The Pathogenesis of Chronic Kidney Disease (CKD) and the Preventive and Therapeutic Effects of Natural Products
Abstract
1. Introduction
2. Methods
3. Pathogenesis
3.1. Metabolic Dysregulation
3.2. Chronic Inflammation and Oxidative Stress
3.3. Endoplasmic Reticulum Stress
3.4. Ferroptosis
4. Treatment
4.1. Flavonoids
4.2. Polyphenols
4.3. Glycosides
4.4. Polysaccharides
4.5. Alkaloids
4.6. Quinones
4.7. Terpenoids
4.8. Others
Categories | Natural Products | Herb | Model | Dose | Effects | Mechanisms | Ref. |
---|---|---|---|---|---|---|---|
Flavonoids | Quercetin | Various herbs | Cd-induced SD rats | 50, 100 mg/kg | AMPK↑, PPARA↑, CPT1↑, SREBP-1↓, TG↓; NF-κB↓, TNF-α↓, TGF-β1↓; SIRT1↑, eIF2α↓, XBP1↓, CHOP↓, GRP78↓, PERK↓, IRE1α↓, ATF6↓; SLC7A11↓, GSH↑, GPX4↑, ROS↓, MDA↓ | Improve metabolic dysregulation, anti-inflammation, inhibit endoplasmic reticulum stress, and inhibit ferroptosis | [91] |
HG-induced SV40 MES 13 cells | 5, 10, 50 μg/L | [92] | |||||
Cd-induced Wistar rats | 50 mg/kg/d | [93] | |||||
Adenine andPotassium oxonate-induced SD rats | 50, 100 mg/kg | [94] | |||||
FA/IRI-induced C57BL/6J mice | 25 mg/kg | [95] | |||||
RSL3/erastin-induced HK-2/NRK-52E cells | 20 μM | ||||||
Baicalin | Scutellaria baicalensis Georgi | db/db mice | 100 mg/kg | SIRT1↑, AMPK↑; Nrf2↑, HO-1↑, NQO1↑; NF-κB↓, MAPK↓, TGF-β↓, Smad3↓ | Improve metabolic dysregulation, anti-inflammation, antioxidative stress, and reduce fibrosis | [96] | |
HG-induced MPC-5 cells | 3, 6, 12 μM | ||||||
db/db mice | 400 mg/kg | [97] | |||||
STZ-induced SD rats | 160 mg/kg | [99] | |||||
Dihydromyricetin | Ampelopsis grossedentata (Hand. Mazz.) W. T. Wang | HFD-induced db/db mice | 500, 1000 mg/kg | IRS1↑, PI3K↓, Akt↓, mTOR↓, TGF-β1↓, Nrf2↑, HO-1↑, NQO1 | Improve metabolic dysregulation, promote autophagy, and antioxidative stress | [101] | |
STZ-induced SD rats | 100 mg/kg | [102] | |||||
HG induced NRK-52E/HEK293 cells | 1 μM | ||||||
UUO C57BL/6J mice | 500 mg/kg | [103] | |||||
TGF-β1-induced HK-2 cells | 50, 100, 200 μM | ||||||
HG-induced HMC cells | 10, 20 μM | [104] | |||||
Chrysin | Populus przewalskii Maxim. | GM-induced albino rats | 100 mg/kg | GSH↑, GPX↑, Nrf2↑, HO-1↑, NF-κB↓, RAGE↓, NLRP3↓, caspase-3↓, Bax↓, Bcl-2↑ | Antioxidative stress, anti-inflammation, and reduce apoptosis | [105] | |
Cd-induced Wistar albino rats | 25, 50 mg/kg | [106] | |||||
Fisetin | Various herbs | CIS-induced SD rats | 0.625, 1.25 mg/kg | NF-κB↓, GSH↑, NQO1↑, SOD↑, GPX4↑, ACSL4↓, COX-2↓, IL-1β↓, IL-6↓, TNF-α↓, α-SMA↓, FN↓ | Antioxidative stress, anti-inflammation, inhibit ferroptosis, reduce fibrosis | [107] | |
Adenine/UUO induced C57BL/6J mice | 50, 100 mg/kg | [108] | |||||
Adenine/TGF-β1 induced TCMK-1 cells | 20 μM | ||||||
Isoliquiritigenin | Glycyrrhiza uralensis Fisch | UUO induced C57BL/6J mice | 7.5, 30 mg/kg | SIRT1↑, NF-κB↓, NLRP3↓, IL-1β↓, IL-6↓, TNF-α↓ | Anti-inflammation | [109] | |
STZ-induced SD rats | 20 mg/kg | [110] | |||||
