A Comparison of the Treatment Effects of a Risperidone Solution, an Equal Ratio of DHA/ARA, and a Larger Ratio of Omega-6 PUFA Added to Omega-3 PUFA: An Open-Label Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Medication
2.3. Study Design
2.4. Outcomes
2.5. Safety Assessment
2.6. Blood Sampling Procedures
2.6.1. Plasma Levels of PUFAs
2.6.2. Antioxidant Proteins
2.6.3. Ceruloplasmin
2.6.4. Transferrin
2.6.5. Superoxide Dismutase
2.6.6. Plasma IGF Levels
2.7. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Efficacy Results
3.3. Plasma Antioxidant Protein Levels
3.4. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Pervin, M.; Ahmed, H.U.; Hagmayer, Y. Effectiveness of interventions for children and adolescents with autism spectrum disorder in high-income vs. lower middle-income countries: An overview of systematic reviews and research papers from LMIC. Front. Psychiatry 2022, 13, 834783. [Google Scholar] [CrossRef]
- Fieiras, C.; Chen, M.H.; Escobar Liquitay, C.M.; Meza, N.; Rojas, V.; Franco, J.V.A.; Madrid, E. Risperidone and aripiprazole for autism spectrum disorder in children: An overview of systematic reviews. BMJ Evid. Based Med. 2023, 28, 7–14. [Google Scholar] [CrossRef]
- Aman, M.; Rettiganti, M.; Nagaraja, H.N.; Hollway, J.A.; McCracken, J.; McDougle, C.J.; Tierney, E.; Scahill, L.; Arnold, L.E.; Hellings, J.; et al. Tolerability, safety, and benefits of risperidone in children and adolescents with autism: 21-month follow-up after 8-week placebo-controlled trial. J. Child Adolesc. Psychopharmacol. 2015, 25, 482–489. [Google Scholar] [CrossRef]
- Maneeton, N.; Maneeton, B.; Putthisri, S.; Woottiluk, P.; Narkpongphun, A.; Srisurapanont, M. Risperidone for children and adolescents with autism spectrum disorder: A systematic review. Neuropsychiatr. Dis. Treat. 2018, 14, 1811–1820. [Google Scholar] [CrossRef]
- Mano-Sousa, B.J.; Pedrosa, A.M.; Alves, B.C.; Galduróz, J.C.F.; Belo, V.S.; Chaves, V.E.; Duarte-Almeida, J.M. Effects of risperidone in children with autism and young adults: A systematic review and meta-analysis. Curr. Neuropharmacol. 2021, 19, 538–552. [Google Scholar] [CrossRef]
- McCracken, J.T.; McGough, J.; Shah, B.; Cronin, P.; Hong, D.; Aman, M.G.; Arnold, L.E.; Lindsay, R.; Nash, P.; Hollway, J.; et al. Risperidone in children with autism and serious behavioral problems. N. Engl. J. Med. 2002, 347, 314–321. [Google Scholar] [CrossRef]
- McDougle, C.J.; Scahill, L.; Aman, M.G.; McCracken, J.T.; Tierney, E.; Davies, M.; Arnold, L.E.; Posey, D.J.; Martin, A.; Ghuman, J.K.; et al. Risperidone for the core symptom domains of autism: Results from the study by the autism network of the research units on pediatric psychopharmacology. Am. J. Psychiatry 2005, 162, 1142–1148. [Google Scholar] [CrossRef]
- McNeil, S.E.; Gibbons, J.R.; Cogburn, M. Risperidone. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459313/ (accessed on 15 January 2024).
