β1 Promotes Cell Migration in Hepatocellular Carcinoma by Suppressing Reelin Expression. Gene 2019, 688, 19–25. [Google Scholar] [CrossRef]
- Lysyl Oxidase-like 2 Is Critical to Tumor Microenvironment and Metastatic Niche Formation in Hepatocellular Carcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25048396/ (accessed on 23 February 2025).
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef]
- Harada, K.; Shiota, G.; Kawasaki, H. Transforming Growth Factor-Alpha and Epidermal Growth Factor Receptor in Chronic Liver Disease and Hepatocellular Carcinoma. Liver 1999, 19, 318–325. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Y.; Li, J.; Wang, Z. The mTOR Pathway Is Associated with the Poor Prognosis of Human Hepatocellular Carcinoma. Med. Oncol. 2010, 27, 255–261. [Google Scholar] [CrossRef]
- Grabinski, N.; Ewald, F.; Hofmann, B.T.; Staufer, K.; Schumacher, U.; Nashan, B.; Jücker, M. Combined Targeting of AKT and mTOR Synergistically Inhibits Proliferation of Hepatocellular Carcinoma Cells. Mol. Cancer 2012, 11, 85. [Google Scholar] [CrossRef]
- Pu, Z.; Duda, D.G.; Zhu, Y.; Pei, S.; Wang, X.; Huang, Y.; Yi, P.; Huang, Z.; Peng, F.; Hu, X.; et al. VCP Interaction with HMGB1 Promotes Hepatocellular Carcinoma Progression by Activating the PI3K/AKT/mTOR Pathway. J. Transl. Med. 2022, 20, 212. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, C.; Liu, W.; Chen, W.; Yin, Y.; Li, C.-W.; Hsu, J.L.; Sun, J.; Zhou, Q.; Li, H.; et al. SLFN11 Inhibits Hepatocellular Carcinoma Tumorigenesis and Metastasis by Targeting RPS4X via mTOR Pathway. Theranostics 2020, 10, 4627–4643. [Google Scholar] [CrossRef]
- Tang, W.; Chen, Z.; Zhang, W.; Cheng, Y.; Zhang, B.; Wu, F.; Wang, Q.; Wang, S.; Rong, D.; Reiter, F.P.; et al. The Mechanisms of Sorafenib Resistance in Hepatocellular Carcinoma: Theoretical Basis and Therapeutic Aspects. Signal Transduct. Target. Ther. 2020, 5, 87. [Google Scholar] [CrossRef]
- Hu, Q.; Bian, Q.; Rong, D.; Wang, L.; Song, J.; Huang, H.-S.; Zeng, J.; Mei, J.; Wang, P.-Y. JAK/STAT Pathway: Extracellular Signals, Diseases, Immunity, and Therapeutic Regimens. Front. Bioeng. Biotechnol. 2023, 11, 1110765. [Google Scholar] [CrossRef]
- He, G.; Yu, G.-Y.; Temkin, V.; Ogata, H.; Kuntzen, C.; Sakurai, T.; Sieghart, W.; Peck-Radosavljevic, M.; Leffert, H.L.; Karin, M. Hepatocyte IKKβ/NF-κB Inhibits Tumor Promotion and Progression by Preventing Oxidative Stress Driven STAT3 Activation. Cancer Cell 2010, 17, 286. [Google Scholar] [CrossRef]
- Yu, S.; Chen, J.; Quan, M.; Li, L.; Li, Y.; Gao, Y. CD63 Negatively Regulates Hepatocellular Carcinoma Development through Suppression of Inflammatory Cytokine-Induced STAT3 Activation. J. Cell Mol. Med. 2021, 25, 1024–1034. [Google Scholar] [CrossRef]
- Cui, C.; Fu, K.; Yang, L.; Wu, S.; Cen, Z.; Meng, X.; Huang, Q.; Xie, Z. Hypoxia-Inducible Gene 2 Promotes the Immune Escape of Hepatocellular Carcinoma from Nature Killer Cells through the Interleukin-10-STAT3 Signaling Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 229. [Google Scholar] [CrossRef]
- Xu, Y.; Luan, G.; Liu, F.; Zhang, Y.; Li, Z.; Liu, Z.; Yang, T. Exosomal miR-200b-3p Induce Macrophage Polarization by Regulating Transcriptional Repressor ZEB1 in Hepatocellular Carcinoma. Hepatol. Int. 2023, 17, 889–903. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.; Zhou, W.; Chen, T.; Wu, Q.; Chutturghoon, V.K.; Lin, B.; Geng, L.; Yang, Z.; Zhou, L.; et al. YAP Promotes Multi-Drug Resistance and Inhibits Autophagy-Related Cell Death in Hepatocellular Carcinoma via the RAC1-ROS-mTOR Pathway. Cancer Cell Int. 2019, 19, 179. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhou, J.-K.; Wang, K.; Chen, H.; Qin, S.; Liu, J.; Luo, M.; Chen, Y.; Jiang, J.; Zhou, L.; et al. PDLIM1 Inhibits Tumor Metastasis Through Activating Hippo Signaling in Hepatocellular Carcinoma. Hepatology 2020, 71, 1643–1659. [Google Scholar] [CrossRef]
- Lu, X.; Yang, C.; Hu, Y.; Xu, J.; Shi, C.; Rao, J.; Yu, W.; Cheng, F. Upregulation of miR-1254 Promotes Hepatocellular Carcinoma Cell Proliferation, Migration, and Invasion via Inactivation of the Hippo-YAP Signaling Pathway by Decreasing PAX5. J. Cancer 2021, 12, 771. [Google Scholar] [CrossRef]
- Katoh, Y.; Katoh, M. Hedgehog Signaling, Epithelial-to-Mesenchymal Transition and miRNA (Review). Int. J. Mol. Med. 2008, 22, 271–275. [Google Scholar]