Polyphenols | Curcumin | Curcuma longa L. | GM-induced albino rats | 200 mg/kg | Nrf2↑, ROS↓, NF-κB↓, IL-1β↓, Bax↓, Bcl-2↑ | Antioxidative stress, anti-inflammation, and reducing apoptosis | [111] |
Hemodialysis CKD patients | 2.5 g (95% purity) post-dialysis | [112] | |||||
CKD 3–4 patients | 500 mg twice a day | [113] | |||||
Resveratrol | Reynoutria japonica Houtt | C57BLKS/J db/db mice | 20 mg/kg | SIRT1↑, PGC1a↑, PPARA↑, SREBP-1↓, Nrf2↑, HO-1↑, SOD↑, GPX↑, TNF-α↓, IL-6↓ | Improve metabolic dysregulation, antioxidative stress, and anti-inflammation | [116] | |
HFD-induced Wistar rats | 100 mg/kg | [117] | |||||
Chlorogenic acid | Ilex paraguariensis A. St.-Hil. | HFD+STZ-induced C57BL/6J mice | 50 mg/kg | Notch1↓, STAT3↓, SREBP-1c↓, CPT1↑, TGF-β1↓, Smad↓, TLR4↓, NF-κB↓, NLRP3↓, Nrf2↑, HO-1↑, SOD↑ | Improve metabolic dysregulation, antioxidative stress, anti-inflammation, and reduce fibrosis | [120] | |
HG+PA induced HK-2 cells | 20, 40, 80 μM | ||||||
IRI-induced Swiss mice | 3.5, 7, 14 mg/kg | [121] | |||||
HFD+STZ-induced Wistar rats | 10 mg/kg | [122] | |||||
HG-induced HK-2 cells | 20, 50, 100 μM | ||||||
Carnosol | Rosmarinus officinalis L. | UUO-induced C57BL/6J mice | 50 mg/kg | NOX↓, LOX↓, GSH↑, SOD↑, GRP78↓, IRE1α↓, PERK↓, ATF4↓, ATF6↓, CHOP↓, XBP1↓, eIF2α↓, NF-κB↓ | Antioxidative stress, anti-inflammation, and inhibit endoplasmic reticulum stress | [123] | |
Glycosides | Dioscin | Dioscorea nipponica Makino | UUO-induced C57BL/6J mice | 50, 100 mg/kg | NF-κB↓, IL-1β↓, NLRP3↓, MCP-1↓, IL-6↓, TNF-α↓, IL-18↓, SIRT1↑, Nrf2↑, HO-1↑, ROS↓, GSH↑, GPX4↑ | Antioxidative stress, anti-inflammation, inhibit ferroptosis | [124] |
TGF-β1-induced HK-2 cells | 3.125, 6.25, 12.5 μM | ||||||
CIS-induced HK-2/NRK-52E cells | 50,100, and 200 ng/mL | [125] | |||||
CIS-induced Wistar rats/C57BL/6J mice | 10, 20, 40 mg/kg; 10, 30, 60 mg/kg | ||||||
CIS-induced Wistar rats | 60 mg/kg | [126] | |||||
Astragaloside IV | Astragalus membranaceus (Fisch.) Bunge | db/db mice | 40 mg/kg | NLRP3↓, IL-6↓, IL-1β↓, TNF-α↓, Nrf2↑, HO-1↑, NQO1↑, SOD↑, ROS↓, GRP78↓, PERK↓, ATF4↓, CHOP↓, Bax↓, Bcl-2↑, and caspase-3↓ | Antioxidative stress, anti-inflammation, inhibit endoplasmic reticulum stress, and reduce apoptosis | [127] | |
HG-induced MPC cells | 10, 20, 40 μM | ||||||
HG-induced HK-2 cells | 10, 20, 40 μM | [128] | |||||
HFD+STZ-induced SD rats | 20, 40, 80 mg/kg | [129] | |||||
Ginsenoside Rb1 | Panax ginseng C. A. Mey. | UUO SD rats | 50 mg/kg | NOX↓, TGF-β1↓, Smad3↓, collagen I↓, FN↓, GRP78↓, eIF2α↓, CHOP↓, GPX↑, IL-6↓, TNF-α↓ | Antioxidative stress, anti-inflammation, inhibit endoplasmic reticulum stress, reduce fibrosis | [131] | |
Bavachin-induced HK-2 cells | 40 μM | [132] | |||||
CKD 2–3 patients | 500 mg/d | [133] | |||||
Polysaccharides | Astragalus polysaccharide | Astragalus membranaceus (Fisch.) Bunge. | HFD+STZ-induced SD rats | 700 mg/kg | AMPK↑, ACC↓, TLR4↓, NF-κB↓, IL-1β↓, IL-6↓, TNF-α↓ | Improve metabolic dysregulation, anti-inflammation | [134] |
