Effect of Partial Root Drying Stress on Improvement in Tomato Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Irrigation Treatments
2.1.1. Greenhouse Experiment
2.1.2. Pot Experiment in the Incubator
2.1.3. Measurement and Analysis of Photosynthesis
2.1.4. Analysis of Osmotic Adjustment and Leaf Turgor Maintenance
2.1.5. Determination of Nitrate Reductase Activities
2.1.6. Determination of Oxidant Enzyme Activities
2.1.7. Analysis of the Expression of the Nitrate Reductase (NR1) and Stress-Related (DREB3)
2.2. Statistical Analysis
3. Results
3.1. Identification of NR1 and DREB3 Gene
3.2. Fruit Yield
3.3. Photosynthetic Activities
3.3.1. Soil-Based Experiment
3.3.2. Pot Experiment
3.4. Effects on Nitrate Reductase Activity
3.4.1. Soil-Based Experiment
3.4.2. Pot Experiment
3.5. Fruit Quality
3.6. Concentrations of Oxygen Species (O2−) and Malondialdehyde (MDA) and Proline Contents
3.6.1. Superoxide (O2−)
3.6.2. Malondialdehyde (MDA)
3.6.3. Proline
3.7. Activities of Antioxidant Enzymes
3.7.1. Super Oxide Dismutase (SOD)
3.7.2. Peroxidase (POD)
3.7.3. Catalase (CAT)
3.8. Analyses of the P-V Curve and Osmotic Adjustment
3.8.1. Osmotic Adjustment
3.8.2. Cell Water Compartments
3.9. Expressions of the Nitrate Reductase Gene and the Dehydration-Responsive Element-Binding Protein Gene
3.9.1. Expression of the Nitrate Reductase Gene
3.9.2. Expressions of the Dehydration-Responsive Element-Binding Protein Gene
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.L.; Bai, J.F.; Kawabata, S.; Chang, T.T. Applications of Xerophytophysiology and Signal Transduction in Plant Production—Flower Qualities in Eustoma grandiflorum Were Improved by Sub-Irrigation. Sustainability 2023, 15, 1578. [Google Scholar] [CrossRef]
- Düring, H.; Dry, P.R.; Botting, D.G.; Loveys, B. Effects of partial root-zone drying on grapevine vigor, yield, the composition of fruit and use of water. In Proceedings of the Ninth Australian Wine Industry Technical Conference, Adelaide, Australia, 16–19 July 1995; Winetitles: Port Adelaide Enfield, Australia, 1996; pp. 128–131. [Google Scholar]
- Xiang, M.Q.; Ding, W.S.; Wu, C.; Wang, W.J.; Ye, S.W.; Cai, C.Y.; Hu, X.; Wang, N.N.; Bai, W.Y.; Tang, X.S. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. Planta 2021, 254, 50. [Google Scholar] [CrossRef]
- Kang, G.Z.; Li, G.Z.; Xu, W.; Peng, X.Q.; Han, Q.X.; Zhu, Y.J.; Guo, T.C. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res. 2012, 11, 6066–6079. [Google Scholar] [CrossRef] [PubMed]
- Stoll, M.; Loveys, B.; Dry, P. Improving water use efficiency of irrigated horticultural crops. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Savic, S.; Stikic, R.; Srdic, M.; Savic, D.; Jovanovic, Z.; Prokic, L.J.; Zdravkovic, J. The effect of partial root drying on growth and ions content and distribution on tomato. Acta Hortic. 2004, 700, 79–82. [Google Scholar] [CrossRef]
- Mingo, D.M.; Bacon, M.A.; Davies, W.J. Non-hydraulic regulation of fruit growth in tomato plants (Lycopersicon esculentum cv. Solairo) growing in drying soil. J. Exp. Bot. 2003, 54, 1205–1212. [Google Scholar] [CrossRef]