- Chen, S.; Zhou, B.; Huang, W.; Li, Q.; Yu, Y.; Kuang, X.; Huang, H.; Wang, W.; Xie, P. The Deubiquitinating Enzyme USP44 Suppresses Hepatocellular Carcinoma Progression by Inhibiting Hedgehog Signaling and PDL1 Expression. Cell Death Dis. 2023, 14, 830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, J.; Liu, R.; Ma, J.; Wang, K.; Wang, X.; Tang, N. Inhibiting HMGCR Represses Stemness and Metastasis of Hepatocellular Carcinoma via Hedgehog Signaling. Genes. Dis. 2024, 11, 101285. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Huang, H.; Jin, L.; Zhang, F.; Zeng, M.; Wei, L.; Tang, S.; Chen, D.; Wang, W. CircZNF609 Enhances Hepatocellular Carcinoma Cell Proliferation, Metastasis, and Stemness by Activating the Hedgehog Pathway through the Regulation of miR-15a-5p/15b-5p and GLI2 Expressions. Cell Death Dis. 2020, 11, 358. [Google Scholar] [CrossRef]
- Ahn, H.R.; Kim, S.; Baek, G.O.; Yoon, M.G.; Kang, M.; Ng, J.T.; Go, Y.; Lim, S.B.; Yoon, J.H.; Jeong, J.-Y.; et al. Effect of Sortilin1 on Promoting Angiogenesis and Systemic Metastasis in Hepatocellular Carcinoma via the Notch Signaling Pathway and CD133. Cell Death Dis. 2024, 15, 634. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Mu, M.-Y.; Yang, G.; Qi, H.; Fu, X.-B.; Wang, G.-S.; Jiang, W.-W.; Huang, B.-J.; Gao, F. Hypoxia-Induced DTL Promotes the Proliferation, Metastasis, and Sorafenib Resistance of Hepatocellular Carcinoma through Ubiquitin-Mediated Degradation of SLTM and Subsequent Notch Pathway Activation. Cell Death Dis. 2024, 15, 734. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Lu, Y.; Lu, J.; Cheng, Y.; Luo, C.; Yang, F.; Xi, W.; Wang, J.; Cen, X.; Wang, F.; et al. The Activation of the Notch Signaling Pathway by UBE2C Promotes the Proliferation and Metastasis of Hepatocellular Carcinoma. Sci. Rep. 2024, 14, 22859. [Google Scholar] [CrossRef]
- Wang, X.H.; Meng, X.W.; Sun, X.; Liu, B.R.; Han, M.Z.; Du, Y.J.; Song, Y.Y.; Xu, W. Wnt/β-Catenin Signaling Regulates MAPK and Akt1 Expression and Growth of Hepatocellular Carcinoma Cells. Neoplasma 2011, 58, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, J.-G.; Xu, J.; Zhou, D.; Ren, K.; Hou, C.; Chen, L.; Liu, X. HCRP1 Inhibits TGF-β Induced Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Int. J. Oncol. 2017, 50, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Connolly, E.; Smyth, J.W.; Akhurst, R.J.; Derynck, R. TGF-β-Induced Activation of mTOR Complex 2 Drives Epithelial-Mesenchymal Transition and Cell Invasion. J. Cell Sci. 2012, 125, 1259–1273. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, M.; Liang, Y.; Zhang, F.; Li, C.; Lu, Y.; Yin, T.; Wang, Z.; Li, Y.; Hao, M.; et al. Three-Dimensional Chromatin Landscapes in Hepatocellular Carcinoma Associated with Hepatitis B Virus. J. Gastroenterol. 2024, 59, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.P.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef]
- Barutcu, A.R.; Lajoie, B.R.; McCord, R.P.; Tye, C.E.; Hong, D.; Messier, T.L.; Browne, G.; van Wijnen, A.J.; Lian, J.B.; Stein, J.L.; et al. Chromatin Interaction Analysis Reveals Changes in Small Chromosome and Telomere Clustering between Epithelial and Breast Cancer Cells. Genome Biol. 2015, 16, 214. [Google Scholar] [CrossRef]
- Guo, M.; Yao, Z.; Jiang, C.; Songyang, Z.; Gan, L.; Xiong, Y. Three-Dimensional and Single-Cell Sequencing of Liver Cancer Reveals Comprehensive Host-Virus Interactions in HBV Infection. Front. Immunol. 2023, 14, 1161522. [Google Scholar] [CrossRef]
- Shang, X.-Y.; Shi, Y.; He, D.-D.; Wang, L.; Luo, Q.; Deng, C.-H.; Qu, Y.-L.; Wang, N.; Han, Z.-G. ARID1A Deficiency Weakens BRG1-RAD21 Interaction That Jeopardizes Chromatin Compactness and Drives Liver Cancer Cell Metastasis. Cell Death Dis. 2021, 12, 990. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S.; et al. Efficacy and Safety of Sorafenib in Patients in the Asia-Pacific Region with Advanced Hepatocellular Carcinoma: A Phase III Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Lencioni, R.; Kudo, M.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.F.; de Guevara, L.L.; Papandreou, C.; et al. GIDEON (Global Investigation of Therapeutic DEcisions in Hepatocellular Carcinoma and Of Its Treatment with sorafeNib): Second Interim Analysis. Int. J. Clin. Pract. 2014, 68, 609–617. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.-F.H.; de Guevara, L.L.; et al. Observational Registry of Sorafenib Use in Clinical Practice across Child-Pugh Subgroups: The GIDEON Study. J. Hepatol. 2016, 65, 1140–1147. [Google Scholar] [CrossRef]