STZ-induced SD rats | 200, 400, 800 mg/kg | [135] | |||||
Ginseng polysaccharide | Panax ginseng C. A. Mey. | Cr-induced ICR mice | 25, 50, 100, 200, 400 mg/kg | GSH↑, SOD↑, ROS↓, PERK↓, eIF2α↓, ATF4↓, CHOP↓, Bax↓, Bcl-2↑ | Antioxidative stress, inhibit endoplasmic reticulum stress, and reduce apoptosis | [136] | |
CIS-induced ICR mice | 200, 400 mg/kg | [137] | |||||
Refined fucose polysaccharide | Aconitum carmichaelii Debeaux | CIS-induced Kunming mice | 200, 400, 800 mg/kg | GSH↑, GPX4↑, SOD↑, MDA↓, 4-HNE↓ | Antioxidative stress, and inhibit ferroptosis | [138] | |
Alkaloids | Nuciferine | Nelumbo nucifera Gaertn. | PA-induced HK-2 cells | 10, 40 μM | AMPK↑, FAS↓, Nrf2↑, HO-1↑, TLR4↓, NF-κB↓, FPN1↑, TFR1↓, GSH↑, GPX4↑, SLC7A11↑, FN↓ | Improve metabolic dysregulation, antioxidative stress, anti-inflammation, and inhibit ferroptosis | [139] |
FA-induced C57BL/6 mice | 30 mg/kg | [140] | |||||
RSL3/erastin/FIN56 induced HK-2/HEK293T cells | 2.5, 5, 10, 20, 40 μM | ||||||
Berberine | Coptis chinensis Franch. | C57BLKS/J db/db mice | 200 mg/kg | PGC1a↑, CPT1↑, PPARA↑, ACC↓, Nrf2↑, Bcl-2↑, NF-κB↓ | Improve metabolic dysregulation, anti-inflammation, antioxidative stress, and reduce apoptosis | [141] | |
PA-induced MPC-5 cells | 0.4 μM | ||||||
Methotrexate induced male albino rats | 200 mg/kg | [142] | |||||
Boldine | Peumus boldus Molina | Two-Kidney, One-Clip induced SD rats | 50 mg/kg | OPN↓, ROS↓, TGF-β↓, α-SMA↓, collagen III, ↓, Cx43↑ | Antioxidative stress, anti-inflammation, and reducing fibrosis | [143] | |
STZ-induced SD rats | 50 mg/kg | [144] | |||||
Quinones | Emodin | Rheum palmatum L. | STZ-induced SD rats | 20, 40 mg/kg | AMPK↑, mTOR↓, Nrf2↑, NF-κB↓, PERK↓, eIF2α↓, ATF4↓, CHOP↓ | Promote autophagy, antioxidative stress, anti-inflammation, and inhibit endoplasmic reticulum stress | [145] |
adenine-induced SD rats | 100 mg/kg | [146] | |||||
KK-Ay mice | 40, 80 mg/kg | [147] | |||||
HG-induced MCP-5 cells | 20, 40 μM | ||||||
Rhein | Rheum palmatum L. | UUO SD rats | 150 mg/kg | STAT3↓, α-SMA↓, Bax↓, Bcl-2↑, TFR1↓, ACSL4↓, GSH↑, GPX4↑, ROS↓ | Antioxidative stress, inhibiting ferroptosis, and reducing apoptosis and fibrosis | [149] | |
STZ-induced C57BL/6J mice | 150 mg/kg | [150] | |||||
HG-induced MPC-5 cells | 25 μg/ml | ||||||
Tanshinone IIA | Salvia miltiorrhiza Bunge | 5/6 nephrectomy induced SD rats | 10 mg/kg | NF-κB↓, TGF-β↓, Smad↓, ROS↓, caspase-1↓, GSDMD↓, PERK↓, eIF2α↓, ATF4↓, CHOP↓, GRP78↓ | Antioxidative stress, anti-inflammation, inhibit endoplasmic reticulum stress, reduce pyroptosis | [152] | |
db/db mice | 10 mg/kg | [153] | |||||
HG-induced HRGEC cells | 20 μg/ml | ||||||
STZ-induced SD rats | 2, 4, 8 mg/kg | [154] | |||||