- Liu, F.; Shahnazari, A.; Andersen, M.N.; Jacobsen, S.-E.; Jensen, C.R. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hortic. 2006, 109, 113–117. [Google Scholar] [CrossRef]
- Wang, L.; de Kroon, H.; Smits, A.J.M. Combined effects of partial root drying and patchy fertilizer placement on nutrient acquisition and growth of oilseed rape. Plant Soil. 2007, 295, 207–216. [Google Scholar] [CrossRef]
- Shao, G.-C.; Zhang, Z.-Y.; Liu, N.; Yu, S.-E.; Xing, W.-G. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci. Hortic. 2008, 119, 11–16. [Google Scholar] [CrossRef]
- Wakrim, R.; Wahbi, S.; Tahi, H.; Aganchich, B.; Serraj, R. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.). Agric. Ecosyst. Environ. 2005, 106, 275–287. [Google Scholar] [CrossRef]
- Marsal, J.; Mata, M.; Del Campo, J.; Arbones, A.; Vallverdú, X.; Girona, J.; Olivo, N. Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts. Irrig. Sci. 2008, 26, 347–356. [Google Scholar] [CrossRef]
- Souza, C.R.d.; Maroco, J.P.; Chaves, M.M.; Santos, T.; Rodriguez, A.S.; Lopes, C.; Rodrigues, M.L.; Pereira, J.S. Effects of partial root drying on the physiology and production of grapevines. Acta Horticulturae. 2004, 646, 121–126. [Google Scholar] [CrossRef]
- Kang, S.; Hu, X.; Goodwin, I.; Jerie, P. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Sci. Hortic. 2002, 92, 277–291. [Google Scholar] [CrossRef]
- Leib, B.G.; Caspari, H.W.; Redulla, C.A.; Andrews, P.K.; Jabro, J.J. Partial rootzone drying and deficit irrigation of ‘Fuji’apples in a semi-arid climate. Irrig. Sci. 2006, 24, 85–99. [Google Scholar] [CrossRef]
- Su, F.F.; Li, Y.; Liu, S.W.; Liu, Z.Y.; Nie, S.J.; Xu, Q.C.; Qin, F.F.; Li, F.L.; Lyu, D.Q.; Xu, H.L. Application of Xerophytophysiology and Signal Transduction in Plant Production: Partial Root-Zone Drying in Potato Crops. Potato Res. 2020, 63, 41–56. [Google Scholar] [CrossRef]
- Hassan, A.; Amjad, S.F.; Saleem, M.H.; Yasmin, H.; Imran, M.; Riaz, M.; Ali, Q.; Joyia, F.A.; Ahmed, S.; Ali, S. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J. Biol. Sci. 2021, 28, 4276–4290. [Google Scholar] [CrossRef] [PubMed]
- Davies, F.S.; Davies, F.S.; Albrigo, L.G. Citrus 2 (Crop Production Science in Horticulture); CABI Pub.; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Gowing, D.J.G.; Davies, W.J.; Jones, H.G. A positive root-sourced signal as an indicator of soil drying in apple, Malus x domestica Borkh. J. Exp. Bot. 1990, 41, 1535–1540. [Google Scholar] [CrossRef]
- Xu, H.L.; Xu, Q.C.; Li, F.L.; Feng, Y.Z.; Qin, F.F.; Fang, W. Applications of xerophytophysiology in plant production—LED blue light as a stimulus improved the tomato crop. Sci. Hortic. 2012, 148, 190–196. [Google Scholar] [CrossRef]
- Chattha, M.S.; Ali, Q.; Haroon, M.; Afzal, M.J.; Javed, T.; Hussain, S.; Mahmood, T.; Solanki, M.K.; Umar, A.; Abbas, W.; et al. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. Front. Plant Sci. 2022, 13, 994306. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Hussain, A.; Ali, Q.; Saleem, M.H.; Abualreesh, M.H.; Alatawi, A.; Ali, S.; Munis, M.F.H. Disease Severity, Resistance Analysis, and Expression Profiling of Pathogenesis-Related Protein Genes after the Inoculation of Fusarium equiseti in Wheat. Agronomy 2021, 11, 2124. [Google Scholar] [CrossRef]