- Jasović-Gasić, M.; Marić, N.; Damjanović, A. Risperidone liquid in psychotic disorders–efficacy and attitudes. Psychiatr. Danub. 2005, 17, 191–196. [Google Scholar]
- Cheon, K.A.; Park, J.I.; Koh, Y.J.; Song, J.; Hong, H.J.; Kim, Y.K.; Lim, E.C.; Kwon, H.; Ha, M.; Lim, M.H.; et al. The social responsiveness scale in relation to DSM IV and DSM5 ASD in Korean children. Autism Res. 2016, 9, 970–980. [Google Scholar] [CrossRef]
- Dijkhuis, R.; Gurbuz, E.; Ziermans, T.; Staal, W.; Swaab, H. Social attention and emotional responsiveness in young adults with autism. Front. Psychiatry 2019, 10, 426. [Google Scholar] [CrossRef]
- Elandaloussi, Y.; Floris, D.L.; Coupé, P.; Duchesnay, E.; Mihailov, A.; Grigis, A.; Bègue, I.; Victor, J.; Frouin, V.; Leboyer, M.; et al. Understanding the relationship between cerebellar structure and social abilities. Mol. Autism 2023, 14, 18. [Google Scholar] [CrossRef]
- Barón-Mendoza, I.; González-Arenas, A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder. Nutr. Neurosci. 2022, 25, 387–410. [Google Scholar] [CrossRef]
- Sambra, V.; Echeverris, F.; Valenzuela, A.; Chouinard-Watkins, R.; Valenzuela, R. Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients 2021, 13, 986. [Google Scholar] [CrossRef]
- Joensuu, M.; Wallis, T.P.; Saber, S.H.; Meunier, F.A. Phospholipases in neuronal function: A role in learning and memory? J. Neurochem. 2020, 53, 300–333. [Google Scholar] [CrossRef]
- Yui, K.; Koshiba, M.; Nakamura, S.; Kobayashi, Y. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: A double-blind, placebo-controlled, randomized trial. J. Clin. Psychopharmacol. 2012, 32, 200–206. [Google Scholar] [CrossRef]
- Hauptman, A.J.; Cohen, D.; Dhossche, D.; Raffin, M.; Wachtel, L.; Ferrafiat, V. Catatonia in neurodevelopmental disorders: Assessing catatonic deterioration from baseline. Lancet Psychiatry 2023, 10, 228–324. [Google Scholar] [CrossRef]
- Nader, A.M.; Jelenic, P.; Soulières, I. Discrepancy between WISC-III and WISC-IV Cognitive Profile in Autism Spectrum: What Does It Reveal about Autistic Cognition? PLoS ONE 2015, 10, e0144645. [Google Scholar] [CrossRef]
- Rutter, M.; Kreppner, J.; Croft, C.; Murin, M.; Colvert, E.; Beckett, C.; Castle, J.; Sonuga-Barke, E. Early adolescent outcomes of institutionally deprived and non-deprived adoptees. III. Quasi-autism. J. Child Psychol. Psychiatry 2007, 48, 1200–1207. [Google Scholar] [CrossRef]
- Freeman, B.J.; Ritvo, E.R.; Yokota, A.; Childs, J.; Pollard, J. WISC-R and Vineland Adaptive Behavior Scale scores in autistic children. J. Am. Acad. Child Adolesc. Psychiatry 1988, 27, 428–429. [Google Scholar] [CrossRef]
- Rabiee, A.; Samadi, S.A.; Vasaghi-Gharamaleki, B.; Hosseini, S.; Seyedin, S.; Keyhani, M.; Mahmoodizadeh, A.; Ranjbar Kermani, F. The cognitive profile of people with high-functioning autism spectrum disorders. Behav. Sci. 2019, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Aman, M.G.; Burrow, W.H.; Wolford, P.L. The Aberrant Behavior Checklist-Community: Factor validity and effect of subject variables for adults in group homes. Am. J. Ment. Retard. 1995, 100, 283–292. [Google Scholar]
- Karabekiroglu, K.; Aman, M.G. Validity of the aberrant behavior checklist in a clinical sample of toddlers. Child Psychiatry Hum. Dev. 2009, 40, 99–110. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liong, M.T.; Chung, Y.E.; Huang, H.Y.; Peng, W.S.; Cheng, Y.F.; Lin, Y.S.; Wu, Y.Y.; Tsai, Y.C. Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: A randomized, double-blind, placebo-controlled trial. Nutrients 2019, 11, 820. [Google Scholar] [CrossRef]