- Kudo, M. Lenvatinib May Drastically Change the Treatment Landscape of Hepatocellular Carcinoma. Liver Cancer 2018, 7, 1–19. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Y.; Qin, S. Atezolizumab and Bevacizumab for Hepatocellular Carcinoma: Mechanism, Pharmacokinetics and Future Treatment Strategies. Future Oncol. 2021, 17, 2243–2256. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J.; Duggan, S. Donafenib: First Approval. Drugs 2021, 81, 1915–1920. [Google Scholar] [CrossRef]
- Qin, S.; Bi, F.; Gu, S.; Bai, Y.; Chen, Z.; Wang, Z.; Ying, J.; Lu, Y.; Meng, Z.; Pan, H.; et al. Donafenib Versus Sorafenib in First-Line Treatment of Unresectable or Metastatic Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-Controlled Phase II-III Trial. J. Clin. Oncol. 2021, 39, 3002–3011. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for Patients with Hepatocellular Carcinoma Who Progressed on Sorafenib Treatment (RESORCE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Uschner, F.E.; Schueller, F.; Nikolova, I.; Klein, S.; Schierwagen, R.; Magdaleno, F.; Gröschl, S.; Loosen, S.; Ritz, T.; Roderburg, C.; et al. The Multikinase Inhibitor Regorafenib Decreases Angiogenesis and Improves Portal Hypertension. Oncotarget 2018, 9, 36220–36237. [Google Scholar] [CrossRef]
- Huang, A.; Yang, X.-R.; Chung, W.-Y.; Dennison, A.R.; Zhou, J. Targeted Therapy for Hepatocellular Carcinoma. Signal Transduct. Target. Ther. 2020, 5, 146. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Shang, R.; Song, X.; Wang, P.; Zhou, Y.; Lu, X.; Wang, J.; Xu, M.; Chen, X.; Utpatel, K.; Che, L.; et al. Cabozantinib-Based Combination Therapy for the Treatment of Hepatocellular Carcinoma. Gut 2021, 70, 1746–1757. [Google Scholar] [CrossRef]
- Poole, R.M.; Vaidya, A. Ramucirumab: First Global Approval. Drugs 2014, 74, 1047–1058. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after Sorafenib in Patients with Advanced Hepatocellular Carcinoma and Increased α-Fetoprotein Concentrations (REACH-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yao, Q.; Zhang, H.; Guo, X.; Liu, J.; Shi, Q.; Huang, S.; Xiong, B. Combining Transcatheter Arterial Embolization with Iodized Oil Containing Apatinib Inhibits HCC Growth and Metastasis. Sci. Rep. 2020, 10, 2964. [Google Scholar] [CrossRef]
- Qin, S.; Li, Q.; Gu, S.; Chen, X.; Lin, L.; Wang, Z.; Xu, A.; Chen, X.; Zhou, C.; Ren, Z.; et al. Apatinib as Second-Line or Later Therapy in Patients with Advanced Hepatocellular Carcinoma (AHELP): A Multicentre, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Gastroenterol. Hepatol. 2021, 6, 559–568. [Google Scholar] [CrossRef]
- He, G.; Chen, Y.; Zhu, C.; Zhou, J.; Xie, X.; Fei, R.; Wei, L.; Zhao, H.; Chen, H.; Zhang, H. Application of Plasma Circulating Cell-Free DNA Detection to the Molecular Diagnosis of Hepatocellular Carcinoma. Am. J. Transl. Res. 2019, 11, 1428–1445. [Google Scholar] [PubMed]
- Li, Y.; Wu, J.; Li, E.; Xiao, Z.; Lei, J.; Zhou, F.; Yin, X.; Hu, D.; Mao, Y.; Wu, L.; et al. TP53 Mutation Detected in Circulating Exosomal DNA Is Associated with Prognosis of Patients with Hepatocellular Carcinoma. Cancer Biol. Ther. 2022, 23, 439–445. [Google Scholar] [CrossRef]
- Yu, Q.; Cao, S.; Tang, H.; Li, J.; Guo, W.; Zhang, S. Clinical Significance of Aberrant DEUP1 Promoter Methylation in Hepatocellular Carcinoma. Oncol. Lett. 2019, 18, 1356–1364. [Google Scholar] [CrossRef]
- Tao, X.; Zuo, Q.; Ruan, H.; Wang, H.; Jin, H.; Cheng, Z.; Lv, Y.; Qin, W.; Wang, C. Argininosuccinate Synthase 1 Suppresses Cancer Cell Invasion by Inhibiting STAT3 Pathway in Hepatocellular Carcinoma. Acta Biochim. Biophys. Sin. 2019, 51, 263–276. [Google Scholar] [CrossRef]
- Xing, W.; Li, Y.; Chen, J.; Hu, Q.; Liu, P.; Ge, X.; Lv, J.; Wang, D. Association of APC Expression with Its Promoter Methylation Status and the Prognosis of Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2023, 24, 3851–3857. [Google Scholar] [CrossRef]
- Ji, X.-F.; Fan, Y.-C.; Gao, S.; Yang, Y.; Zhang, J.-J.; Wang, K. MT1M and MT1G Promoter Methylation as Biomarkers for Hepatocellular Carcinoma. World J. Gastroenterol. 2014, 20, 4723–4729. [Google Scholar] [CrossRef]