- Ali, S.; Shakoor, A.; AliI, Q.; Chattha, M.S.; EL-SHEIKH, M.A.; Ali, S. Oxidative Stress Alleviation as Indicated by Enzymatic and Nonenzymatic Antioxidants and Osmoregulators in Barley (Hordeum vulgare L.) under Salt (Nacl) Stress by Ascorbic Acid (AsA). Pak. J. Bot. 2021, 54. [Google Scholar] [CrossRef]
- Tadashi, T.; Sadao, S. Distribution and Classification of Volcanic Ash Soils. Glob. Environ. Res. Engl. Ed. 2002, 6, 83–98. [Google Scholar]
- Hanxi, W.; Jianling, X.; Xuejun, L.; Di, Z.; Longwei, L.; Wei, L.; Lianxi, S. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar]
- Sophia, A.E.; Abdellatif, A.L.; Laila, I.; Caterina, M.; Salvatore, C.; Aziz, A. A sensitive method for the determination of Sulfonamides in seawater samples by Solid Phase Extraction and UV–Visible spectrophotometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 181, 276–285. [Google Scholar]
- Beyer, W.F., Jr.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, D.; Verma, A.K.; Datta, S.K. Oxidative stress and antioxidant activity as the basis of senescence in Hemerocallis (day lily) flowers. J. Hortic. For. 2009, 1, 113–119. [Google Scholar]
- Beers, R.F.; Sizer, I.W. Aspectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.M.; Mello, M.A.M.; França, S.C.; Oliveira, L.A.A.; Oliveira, O.M.M.F. Callus cell culture of Pothomorphe umbellata (L.) under stress condition leads to high content of peroxidase enzyme. Eclética Química. 2006, 31, 61–65. [Google Scholar] [CrossRef]
- Dey, S.K.; Dey, J.; Patra, S.; Pothal, D. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Brazilian J. Plant Physiol. 2007, 19, 53–60. [Google Scholar] [CrossRef]
- Bissenbaev, A.K.; Altybaeva, N.A.; Kolbaeva, G.A. Role of reactive oxygen species and antioxidant enzymes in hormone regulating programmed cell death of wheat aleurone layer. J. Cell Mol. Biol. 2007, 6, 41. [Google Scholar]
- Neilsen, J.; Constable, G. Investigation into Partial Root Zone Drying in Cotton Cropping Systems; CSIRO Division of Plant Industry and Cotton Catchment Communities Cooperative Research Centre, Locked Bag 59: Narrabri, NSW, Australia, 2006. [Google Scholar]
- Xu, H.L.; Qin, F.F.; Xu, Q.C.; Tan, J.Y.; Liu, G.M. Applications of xerophytophysiology in plant production–The potato crop improved by partial root zone drying of early season but not whole season. Sci. Hortic. 2011, 129, 528–534. [Google Scholar] [CrossRef]
- Dembinska, O.; Lalonde, S.; Saini, H.S. Evidence against the regulation of grain set by spikelet abscisic acid levels in water-stressed wheat. Plant Physiol. 1992, 100, 1599–1602. [Google Scholar] [CrossRef]
- Saini, H.S.; Westgate, M.E. Reproductive development in grain crops during drought. Adv. Agron. 1999, 68, 59–96. [Google Scholar]