- Prigge, M.B.D.; Bigler, E.D.; Travers, B.G.; Froehlich, A.; Abildskov, T.; Anderson, J.S.; Alexander, A.L.; Lange, N.; Lainhart, J.E.; Zielinski, B.A. Social Responsiveness Scale (SRS) in relation to longitudinal cortical thickness changes in autism spectrum disorder. J. Autism Dev. Disord. 2018, 48, 3319–3329. [Google Scholar] [CrossRef]
- Hollander, E.; Chaplin, W.; Soorya, L.; Wasserman, S.; Novotny, S.; Rusoff, J.; Feirsen, N.; Pepa, L.; Anagnostou, E. Divalproex sodium vs. placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology 2010, 35, 990–998. [Google Scholar] [CrossRef]
- Chan, W.; Smith, L.E.; Hong, J.; Greenberg, J.S.; Mailick, M.R. Validating the social responsiveness scale for adults with autism. Autism Res. 2017, 10, 1663–1671. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Friedman, C.F.; Navid-Azarbaijani, P.; Postow, M.A.; Callahan, M.K.; Momtaz, P.; Panageas, K.S.; Wolchok, J.D.; Chapman, P.B. Measuring toxic effects and time to treatment failure for nivolumab plus ipilimumab in melanoma. JAMA Oncol. 2018, 4, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Nyheim, H.; Haram, E.M.; Moritz, J.M.; Hustvedt, S.O. A novel self-micro-emulsifying delivery system (SMEDS) formulation significantly improves the fasting absorption of EPA and DHA from a single dose of an omega-3 ethyl ester concentrate. Lipids Health Dis. 2017, 16, 204. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, T.; Arunadevi, S.; Essa, M.M.; SaravanaBabu, C.; Borah, A.; Thenmozhi, A.J.; Qoronfleh, M.W. Role of oxidative stress and antioxidants in autism. Adv. Neurobiol. 2020, 24, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Shakour-Shahabi, L.; Abbasali-Zadeh, S.; Rashtchi-Zadeh, N. Serum level and antioxidant activity of ceruloplasmin in preeclampsia. Pak. J. Biol. Sci. 2010, 13, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Yun, S.J.; Nam, K.N.; Gho, Y.S.; Lee, E.H. Activation of microglial cells by ceruloplasmin. Brain Res. 2007, 1171, 1–8. [Google Scholar] [CrossRef]
- Lazzaro, M.; Bettegazzi, B.; Barbariga, M.; Codazzi, F.; Zacchetti, D.; Alessio, M. Ceruloplasmin potentiates nitric oxide synthase activity and cytokine secretion in activated microglia. J. Neuroinflamm. 2014, 11, 164. [Google Scholar] [CrossRef]
- Siddiqi, U.R.; Begum, S.; Shahjadi, S.; Afroz, S.; Mahruba, S.N.; Parvin, J.; Rahman, M.M. Plasma zinc, copper and serum ceruloplasmin levels of autism spectrum disorder children in Bangladesh. Heliyon 2023, 9, e18624. [Google Scholar] [CrossRef]
- Schulpis, K.H.; Papastamataki, M.; Stamou, H.; Papassotiriou, I.; Margeli, A. The effect of diet on total antioxidant status, ceruloplasmin, transferrin and ferritin serum levels in phenylketonuric children. Acta Paediatr. 2010, 99, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Sabbir, M.G. CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis. Cell Commun. Signal. 2020, 18, 80. [Google Scholar] [CrossRef]
- Saxena, P.; Selvaraj, K.; Khare, S.K.; Chaudhary, N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett. 2022, 44, 1–22. [Google Scholar] [CrossRef]
- Harada, K.; Hanayama, Y.; Obika, M.; Itoshima, K.; Okada, K.; Otsuka, F. Clinical relevance. of insulin-like growth factor-1 to cardiovascular risk markers. Aging Male 2020, 23, 1030–1038. [Google Scholar] [CrossRef]