- Cai, M.-Y.; Hou, J.-H.; Rao, H.-L.; Luo, R.-Z.; Li, M.; Pei, X.-Q.; Lin, M.C.; Guan, X.-Y.; Kung, H.-F.; Zeng, Y.-X.; et al. High Expression of H3K27me3 in Human Hepatocellular Carcinomas Correlates Closely with Vascular Invasion and Predicts Worse Prognosis in Patients. Mol. Med. 2011, 17, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Shigekawa, Y.; Hayami, S.; Ueno, M.; Miyamoto, A.; Suzaki, N.; Kawai, M.; Hirono, S.; Okada, K.; Hamamoto, R.; Yamaue, H. Overexpression of KDM5B/JARID1B Is Associated with Poor Prognosis in Hepatocellular Carcinoma. Oncotarget 2018, 9, 34320. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, Z.; Yang, B.; Guo, H.; Jing, L.; Liu, T.; Luo, Y.; Liu, H.; Li, Y.; Gao, Y. Overexpression of microRNA Let-7 Correlates with Disease Progression and Poor Prognosis in Hepatocellular Carcinoma. Medicine 2017, 96, e7764. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.A.; Saleh, A.A.; Elbahr, O.; Gohar, S.F.; Habieb, M.S. Inverse Relationship between the Level of miRNA 148a-3p and Both TGF-Β1 and FIB-4 in Hepatocellular Carcinoma. Biochem. Biophys. Rep. 2021, 27, 101082. [Google Scholar] [CrossRef]
- Chen, W.; Ru, J.; Wu, T.; Man, D.; Wu, J.; Wu, L.; Sun, Y.; Yu, H.; Li, M.; Zhang, G.; et al. MiR-652-3p Promotes Malignancy and Metastasis of Cancer Cells via Inhibiting TNRC6A in Hepatocellular Carcinoma. Biochem. Biophys. Res. Commun. 2023, 640, 1–11. [Google Scholar] [CrossRef]
- Chang, R.-M.; Xu, J.-F.; Fang, F.; Yang, H.; Yang, L.-Y. MicroRNA-130b Promotes Proliferation and EMT-Induced Metastasis via PTEN/p-AKT/HIF-1α Signaling. Tumour Biol. 2016, 37, 10609–10619. [Google Scholar] [CrossRef] [PubMed]
- Gharib, A.F.; Eed, E.M.; Khalifa, A.S.; Raafat, N.; Shehab-Eldeen, S.; Alwakeel, H.R.; Darwiesh, E.; Essa, A. Value of Serum miRNA-96-5p and miRNA-99a-5p as Diagnostic Biomarkers for Hepatocellular Carcinoma. Int. J. Gen. Med. 2022, 15, 2427–2436. [Google Scholar] [CrossRef]
- Chen, S.; Fu, Z.; Wen, S.; Yang, X.; Yu, C.; Zhou, W.; Lin, Y.; Lv, Y. Expression and Diagnostic Value of miR-497 and miR-1246 in Hepatocellular Carcinoma. Front. Genet. 2021, 12, 666306. [Google Scholar] [CrossRef]
- Luo, C.; Yin, D.; Zhan, H.; Borjigin, U.; Li, C.; Zhou, Z.; Hu, Z.; Wang, P.; Sun, Q.; Fan, J.; et al. microRNA-501-3p Suppresses Metastasis and Progression of Hepatocellular Carcinoma through Targeting LIN7A. Cell Death Dis. 2018, 9, 535. [Google Scholar] [CrossRef]
- Dou, C.; Liu, Z.; Xu, M.; Jia, Y.; Wang, Y.; Li, Q.; Yang, W.; Zheng, X.; Tu, K.; Liu, Q. miR-187-3p Inhibits the Metastasis and Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma by Targeting S100A4. Cancer Lett. 2016, 381, 380–390. [Google Scholar] [CrossRef]
- Gao, H.-B.; Gao, F.-Z.; Chen, X.-F. MiRNA-1179 Suppresses the Metastasis of Hepatocellular Carcinoma by Interacting with ZEB2. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5149–5157. [Google Scholar] [CrossRef]
- Yamashita, T.; Budhu, A.; Forgues, M.; Wang, X.W. Activation of Hepatic Stem Cell Marker EpCAM by Wnt-Beta-Catenin Signaling in Hepatocellular Carcinoma. Cancer Res. 2007, 67, 10831–10839. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.W.; Leung, C.O.N.; Lau, E.Y.; Chung, K.P.S.; Mok, E.H.; Lei, M.M.L.; Leung, R.W.H.; Tong, M.; Keng, V.W.; Ma, C.; et al. EPHB2 Activates β-Catenin to Enhance Cancer Stem Cell Properties and Drive Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res. 2021, 81, 3229–3240. [Google Scholar] [CrossRef]
- Qin, G.; Luo, M.; Chen, J.; Dang, Y.; Chen, G.; Li, L.; Zeng, J.; Lu, Y.; Yang, J. Reciprocal Activation between MMP-8 and TGF-Β1 Stimulates EMT and Malignant Progression of Hepatocellular Carcinoma. Cancer Lett. 2016, 374, 85–95. [Google Scholar] [CrossRef]
- Gough, N.R.; Xiang, X.; Mishra, L. TGF-β Signaling in Liver, Pancreas, and Gastrointestinal Diseases and Cancer. Gastroenterology 2021, 161, 434–452.e15. [Google Scholar] [CrossRef]
- Yuan, T.; Chen, Z.; Yan, F.; Qian, M.; Luo, H.; Ye, S.; Cao, J.; Ying, M.; Dai, X.; Gai, R.; et al. Deubiquitinating Enzyme USP10 Promotes Hepatocellular Carcinoma Metastasis through Deubiquitinating and Stabilizing Smad4 Protein. Mol. Oncol. 2020, 14, 197–210. [Google Scholar] [CrossRef]
- Ito, Y.; Takeda, T.; Sakon, M.; Tsujimoto, M.; Higashiyama, S.; Noda, K.; Miyoshi, E.; Monden, M.; Matsuura, N. Expression and Clinical Significance of Erb-B Receptor Family in Hepatocellular Carcinoma. Br. J. Cancer 2001, 84, 1377–1383. [Google Scholar] [CrossRef]
- Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT Signaling in Hepatocellular Carcinoma. Hepat. Oncol. 2020, 7, HEP18. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-C.; Ye, S.-L.; Sun, R.-X.; Liu, Y.-K.; Tang, Z.-Y.; Kim, Y.; Karras, J.G.; Zhang, H. Inhibition of Growth and Metastasis of Human Hepatocellular Carcinoma by Antisense Oligonucleotide Targeting Signal Transducer and Activator of Transcription 3. Clin. Cancer Res. 2006, 12, 7140–7148. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.-B.; Wang, L.; Jia, H.-C.; Li, D.; Li, H.-J.; Zhang, Y.-G.; Sun, D.-X. B7-H3 Promotes Aggression and Invasion of Hepatocellular Carcinoma by Targeting Epithelial-to-Mesenchymal Transition via JAK2/STAT3/Slug Signaling Pathway. Cancer Cell Int. 2015, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Van Haele, M.; Moya, I.M.; Karaman, R.; Rens, G.; Snoeck, J.; Govaere, O.; Nevens, F.; Verslype, C.; Topal, B.; Monbaliu, D.; et al. YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role. Int. J. Mol. Sci. 2019, 20, 638. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Q.; Zhang, Q.; Li, Z.; Wang, E.; Qiu, X. Overexpression of Yes-Associated Protein Contributes to Progression and Poor Prognosis of Non-Small-Cell Lung Cancer. Cancer Sci. 2010, 101, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, Y.; Lee, K.; Lee, H.; Yoo, J.E.; Ahn, S.; Park, Y.N.; Kim, H. The Clinicopathological Significance of YAP/TAZ Expression in Hepatocellular Carcinoma with Relation to Hypoxia and Stemness. Pathol. Oncol. Res. 2021, 27, 604600. [Google Scholar] [CrossRef]
- Noman, A.S.; Uddin, M.; Chowdhury, A.A.; Nayeem, M.J.; Raihan, Z.; Rashid, M.I.; Azad, A.K.; Rahman, M.L.; Barua, D.; Sultana, A.; et al. Serum Sonic Hedgehog (SHH) and Interleukin-(IL-6) as Dual Prognostic Biomarkers in Progressive Metastatic Breast Cancer. Sci. Rep. 2017, 7, 1796. [Google Scholar] [CrossRef]
- Li, H.-Y.; Yin, F.-F.; Li, X.-Y.; Jia, W.-N.; Ding, J.; Zhang, L.; Wang, Z.-H.; Hu, Q.-Q.; Zuo, J.-L.; Jia, H.-L.; et al. Novel Aptasensor-Based Assay of Sonic Hedgehog Ligand for Detection of Portal Vein Invasion of Hepatocellular Carcinoma. Biosens. Bioelectron. 2021, 174, 112738. [Google Scholar] [CrossRef]
- Zhu, J.-N.; Jiang, L.; Jiang, J.-H.; Yang, X.; Li, X.-Y.; Zeng, J.-X.; Shi, R.-Y.; Shi, Y.; Pan, X.-R.; Han, Z.-P.; et al. Hepatocyte Nuclear Factor-1beta Enhances the Stemness of Hepatocellular Carcinoma Cells through Activation of the Notch Pathway. Sci. Rep. 2017, 7, 4793. [Google Scholar] [CrossRef]
- Lindblad, K.E.; Donne, R.; Liebling, I.; Bresnahan, E.; Barcena-Varela, M.; Lozano, A.; Park, E.; Giotti, B.; Burn, O.; Fiel, M.I.; et al. NOTCH1 Drives Tumor Plasticity and Metastasis in Hepatocellular Carcinoma. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ahn, J.C.; Teng, P.-C.; Chen, P.-J.; Posadas, E.; Tseng, H.-R.; Lu, S.C.; Yang, J.D. Detection of Circulating Tumor Cells and Their Implications as a Novel Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology 2021, 73, 422–436. [Google Scholar] [CrossRef]
- Micalizzi, D.S.; Maheswaran, S.; Haber, D.A. A Conduit to Metastasis: Circulating Tumor Cell Biology. Genes. Dev. 2017, 31, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cao, S.-W.; Cai, Z.; Zheng, L.; Wang, Q. Epithelial-Mesenchymal Transition Phenotypes of Circulating Tumor Cells Correlate with the Clinical Stages and Cancer Metastasis in Hepatocellular Carcinoma Patients. Cancer Biomark. 2017, 20, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Court, C.M.; Hou, S.; Winograd, P.; Segel, N.H.; Li, Q.W.; Zhu, Y.; Sadeghi, S.; Finn, R.S.; Ganapathy, E.; Song, M.; et al. A Novel Multimarker Assay for the Phenotypic Profiling of Circulating Tumor Cells in Hepatocellular Carcinoma. Liver Transpl. 2018, 24, 946–960. [Google Scholar] [CrossRef]
- Prasoppokakorn, T.; Buntho, A.; Ingrungruanglert, P.; Tiyarattanachai, T.; Jaihan, T.; Kulkraisri, K.; Ariyaskul, D.; Phathong, C.; Israsena, N.; Rerknimitr, R.; et al. Circulating Tumor Cells as a Prognostic Biomarker in Patients with Hepatocellular Carcinoma. Sci. Rep. 2022, 12, 18686. [Google Scholar] [CrossRef] [PubMed]
- Okajima, W.; Komatsu, S.; Ichikawa, D.; Miyamae, M.; Ohashi, T.; Imamura, T.; Kiuchi, J.; Nishibeppu, K.; Arita, T.; Konishi, H.; et al. Liquid Biopsy in Patients with Hepatocellular Carcinoma: Circulating Tumor Cells and Cell-Free Nucleic Acids. World J. Gastroenterol. 2017, 23, 5650–5668. [Google Scholar] [CrossRef]
- Lehrich, B.M.; Zhang, J.; Monga, S.P.; Dhanasekaran, R. Battle of the Biopsies: Role of Tissue and Liquid Biopsy in Hepatocellular Carcinoma. J. Hepatol. 2024, 80, 515–530. [Google Scholar] [CrossRef]