- Aganchich, B.; El Antari, A.; Wahbi, S.; Tahi, H.; Wakrim, R.; Serraj, R. Fruit and oil quality of mature olive trees under partial rootzone drying. Grasasy Aceites. 2008, 59, 225–233. [Google Scholar]
- Spreer, W.; Ongprasert, S.; Hegele, M.; Wünsche, J.N.; Müller, J. Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes. Agric. Water Manag. 2009, 96, 574–584. [Google Scholar] [CrossRef]
- Mulligan, R.M.; Chory, J.; Ecker, J.R. Signaling in plants. Proc. Natl. Acad. Sci. USA 1997, 94, 2793–2795. [Google Scholar] [CrossRef] [PubMed]
- Patakas, A.; Noitsakis, B. Cell wall elasticity as a mechanism to maintain favorable water relations during leaf ontogeny in grapevines. Am. J. Enol. Vitic. 1997, 48, 352–356. [Google Scholar] [CrossRef]
- Wan, L.; Li, X.; Shi, Y.; He, F.; Jia, Y. A study on the response and on the comparison of physiological and biochemicalindexes of four Lolium perenne varieties under PEG stress. Acta Prataculturae Sin. 2010, 19, 83. [Google Scholar]
Treatment | Fruit (g pl−1) | PC Size (g) | RD (μmoL m−2 s−1) | YQ (moL moL−1) | Soluble Proteins Early (g kg−1) | Nitrogen Reductase | |
---|---|---|---|---|---|---|---|
Later (g kg−1) | Early (g kg−1) | ||||||
Zoilo seabed rainout greenhouse | |||||||
PRD + N | 3502 *** | 105.8 ** | 27.7 ** | 2.7 ** | 0.0659 ** | 6.74 ** | 7.17 *** |
PRD | 3406 ** | 101.0 ** | 24.3 * | 2.4 * | 0.0570 * | 5.96 * | 6.79 ** |
N | 3120 * | 97.1 * | 25.2 * | 2.3 * | 0.0597 * | 6.18 * | 6.36 * |
control | 2741 | 88.7 | 22.8 | 2.1 | 0.0537 | 5.64 | 5.94 |
pot experiment | |||||||
PRD + N | 0.342 * | - | 17.9 ** | 1.8 *** | 0.0415 * | 5.06 ** | 5.41 *** |
PRD | 0.321 | - | 17.2 ** | 1.7 ** | 0.0422 * | 4.08 * | 4.62 * |
N | 0.326 | - | 16.3 * | 1.6 * | 0.0361 | 4.98 ** | 4.91 ** |
Control | 0.304 | - | 15.2 | 1.4 | 0.0374 | 4.29 | 4.21 |
Treatments | Glu | Fru | Sugars | OA | VC | Ca |
---|---|---|---|---|---|---|
kg−1 | ||||||
PRD + N | 5.1 ** | 35.4 ** | 31.6 ** | 72.1 ** | 10.7 ** | 0.379 ** |
PRD | 5.7 *** | 40.0 *** | 35.7 *** | 81.5 *** | 12.1 *** | 0.432 *** |
N | 4.2 * | 27.3 * | 23.8 * | 55.2 * | 8.4 * | 0.319 * |
control | 4.8 | 31.7 | 27.8 | 64.3 | 9.0 | 0.359 |
Treatment | O2 | MDA | Proline | SOD | POD | CAT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PRD N | (μmol/g) | (μmol/g) | (μmol/g) | (μmol/g) | (μmol/g) | (μmol/g) | |||||
Later | Early | Later | Early | Later | Early | Later | Early | Later | Early | Later | |
Zoilo seabed rainout greenhouse | |||||||||||
PRD + N | 2.27 ** | 2.01 ** | 4.26 * | 4.75 ** | 4.8 * | 5.28 ** | 870 ** | 733 ** | 3819 ** | 4255 ** | 1.36 ** |
PRD | 2.57 *** | 2.29 *** | 4.38 ** | 4.96 *** | 13.9 ** | 5.87 *** | 967 *** | 815 *** | 4246 *** | 4730 *** | 1.45 *** |
N | 1.29 * | 1.85 * | 4.21 * | 4.44 * | 6.69 * | 3.64 * | 373 * | 603 * | 3528 * | 2948 * | 1.07 * |
control | 1.87 | 2.09 | 4.34 | 3.70 | 4.57 | 4.05 | 403 | 692 | 3923 | 3278 | 1.27 |
pot experiment | |||||||||||
PRD + N | 1.57 ** | 1.86 | 8.49 | 8.57 * | 7.37 * | 6.31 *** | 328 ** | 481 ** | 2856 ** | 2008 | 2.733 * |
PRD | 1.98 *** | 1.82 | 8.43 | 8.25 * | 6.92 * | 3.53 ** | 493 *** | 638 *** | 3092 *** | 2375 * | 2.987 ** |