- Mohapatra, B.; Dash, T. Linear mixed-model analysis better captures subcomponents of attention in a small sample size of persons with aphasia. Am. J. Speech Lang. Pathol. 2023, 32, 748–761. [Google Scholar] [CrossRef]
- Wanichthanarak, K.; Jeamsripong, S.; Pornputtapong, N.; Khoomrung, S. Accounting for biological variation with linear mixed-effects modelling improves the quality of clinical metabolomics data. Comput. Struct. Biotechnol. J. 2019, 17, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.M.; Rakshit, S.; Huang, C.H.; Wu, W.H. Probabilistic approaches for investigating species co-occurrence from presence-absence maps. PeerJ 2023, 11, e15907. [Google Scholar] [CrossRef]
- Nakanishi, M.; Deardorff, M.A.; Clark, D.; Levy, S.E.; Krantz, I.; Pipan, M. Investigation of autistic features among individuals with mild to moderate Cornelia de Lange syndrome. Am. J. Med. Genet. Part A 2012, 158A, 1841–1847. [Google Scholar] [CrossRef]
- Kerr-Gaffney, J.; Harrison, A.; Tchanturia, K. The social responsiveness scale is an efficient screening tool for autism spectrum disorder traits in adults with anorexia nervosa. Eur. Eat. Disord. Rev. 2020, 28, 433–444. [Google Scholar] [CrossRef]
- Clements, C.C.; Zoltowski, A.R.; Yankowitz, L.D.; Yerys, B.E.; Schultz, R.T.; Herrington, J.D. Evaluation of the social motivation hypothesis of autism: A systematic review and meta-analysis. JAMA Psychiatry 2018, 75, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.A.; Padmanabhan, A.; Chen, T.; Odriozola, P.; Baker, A.E.; Kochalka, J.; Phillips, J.M.; Menon, V. Impaired voice processing in reward and salience circuits predicts social communication in children with autism. elife 2019, 8, e39906. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.; Veytsman, E.; Choy, T.; Blacher, J.; Stavropoulos, K.K.M. Investigating changes in reward-related neural correlates after PEERS intervention in adolescents with ASD: Preliminary evidence of a “Precision Medicine” approach. Front. Psychiatry 2021, 12, 742280. [Google Scholar] [CrossRef]
- Stavropoulos, K.K.; Carver, L.J. Oscillatory rhythm of reward: Anticipation and processing of rewards in children with and without autism. Mol. Autism 2018, 9, 4. [Google Scholar] [CrossRef]
- Lin, A.; Rangel, A.; Adolphs, R. Impaired learning of social compared to monetary rewards in autism. Front. Neurosci. 2012, 6, 143. [Google Scholar] [CrossRef]
- Kohls, G.; Chevallier, C.; Troiani, V.; Schultz, R.T. Social ‘wanting’ dysfunction in autism: Neurobiological underpinnings and treatment implications. J. Neurodev. Disord. 2012, 4, 10. [Google Scholar] [CrossRef]
- Haber, S.N.; Kim, K.S.; Mailly, P.; Calzavara, R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J. Neurosci. 2006, 2, 8368–8376. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.Z.; Cheer, J.F.; Tonini, R. Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System. Trends Neurosci. 2021, 44, 464–477. [Google Scholar] [CrossRef]
- Aston, C.; Jiang, L.; Sokolov, B.P. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol. Psychiatry 2005, 10, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Torske, T.; Nærland, T.; Øie, M.G.; Stenberg, N.; Andreassen, O.A. Metacognitive aspects of executive function are highly associated with social functioning on parent-rated measures in children with autism spectrum disorder. Front. Behav. Neurosci. 2018, 11, 258. [Google Scholar] [CrossRef]