Terpenoids | Oleanolic acid | Olea europaea L. | HFD+STZ induced SD rats | 50, 100 mg/kg | AMPK↑, PGC1a↑, TLR4↓, NF-κB↓, SOD↑, ROS↓, PERK↓, eIF2α↓, CHOP↓, TGF-β↓, Smad↓, Bcl-2↑ | Improve metabolic dysregulation, anti-inflammation, antioxidative stress, inhibit endoplasmic reticulum stress, and reduce apoptosis | [155] |
OLETF rats | 5 μM | [156] | |||||
H2O2-induced NRK-52E cells | 8 μM | [158] | |||||
Withaferin A | Withania somnifera Dunal | UUO-induced C57BL/6J mice | 3 mg/kg/d | NF-κB↓, IL-1β↓, TGF-β↓, FN↓, eIF2α↓, ATF4↓, CHOP↓, GRP78↓ | Anti-inflammation, inhibit endoplasmic reticulum stress, reduce fibrosis | [159] | |
Ginkgolide B | Ginkgo biloba L. | C57BL/KsJ db/db mice | 200 mg/kg | FTH1↑, TFR1↓, GPX4↑, ROS↓ | Antioxidative stress and inhibit ferroptosis | [160] | |
PA+HG-induced MCP-5 cells | 20, 40, 80 μM | ||||||
Others | Sulforaphane | Brassica oleracea var. Italica Plenck | HFD+STZ induced C57BL/6J mice | 0.5 mg/kg | AMPK↑, CD36↓, SREBP-1↓, FAS↓, PGC1a↑, Nrf1↑, Nrf2↑, NQO1↑, ROS↓, GCL↑, GSH↑ | Improve metabolic dysregulation, antioxidative stress | [161] |
UUO Wistar rats | 1 mg/kg | [162] | |||||
CIS-induced LLC-PK1 cells | 1, 3, 5 μM | [163] | |||||
CIS-induced Wistar rats | 500 μg/g | ||||||
Non-dialysis CKD patients | 400 μg/d | [164] | |||||
Brazilian green propolis | Baccharis dracunculifolia DC. | Peritoneal dialysis CKD patients | 400 mg/d | NF-κB↓, TNF-α↓, IL-1β↓, Nrf2↑ | Antioxidative stress, anti-inflammation | [165] | |
Hemodialysis CKD patients | 200 mg/d | [166] | |||||
Cordyceps sinensis extract | Cordyceps sinensis (Berk.) Sacc. | HFD+STZ-induced SD rats | 1.2 g/kg | PPARA↑, FAS↓, TGF-β1↓, Smad↓, EMT↓ | Improve metabolic dysregulation, reduce fibrosis | [167] | |
5/6 nephrectomy induced SD rats | 2 g/kg | [168] | |||||
Chronic allograft nephropathy patients | 2.0 g/d | [169] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Acetyl-CoA carboxylase |
ACSL4 | Acyl-CoA synthetase long chain family member 4 |
ALB | Albumin |
AMPK | AMP-activated protein kinase |
AngII | Angiotensin II |
ATF4 | Activating transcription factor 4 |
ATF6 | Activating transcription factor 6 |
α-SMA | Alpha-smooth muscle actin |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma-2 |
BIM | Bcl-2 interacting mediator of cell death |
β2-MG | β2-microglobulin |
CHOP | C/EBP homologous protein |
ChREBP | Carbohydrate response element-binding protein |
CKD | Chronic kidney disease |
COX-2 | Cyclooxygenase-2 |
CPT1 | Carnitine palmitoyltransferase-1 |
Cx43 | Connexin43 |
ECM | Extracellular matrix |
eIF2α | Eukaryotic initiation factor 2α |
EMT | Epithelial-mesenchymal transition |
ERS | Endoplasmic reticulum stress |
ESRD | End-stage renal disease |
ESRRA | Estrogen-related receptor alpha |
FAO | Fatty acid oxidation |
FAS | Fatty acid synthase |
FFAs | Free fatty acids |
FN | Fibronectin |
FPN | Ferroportin |
FTH1 | Ferritin heavy chain 1 |
GCL | Glutamate-cysteine ligase |
GM | Gentamicin |
GPX4 | Glutathione peroxidase 4 |
GRP78 | Glucose-regulated protein 78 |
GSH | Glutathione |
GSDMD | Gasdermin D |
HMCs | Human mesangial cells |