- Cai, Z.-X.; Chen, G.; Zeng, Y.-Y.; Dong, X.-Q.; Lin, M.-J.; Huang, X.-H.; Zhang, D.; Liu, X.-L.; Liu, J.-F. Circulating Tumor DNA Profiling Reveals Clonal Evolution and Real-Time Disease Progression in Advanced Hepatocellular Carcinoma. Int. J. Cancer 2017, 141, 977–985. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Wang, S.; Tian, Y.; Xie, B.; Li, J.; Ma, B.; Li, L. The Assessment of Circulating Tumor DNA Associated with Wnt/β-Catenin Signaling Pathway as a Diagnostic Tool for Liver Cancer: A Systematic Review and Meta-Analysis. Expert. Rev. Anticancer. Ther. 2024, 24, 155–167. [Google Scholar] [CrossRef]
- Ono, A.; Fujimoto, A.; Yamamoto, Y.; Akamatsu, S.; Hiraga, N.; Imamura, M.; Kawaoka, T.; Tsuge, M.; Abe, H.; Hayes, C.N.; et al. Circulating Tumor DNA Analysis for Liver Cancers and Its Usefulness as a Liquid Biopsy. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 516–534. [Google Scholar] [CrossRef]
- Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.M.; Molaei, F.; Alahari, S.K. Exosomes: Composition, Biogenesis, and Mechanisms in Cancer Metastasis and Drug Resistance. Mol. Cancer 2019, 18, 75. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, S.; Luo, Y.; He, K. Exosome Cargos as Biomarkers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Pharmaceutics 2023, 15, 2365. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, C.; Hu, B.; Gao, X.; Zou, T.; Luo, Q.; Chen, M.; Fu, Y.; Sheng, Y.; Zhang, K.; et al. Exosomal S100A4 Derived from Highly Metastatic Hepatocellular Carcinoma Cells Promotes Metastasis by Activating STAT3. Signal Transduct. Target. Ther. 2021, 6, 187. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhang, Q.; Lou, Y.; Yang, J.; Nie, G.; Chen, Q.; Chen, Y.; Zhang, J.; Wang, J.; Wei, T.; et al. Primary Tumor-Derived Exosomes Facilitate Metastasis by Regulating Adhesion of Circulating Tumor Cells via SMAD3 in Liver Cancer. Oncogene 2018, 37, 6105–6118. [Google Scholar] [CrossRef]
- Yang, B.; Feng, X.; Liu, H.; Tong, R.; Wu, J.; Li, C.; Yu, H.; Chen, Y.; Cheng, Q.; Chen, J.; et al. High-Metastatic Cancer Cells Derived Exosomal miR92a-3p Promotes Epithelial-Mesenchymal Transition and Metastasis of Low-Metastatic Cancer Cells by Regulating PTEN/Akt Pathway in Hepatocellular Carcinoma. Oncogene 2020, 39, 6529–6543. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, J.S.; Park, N.R.; Nam, H.; Sung, P.S.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Hur, W.; Jang, J.W. Exosomal miR-125b Exerts Anti-Metastatic Properties and Predicts Early Metastasis of Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 637247. [Google Scholar] [CrossRef]
- Chen, S.; Mao, Y.; Chen, W.; Liu, C.; Wu, H.; Zhang, J.; Wang, S.; Wang, C.; Lin, Y.; Lv, Y. Serum Exosomal miR-34a as a Potential Biomarker for the Diagnosis and Prognostic of Hepatocellular Carcinoma. J. Cancer 2022, 13, 1410–1417. [Google Scholar] [CrossRef]
- Lu, L.; Huang, J.; Mo, J.; Da, X.; Li, Q.; Fan, M.; Lu, H. Exosomal lncRNA TUG1 from Cancer-Associated Fibroblasts Promotes Liver Cancer Cell Migration, Invasion, and Glycolysis by Regulating the miR-524-5p/SIX1 Axis. Cell Mol. Biol. Lett. 2022, 27, 17. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Huang, Z.-L.; Huang, J.; Xu, B.; Huang, X.-Y.; Xu, Y.-H.; Zhou, J.; Tang, Z.-Y. Exosomal circRNA-100338 Promotes Hepatocellular Carcinoma Metastasis via Enhancing Invasiveness and Angiogenesis. J. Exp. Clin. Cancer Res. 2020, 39, 20. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Zou, Y.; Wang, G.; Deng, Y.; Luo, J.; Zhang, Y.; Li, H.; Zhang, Q.; Yang, Y.; et al. Three Isoforms of Exosomal circPTGR1 Promote Hepatocellular Carcinoma Metastasis via the miR449a-MET Pathway. EBioMedicine 2019, 40, 432–445. [Google Scholar] [CrossRef]
- Hanif, H.; Ali, M.J.; Susheela, A.T.; Khan, I.W.; Luna-Cuadros, M.A.; Khan, M.M.; Lau, D.T.-Y. Update on the Applications and Limitations of Alpha-Fetoprotein for Hepatocellular Carcinoma. World J. Gastroenterol. 2022, 28, 216–229. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A Comprehensive Database of High-Quality Biomedical Graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chai, X.; Wang, L.; Cai, J.; Lan, F. 3D organization profiling of human hepatocellular carcinoma cell line PLC/PRF/5 in comparison with normal human liver cell line L02 by in situ Hi-C. Sheng Wu Gong. Cheng Xue Bao 2021, 37, 331–341. [Google Scholar] [CrossRef] [PubMed]
Genes | Alteration | Role in HCC Progression | Pathway | References |
---|---|---|---|---|
Proto-oncogenes | ||||