- Rademacher, L.; Schulte-Rüther, M.; Hanewald, B.; Lammertz, S. Reward: From basic reinforcers to anticipation of social cues. Curr. Top. Behav. Neurosci. 2017, 30, 207–221. [Google Scholar] [CrossRef]
- Hawkins, P.C.T.; Zelaya, F.O.; O’Daly, O.; Holiga, S.; Dukart, J.; Umbricht, D.; Mehta, M.A. The effect of risperidone on reward-related brain activity is robust to drug-induced vascular changes. Hum. Brain Mapp. 2021, 42, 2766–2777. [Google Scholar] [CrossRef]
- Gener, T.; Tauste Campo, A.; Alemany-González, M.; Nebot, P.; Delgado-Sallent, C.; Chanovas, J.; Puig, M.V. Serotonin 5-HT1A, 5-HT2A and dopamine D2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: Contribution to the actions of risperidone. Neuropharmacology 2019, 158, 107743. [Google Scholar] [CrossRef]
- Frick, L.R.; Bernardez-Vidal, M.; Hocht, C.; Zanutto, B.S.; Rapanelli, M. Dual role of serotonin in the acquisition and extinction of reward-driven learning: Involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors. Behav. Brain Res. 2015, 277, 193–203. [Google Scholar] [CrossRef]
- Brüne, M. Ethological remarks on mannerisms. Conceptualisation and proposal for a definition. Psychopathology 1998, 31, 188–196. [Google Scholar] [CrossRef]
- Labandeira-Garcia, J.L.; Costa-Besada, M.A.; Labandeira, C.M.; Villar-Cheda, B.; Rodríguez-Perez, A.I. Insulin-like growth factor-1 and neuroinflammation. Front. Aging Neurosci. 2017, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2017, 11, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Kim, J.M.; Kim, K.J.; Yun, J.Y.; Kim, S.E. Serum Ceruloplasmin and striatal dopamine transporter density in Parkinson disease: Comparison with 123I-FP-CIT SPECT. Clin. Nucl. Med. 2017, 42, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, V.K.; Raman, P.H.; Dhuley, J.N.; Naik, S.R. Role of ceruloplasmin in inflammation: Increased serum ceruloplasmin levels during inflammatory conditions and its possible relationship with anti-inflammatory agents. Pharmacol. Res. Commun. 1985, 17, 633–642. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 2021, 17, 564–679. [Google Scholar] [CrossRef]
- Diouf, I.; Bush, A.I.; Ayton, S. Cerebrospinal fluid ceruloplasmin levels predict cognitive decline and brain atrophy in people with underlying β-amyloid pathology. Alzheimer’s disease Neuroimaging Initiative. Neurobiol. Dis. 2020, 139, 104810. [Google Scholar] [CrossRef]
- Fernández-Pereira, C.; Penedo, M.A.; Rivera-Baltanas, T.; Fernández-Martínez, R.; Ortolano, S.; Olivares, J.M.; Agís-Balboa, R.C. Insulin-like growth factor 2 (IGF-2) and insulin-like growth factor binding protein 7 (IGFBP-7) are upregulated after atypical antipsychotics in Spanish schizophrenia patients. Int. J. Mol. Sci. 2022, 23, 9591. [Google Scholar] [CrossRef]
- Kjellberg, E.; Roswall, J.; Bergman, S.; Strandvik, B.; Dahlgren, J. Serum n-6 and n-9 Fatty Acids Correlate with Serum IGF-1 and Growth Up to 4 Months of Age in Healthy Infants. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 141–146. [Google Scholar] [CrossRef]
- Chen, D.; Li, H.; Zhao, Q.; Song, J.; Lin, C.; Yu, J. Effect of risperidone treatment on insulin-like growth factor-1 and interleukin-17 in drug naïve first-episode schizophrenia. Psychiatry Res. 2021, 297, 113717. [Google Scholar] [CrossRef]