HO-1 | Heme oxygenase-1 |
IL-18 | Interleukin-18 |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
IRE1α | Inositol-requiring enzyme 1 alpha |
IRS1 | Insulin receptor substrate-1 |
JNK | C-Jun N-terminal kinase |
KIM-1 | Kidney injury molecule-1 |
LIP | Labile iron pool |
LOX | Lipoxygenase |
LPCAT3 | Lysophosphatidylcholine acyltransferase 3 |
MCP-1 | Monocyte chemotactic protein 1 |
MDA | Malondialdehyde |
Mincle | Macrophage-inducible C-type lectin |
NF-κB | Nuclear factor kappa-B |
Notch1 | Neurogenic locus notch homolog protein 1 |
NOX | NADPH oxidase |
NQO1 | NAD(P)H:quinone oxidoreductase 1 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
OPN | Osteopontin |
OXPHOS | Oxidative phosphorylation |
PERK | Protein kinase RNA-like endoplasmic reticulum kinase |
PGC1a | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
PPARA | Peroxisome proliferator-activated receptor alpha |
POR | Cytochrome P450 oxidoreductase |
PRR | Pro-renin receptor |
PUFA | Polyunsaturated fatty acid |
PUFA-PE | Polyunsaturated fatty acid-phosphatidyl ethanolamine |
RAASi | Renin–angiotensin–aldosterone system inhibitor |
RAS | Renin–angiotensin system |
ROS | Reactive oxygen species |
SGLT2i | Sodium-glucose cotransporter-2 inhibitor |
SIRT1 | Sirtuin-1 |
SOD | Superoxide dismutase |
SREBP-1c | Sterol regulatory element-binding protein-1c |
STAT3 | Signal transducer and activator of transcription 3 |
TGF-β | Transforming growth factor-beta |
TFR1 | Transferrin receptor 1 |
TLR4 | Toll-like receptor 4 |
TNF-α | Tumor necrosis factor-alpha |
TRAF2 | TNF receptor-associated factor 2 |
UACR | Urinary albumin-to-creatinine ratio |
UAER | Urinary albumin excretion rate |
UPR | Unfolded protein response |
XBP1 | X-box binding protein 1 |
4-HNE | 4-hydroxynonenal |
References
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- GBD 2023 Kidney Failure with Replacement Therapy Collaborators. Global, regional, and national prevalence of kidney failure with replacement therapy and associated aetiologies, 1990–2023: A systematic analysis for the Global Burden of Disease Study 2023. Lancet Glob. Health 2025, 13, e1378–e1395. [Google Scholar] [CrossRef]
- de Vries, A.P.; Ruggenenti, P.; Ruan, X.Z.; Praga, M.; Cruzado, J.M.; Bajema, I.M.; D’Agati, V.D.; Lamb, H.J.; Pongrac Barlovic, D.; Hojs, R.; et al. Fatty kidney: Emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014, 2, 417–426. [Google Scholar] [CrossRef]
- Stasi, A.; Cosola, C.; Caggiano, G.; Cimmarusti, M.T.; Palieri, R.; Acquaviva, P.M.; Rana, G.; Gesualdo, L. Obesity-Related Chronic Kidney Disease: Principal Mechanisms and New Approaches in Nutritional Management. Front. Nutr. 2022, 9, 925619. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Neytchev, O.; Witasp, A.; Kublickiene, K.; Stenvinkel, P.; Shiels, P.G. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid. Redox Signal. 2021, 35, 1426–1448. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.H.; Lebeau, P.F.; Trink, J.; Uppal, N.; Lanktree, M.B.; Krepinsky, J.C.; Austin, R.C. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat. Rev. Nephrol. 2025, 21, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Luo, Y.; Yu, M.; Wang, X.; Zeng, L.; Yang, K. Targeting ferroptosis: A new therapeutic opportunity for kidney diseases. Front. Immunol. 2024, 15, 1435139. [Google Scholar] [CrossRef] [PubMed]