TERT | Copy number gain | microvascular invasion (+), immune cell infiltration (−) | NF-κB pathway, Wnt/β-catenin pathway | [18,26] |
CDKN2A | copy number loss | Immune cell infiltration (−) | MAPK signaling pathway | [9,27] |
OPN | Overexpression | Metastasis (+) | MAPK, NF-κB, PI3K/Akt | [10] |
CTNNB1 | mutation | Immune escape (+), chemoresistance (+) | WNT/β-catenin | [28] |
CCND1 | Amplification or deletion | Immune escape (+), chemoresistance (+) | TGF-β/Smad | [14] |
FGF1, FGF2, or FGF19 | Amplification or deletion | Angiogenesis (+), migration (+), invasion (+) | AKT/MTOR, RAS/MAPK, FGF/FGFR | [29] |
Met | Overexpression | Migration (+), invasion (+) | AKT/MTOR, RAS/MAPK | [30] |
COL4A1 | Overexpression | Migration (+), invasion (+) | FAK-Src | [31] |
SIX4 | Overexpression | Loss of envelope (+), microvascular invasion (+), elevated TNM stage (+), poor prognosis (+) | HGF-SIX4-c-MET | [32] |
CENPU | Overexpression | Invasion (+), migration (+), cell cycle progression (+) | CENPU/E2F6/E2F1 | [33] |
ONECUT2 | Overexpression | Increased tumor number (+), tumor capsule loss (+), microvascular invasion (+), poor tumor differentiation and advanced TNM (+) | FGF2/FGFR1/ONECUT2 | [34] |
CENPM | Overexpression | Immune cell infiltration (+) | P53 | [35] |
HOXA9 | Overexpression | Proliferation (+), invasion (+), migration (+), proliferation (−) | RPL38/HOXA9 | [36] |
STOML2 | Overexpression | Proliferation (+), invasion (+), migration (+), proliferation (−) | STOML2/PINK1 | [37] |
USP11 | Overexpression | EMT (+), metastasis (+) | USP11/eEF1A1/SP1/HGF | [38] |
NET1 | Overexpression | Proliferation (+), invasion (+), migration (+) | Akt | [39] |
GINS1 | Overexpression | Proliferation (+), invasion (+), migration (+), EMT (+) | β-catenin | [40] |
Tumor suppressor gene | ||||
TP53 | Mutations, deletions | Tumor cell stemness (+), vascular invasion (+) | P53 pathway | [24] |
ARID1A | Mutations or deletions | Lymph node and distant metastases (+) | Epigenetic modifiers Chromatin remodeling | [12] |
ARID2 | Mutations or deletions | Invasion (+), Migration (+) | PI3K/AKT, DNMT1-Snail axis | [13] |
AXIN1 | Mutations or deletions | Proliferation (+), invasion (+), migration (+), EMT (+) | Wnt | [15] |
PTEN | Mutations or deletions | Invasion (+), metastasis (+) | AKT/mTOR | [32] |
TSC1/2 | mutation | Metastasis (+) | mTOR | [41] |
RB1 | Mutations or deletions | Proliferation (+) | FOXM1-FOXO1 axis | [42] |
APEX1 | Overexpression | Proliferation (+), invasion (+), migration (+) | APEX1/MAP2K6 | [43] |
PDE7B | down-regulated | Proliferation (+), invasion (+), migration (+), EMT (+) | PI3K/AKT | [44] |
FGA | point mutations | Aggressive (+) | TYK2-STAT3-IL6 | [45] |
BAP1 | Overexpression | Migration (+) | CTCF and NRF1/OGT axis | [46] |
Targeted Drugs | Targets | Trial Design | NCT Number | Primary Endpoint | Grade 3/4 Drug-Related Side Effects (%, Trial Drug) | Indication | References |
---|---|---|---|---|---|---|---|
First-line treatment | |||||||
Sorafenib | VEGFR, PDGFR-β, RAF | Phase III RTC (sorafenib vs. placebo) | NCT00105443 | mOS 10.7 vs. 7.9 months | Hand-foot skin reactions (10.7), diarrhea (6.0), fatigue (3.4) | First-line therapy for advanced HCC patients with inoperable or distant | [120] |
Phase III RTC (sorafenib vs. placebo) | NCT00492752 | mOS 6.5 vs. 4.2 months | Hand-foot skin reactions (8), diarrhea (8), weight loss (2), hypertension (2) | [121] | |||
Lenvatinib | VEGFR, FGFR, PDGFR, RET, KIT | Phase III RTC (lenvatinib vs. sorafenib) | NCT01761266 | mOS 13.6 vs. 12.3 months | Hypertension (42), diarrhea (39), decreased appetite (39), decreased weight (31) | First-line therapy for advanced HCC patients with inoperable or distant metastases | [125] |
Bevacizumab | VEGF-A | Phase III RTC (atezolizumab and bevacizumab vs. sorafenib) | NCT03434379 | mOS > 17 vs. 13.2 months | Hypertension (15.2), fatigue (2.4), increased AST (7), increased ALT (3.6) | First-line therapy for advanced HCC patients with inoperable or distant metastases | [127] |
Donafenib | VEGFR, PDGFR | Phase II/III RTC (donafenib vs. sorafenib) | NCT02645981 | mOS 12.1 vs. 10.3 months | Hypertension (9), hand-foot skin reactions (6), diarrhea (2), decreased platelet count (4) | First-line therapy for advanced HCC patients with inoperable or distant metastases | [129] |
Second-line treatment | |||||||
Regorafenib | VEGFR, FGFR, PDGFR, KIT, RET, B-RAF | Phase III RTC (regorafenib vs. placebo) | NCT0177434 | mOS 10.6 vs. 7.8 months | Hypertension (15), hand-foot skin reactions (13), fatigue (9) | Advanced HCC patients who have failed prior first-line therapy | [130] |