- Bobermin, L.D.; da Silva, A.; Souza, D.O.; Quincozes-Santos, A. Differential effects of typical and atypical antipsychotics on astroglial cells in vitro. Int. J. Dev. Neurosci. 2018, 69, 1–9. [Google Scholar] [CrossRef]
- Rostoker, G.; Griuncelli, M.; Loridon, C.; Bourlet, T.; Illouz, E.; Benmaadi, A. Modulation of oxidative stress and microinflammatory status by colloids in refractory dialytic hypotension. BMC Nephrol. 2011, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, W.J.; McMillen, T.S.; Leboeuf, R.C.; Frei, B. Copper chelation by tetrathiomolybdate inhibits vascular inflammation and atherosclerotic lesion development in apolipoprotein E-deficient mice. Atherosclerosis 2012, 223, 306–3013. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Kwon, H.J.; Hong, Y.C. Low-level lead exposure and autistic behaviors in school-age children. Neurotoxicology 2016, 53, 193–200. [Google Scholar] [CrossRef] [PubMed]
- David, L.W.; Stenberg, N.; Diseth, T.H.; Helverschou, S.B.; Nyquist, C.B.; Øien, R.A.; Waehre, A. Autistic Characteristics in a Nationally Representative Clinical Sample of Adolescents Seeking Medical Gender-Affirming Treatment in Norway. Autism Dev. Disord. 2025, 55, 147–157. [Google Scholar] [CrossRef]
- Li, C.; Zhou, H.M. The role of manganese superoxide dismutase in inflammation defense. Enzyme Res. 2011, 2011, 387176. [Google Scholar] [CrossRef]
- Bianchi, A.; Bécuwe, P.; Franck, P.; Dauça, M. Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 MAPK signaling pathway in human HepG2 hepatoma cells. Free Radic Biol. Med. 2002, 32, 1132–1142. [Google Scholar] [CrossRef]
Group | Aravita (n = 13) | Awake (n = 13) | RIS-OS (n = 13) |
---|---|---|---|
Age (Years) | 14.6 ± 6.2 | 9.8 ± 2.8 | 13.4 ± 7.2 |
Sex (Male/Female) | 10: 3 | 9: 4 | 11: 2 |
ADI-R | |||
A: Social Interaction | 25.9 ± 4.0 | 11.6 ± 2.5 | 10.5 ± 3.6 |
B: Abnormal Communication | 18.4 ± 3.6 | 11.1 ± 2.8 | 9.3 ± 4.7 |
C: Repetitive Stereotyped Behavior | 13.9 ±3.9 | 8.8 ± 4.9 | 3.9 ± 4.6 |
Social Responsiveness Scale (SRS) | |||
Awareness | 15.9 ± 4.2 | 12.1 ± 3.3 | 9.9 ± 4.0 |
Cognition | 25.0 ± 5.7 | 24.3 ± 4.7 | 19.4 ± 5.3 |
Communication | 46.8 ± 1.3 | 42.7 ± 10.6 | 32.4 ±11.3 |
Motivation | 24.4 ± 7.0 | 21.4 ± 4.2 | 16.4 ± 4.8 |
Mannerisms | 23.2 ± 6.5 | 18.5 ± 5.4 | 17.0 ± 8.4 |
Total Score | 137.4 ± 28.9 | 116.8 ± 24.7 | 95.1 ± 28.5 |
Aberrant Behavior Checklist (ABC) | |||
Irritability | 13.9 ± 9,4 | 14.3 ± 7.3 | 13.2 ± 9.0 |
Social Withdrawal | 29.5 ± 7.3 | 22.2 ± 8.7 | 13.4 ±9.5 |
Stereotyped Behavior | 7.2 ± 6.2 | 6.3 ± 5.2 | 4.0 ± 4.1 |
Hyperactivity | 20.5 ± 12.2 | 23.2 ± 10.8 | 15.2 ±10.2 |
Inappropriated Speech | 5.1 ± 4.0 | 4.1 ± 2.8 | 4.1 ± 2.8 |
Total Scores | 76.3 ± 33.2 | 67.9 ± 28.6 | 50.2 ± 30.1 |
Time | Arm1 | Arm2 | Estimate | Probt | Probability | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
4 weeks | Awake | Aravita | −6.09 | 0.0004 * | −9.386 | −2.774 |
4 weeks | Awake | Ris-OS | 1.67 | 0.334 | −1.724 | 5.067 |
4 weeks | Aravita | Ris-OS | 7.75 | <0.001 * | 4.168 | 11.334 |
8 weeks | Awake | Aravita | −4.92 | 0.0004 * | −8.242 | −1.801 |
8 weeks | Awake | Ris-Os | 3.97 | 0.0022 * | 0.583 | 7.375 |
8 weeks | Aravita | Ris-Os | 8.90 | <0.001 * | 5.322 | 12.488 |
12 weeks | Awake | Aravita | −6.00 | 0.0005 * | −9.318 | −2.687 |
12 weeks | Awake | Ris-Os | 3.38 | 0.052 | −0.032 | 6.759 |
12 weeks | Aravita | Ris-Os | 9.36 | <0.001 * | 5.784 | 12.949 |