N | 1.06 * | 1.86 | 8.60 | 7.47 | 3.25 | 2.77 * | 191 * | 426 * | 2308 * | 1908 | 0.875 |
control | 1.31 | 1.81 | 8.53 | 7.64 | 3.48 | 2.87 | 265 | 475 | 2600 | 2133 | 0.900 |
Treatment | πFT | PFT | ΨMD | πMD | PMD | πs+a | πIP | ζIP | ζsym |
---|---|---|---|---|---|---|---|---|---|
Zoilo seabed rainout greenhouse (MPa) | |||||||||
PRD + N | −0.239 | −1.011 | 0.772 | −0.964 * | −1.493 * | 0.529 ** | −0.841 | −1.278 * | 0.784 * |
PRD | −0.241 * | −1.084 * | 0.796 | 0.843 ** | −0.957 | −1.563 | 0.606 ** | −0.864 | −1.004 |
N | −0.223 | −0.901 | 0.678 | −0.975 * | −1.241 * | 0.2666 * | −0.739 * | −1.229 * | 0.839 * |
control | −0.239 | −0.932 | 0.694 | 0.693 | −0.958 | −1.316 | 0.358 | −0.769 | −1.236 |
pot experiment | |||||||||
PRD + N | −0.224 | −0.869 * | 0.645 * | −0.711 | −1.191 * | 0.481 * | −0.811 * | −1.209 * | 0.896 * |
PRD | −0.221 | −0.873 * | 0.652 * | −0.703 | −1.186 * | 0.483 * | −0.821 * | −1.212 * | 0.895 * |
N | −0.206 | −0.769 | 0.563 | −0.693 * | −1.052 | 0.359 | −0.701 | −1.117 | 0.883 |
control | −0.207 | −0.753 | 0.546 | −0.701 | −1.074 | 0.373 | −0.719 | −1.125 | 0.882 |
Treatment | ΔCosm | Soluble Sugars (g kg−1) | Nitrate | NR1 Expression | DREB3 Expression | ||||
---|---|---|---|---|---|---|---|---|---|
(osmol m−3) | Early | Later | Early | Later | Early | Later | Early | Later | |
Zoilo seabed rainout greenhouse | |||||||||
PRD + N | 414.5 ** | 45.1 ** | 530 ** | 418 ** | - | 1.70 | 2.44 ** | 2.09 * | 2.03 ** |
PRD | 444.4 ** | 75.0 *** | 599 *** | 473 *** | - | 1.11 * | 2.16 ** | 2.81 ** | 2.58 *** |
N | 369.4 * | 0.0 * | 446 * | 335 * | - | 0.86** | 0.83 * | 1.52 | 1.22 * |
control | 382.1 | 12.7 | 495 | 371 | - | 0.76 | 0.36 | 1.73 | 1.68 |
pot experiment | |||||||||
PRD + N | 356.3 * | 47.6 ** | 499 ** | 406 ** | - | 1.57 | 4.32 ** | 1.48 * | 1.85 * |
PRD | 357.9 * | 49.2 ** | 423 * | 322 * | - | 1.00 * | 1.89 * | 1.86 ** | 4.33 *** |
N | 308.7 | 0.0 * | 423 * | 322 * | - | 1.53 * | 1.51 * | 0.98 | 0.85 ** |
control | 315.3 | 6.6 | 330 | 271 | - | 0.91 | 0.27 | 1.00 | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Jing, H.; Shi, R.; Chen, M.; Wang, C.; Xu, Q.; Bai, J.; Liu, X.; Kong, M. Effect of Partial Root Drying Stress on Improvement in Tomato Production. Curr. Issues Mol. Biol. 2025, 47, 84. https://doi.org/10.3390/cimb47020084
Xu H, Jing H, Shi R, Chen M, Wang C, Xu Q, Bai J, Liu X, Kong M. Effect of Partial Root Drying Stress on Improvement in Tomato Production. Current Issues in Molecular Biology. 2025; 47(2):84. https://doi.org/10.3390/cimb47020084
Chicago/Turabian StyleXu, Huilian, Hairong Jing, Runyu Shi, Minghao Chen, Chunfang Wang, Qicong Xu, Jianfang Bai, Xiaoyong Liu, and Mengmeng Kong. 2025. "Effect of Partial Root Drying Stress on Improvement in Tomato Production" Current Issues in Molecular Biology 47, no. 2: 84. https://doi.org/10.3390/cimb47020084
APA StyleXu, H., Jing, H., Shi, R., Chen, M., Wang, C., Xu, Q., Bai, J., Liu, X., & Kong, M. (2025). Effect of Partial Root Drying Stress on Improvement in Tomato Production. Current Issues in Molecular Biology, 47(2), 84. https://doi.org/10.3390/cimb47020084