Cabozantinib | MET, VEGFR, ROS1, RET, AXL, NTRK, KIT | Phase III RTC (cabozantinib vs. placebo) | NCT01908426 | mOS 10.2 vs. 8.0 months | Hypertension (16), hand-foot skin reactions (17), fatigue (10), increased AST (12), diarrhea (10) | Advanced HCC patients who have failed prior first-line therapy | [133] |
Ramucirumab | VEGFR2 | Phase III RTC (ramucirumab vs. placebo) | NCT02435433 | mOS 8.5 vs. 7.3 months | Hypertension (13), hyponatremia (6), increased AST (3) | Advanced HCC patients who have failed prior first-line therapy and AFP ≥ 400 ng/mL | [136] |
Apatinib | VEGFR2 | Phase III RTC (apatinib vs. placebo) | NCT02329860 | mOS 8.7 vs. 6.8 months | Hypertension (28), hand-foot skin (18), decreased platelet count (13) | Advanced HCC patients who have failed prior first-line therapy | [138] |
miRNA | Primary Function/Role | AUC | Sensitivity (%) | Specificity (%) | Associated Features | References |
---|---|---|---|---|---|---|
let-7c | Associated with tumor invasion, metastasis, and TNM staging | -- | -- | -- | High expression is linked to serosal invasion, venous invasion, and advanced TNM stages, particularly let-7c, which is associated with significantly shortened overall survival after surgery. | [147] |
miR-148a-3p | Differentiates metastatic from non-metastatic HCC patients | 0.800 | 88.89 | 60.0 | Downregulation is associated with elevated TGF-β1, distant metastasis, multinodular disease, and advanced TNM stages. | [148] |
miR-652-3p | Promotes EMT and HCC metastasis by inhibiting TNRC6A | -- | -- | -- | Acts as a potential prognostic biomarker, involved in the metastasis and EMT processes in HCC. | [149] |
miR-130b | Closely associated with tumor number, vascular invasion, and TNM staging | -- | -- | -- | High expression is associated with postoperative recurrence and metastasis in HCC. | [150] |
miRNA-96-5p | Associated with tumor volume and metastasis | 0.82 | 69.1 | 85.5 | Upregulation enhances diagnostic performance when combined with miRNA-99a-5p and AFP. | [151] |
miRNA-99a-5p | Strongly associated with tumor metastasis | 0.88 | 70.9 | 90.9 | Combined with miRNA-96-5p and AFP, it demonstrates the highest diagnostic accuracy for HCC. | [151] |
miR-497 + miR-1246 + AFP | Combined for diagnosing and identifying HCC metastasis | 0.955 | 94.0 | 86.0 | Strongest diagnostic capability for distinguishing HCC, with correlations with tumor differentiation, TNM staging, and metastasis after combining with AFP | [152] |
miR-501-3p | Downregulated in metastatic HCC cell lines and recurrent tumor tissues | -- | -- | -- | Downregulation is associated with tumor progression and poor survival outcomes. | [153] |
miR-187-3p | Low expression in HCC tissues and cell lines, correlating with advanced TNM stage and metastasis | -- | -- | -- | Significantly downregulated under hypoxic conditions, promoting metastasis and EMT, underscoring its potential as a prognostic marker | [154] |
miR-1179 | Low expression linked to lymph node and distant metastasis | -- | -- | -- | Associated with poor survival prognosis, with low expression predicting lymph node and distant metastasis in HCC | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Peng, C.; Ou, Y.; Wang, P.; Zhan, C.; Wei, H.; Na, J.; Zhang, Z. Decoding Hepatocellular Carcinoma Metastasis: Molecular Mechanisms, Targeted Therapies, and Potential Biomarkers. Curr. Issues Mol. Biol. 2025, 47, 263. https://doi.org/10.3390/cimb47040263
Wei K, Peng C, Ou Y, Wang P, Zhan C, Wei H, Na J, Zhang Z. Decoding Hepatocellular Carcinoma Metastasis: Molecular Mechanisms, Targeted Therapies, and Potential Biomarkers. Current Issues in Molecular Biology. 2025; 47(4):263. https://doi.org/10.3390/cimb47040263
Chicago/Turabian StyleWei, Ke, Chunxiu Peng, Yangzhi Ou, Pengchen Wang, Chenjie Zhan, Huaxiu Wei, Jintong Na, and Zhiyong Zhang. 2025. "Decoding Hepatocellular Carcinoma Metastasis: Molecular Mechanisms, Targeted Therapies, and Potential Biomarkers" Current Issues in Molecular Biology 47, no. 4: 263. https://doi.org/10.3390/cimb47040263
APA StyleWei, K., Peng, C., Ou, Y., Wang, P., Zhan, C., Wei, H., Na, J., & Zhang, Z. (2025). Decoding Hepatocellular Carcinoma Metastasis: Molecular Mechanisms, Targeted Therapies, and Potential Biomarkers. Current Issues in Molecular Biology, 47(4), 263. https://doi.org/10.3390/cimb47040263