16 weeks | Awake | Aravita | −3.93 | 0.021 | −7.242 | −0.619 |
16 weeks | Awake | Ris-Os | 2.98 | 0.08 | −0.417 | 6.375 |
16 weeks | Aravita | Ris-Os | 6.95 | 0.0002 * | 3.322 | 10.487 |
Time | Arm1 | Arm2 | Estimate | Probt | Probability | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
4 weeks | Awake | Aravita | −5.110 | 0.027 * | −9.614 | 0.606 |
4 weeks | Awake | Ris-OS | −0.289 | 0.89 | −4.673 | 4.095 |
4 weeks | Aravita | Ris-OS | 4.820 | 0.04 * | 0.217 | 9.425 |
8 weeks | Awake | Aravita | −2.110 | 0.34 | −6.614 | 2.393 |
8 weeks | Awake | Ris-Os | −0.0058 | 0.98 | −4.442 | 4.325 |
8 weeks | Aravita | Ris-Os | 2.051 | 0.37 | −2.552 | 6.655 |
12 weeks | Awake | Aravita | −3.264 | 0.25 | −7.767 | 1.240 |
12 weeks | Awake | Ris-Os | 1.480 | 0.50 | −2.904 | 5.863 |
12 weeks | Aravita | Ris-Os | 4.744 | 0.046 | 0.139 | 9.348 |
16 weeks | Awake | Aravita | −1.649 | 0.47 | −6.615 | 2.855 |
16 weeks | Awake | Ris-Os | 3.018 | 0.17 | −1.366 | 7.402 |
16 weeks | Aravita | Ris-Os | 4.669 | 0.047 | 0.063 | 9.271 |
Time | Arm1 | Arm2 | Estimate | t-Value | Probt | Probability | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
8 weeks | Aravita | Awake | 1.915 | 0.981 | 0.334 | −2.054 | 5.895 |
8 weeks | Aravita | Ris-Os | 3.776 | 1.983 | 0.058 | −0.136 | 7.669 |
8 weeks | Awake | Ris-Os | 1.850 | 0.942 | 0.352 | −2.131 | 5.832 |
16 weeks | Aravira | Awake | 3.545 | 1.762 | 0.086 | −0.615 | 7.424 |
16 weeks | Aravita | Ris-Os | 0.920 | 0.480 | 0.635 | −2.983 | 4.824 |
16 weeks | Awake | Ris-Os | −2.534 | −1.294 | 0.205 | −6.516 | 1.148 |
Time | Arm1 | Arm2 | Estimate | t-Value | Probt | Probability | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
8 weeks | Aravita | Awake | −74.811 | −2.482 | 0.023 * | −137.990 | −11.630 |
8 weeks | Aravita | Ris-Os | −14.401 | −2.683 | 0.015 * | −158.850 | 34.565 |
8 weeks | Awake | Ris-Os | −89.212 | −0.622 | 0.545 | −63.367 | 34.564 |
16 weeks | Aravira | Awake | 32.061 | 1.033 | 0.316 | −32.120 | 94.242 |
16 weeks | Aravita | Ris-Os | −8.106 | −0.352 | 0.499 | 46.682 | 92.591 |
16 weeks | Awake | Ris-Os | 22.954 | 0.692 | 0.732 | −57.072 | 40.859 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yui, K.; Imataka, G. A Comparison of the Treatment Effects of a Risperidone Solution, an Equal Ratio of DHA/ARA, and a Larger Ratio of Omega-6 PUFA Added to Omega-3 PUFA: An Open-Label Clinical Trial. Curr. Issues Mol. Biol. 2025, 47, 184. https://doi.org/10.3390/cimb47030184
Yui K, Imataka G. A Comparison of the Treatment Effects of a Risperidone Solution, an Equal Ratio of DHA/ARA, and a Larger Ratio of Omega-6 PUFA Added to Omega-3 PUFA: An Open-Label Clinical Trial. Current Issues in Molecular Biology. 2025; 47(3):184. https://doi.org/10.3390/cimb47030184
Chicago/Turabian StyleYui, Kunio, and George Imataka. 2025. "A Comparison of the Treatment Effects of a Risperidone Solution, an Equal Ratio of DHA/ARA, and a Larger Ratio of Omega-6 PUFA Added to Omega-3 PUFA: An Open-Label Clinical Trial" Current Issues in Molecular Biology 47, no. 3: 184. https://doi.org/10.3390/cimb47030184
APA StyleYui, K., & Imataka, G. (2025). A Comparison of the Treatment Effects of a Risperidone Solution, an Equal Ratio of DHA/ARA, and a Larger Ratio of Omega-6 PUFA Added to Omega-3 PUFA: An Open-Label Clinical Trial. Current Issues in Molecular Biology, 47(3), 184. https://doi.org/10.3390/cimb47030184