- Rimes-Stigare, C.; Frumento, P.; Bottai, M.; Mårtensson, J.; Martling, C.R.; Bell, M. Long-term mortality and risk factors for development of end-stage renal disease in critically ill patients with and without chronic kidney disease. Crit. Care 2015, 19, 383. [Google Scholar] [CrossRef]
- Fischer, M.J.; Hsu, J.Y.; Lora, C.M.; Ricardo, A.C.; Anderson, A.H.; Bazzano, L.; Cuevas, M.M.; Hsu, C.Y.; Kusek, J.W.; Renteria, A.; et al. CKD Progression and Mortality among Hispanics and Non-Hispanics. J. Am. Soc. Nephrol. 2016, 27, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Josa, E.; Barril, G.; Ruperto, M. Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review. Nutrients 2024, 16, 4321. [Google Scholar] [CrossRef]
- Liu, M.; Cui, C.; Chang, T.; Zhou, Q.; Cui, Y.; Zhang, S.; Liao, X. Effects and safety of Ophiocordyceps sinensis preparation in the adjuvant treatment for dialysis patients: A systematic review and meta-analysis. Front. Pharmacol. 2024, 15, 1360997. [Google Scholar] [CrossRef]
- Martini, S.; Nair, V.; Keller, B.J.; Eichinger, F.; Hawkins, J.J.; Randolph, A.; Böger, C.A.; Gadegbeku, C.A.; Fox, C.S.; Cohen, C.D.; et al. Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 2014, 25, 2559–2572. [Google Scholar] [CrossRef] [PubMed]
- Mitrofanova, A.; Merscher, S.; Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat. Rev. Nephrol. 2023, 19, 629–645. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, Z.; Hu, J.; Ding, G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024, 150, 155718. [Google Scholar] [CrossRef]
- Yamamoto, T.; Takabatake, Y.; Takahashi, A.; Kimura, T.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.Y.; Matsui, I.; Matsusaka, T.; et al. High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. J. Am. Soc. Nephrol. 2017, 28, 1534–1551. [Google Scholar] [CrossRef] [PubMed]
- Guebre-Egziabher, F.; Alix, P.M.; Koppe, L.; Pelletier, C.C.; Kalbacher, E.; Fouque, D.; Soulage, C.O. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013, 95, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Cui, H.; Wang, Y.; Ju, F.; Cai, Y.; Gang, X.; Wang, G. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed. Pharmacother. 2023, 161, 114465. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhu, Y.; Wang, S.; Liu, J.; Li, H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants 2024, 13, 1540. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Long, J.; Mise, K.; Poungavrin, N.; Lorenzi, P.L.; Mahmud, I.; Tan, L.; Saha, P.K.; Kanwar, Y.S.; Chang, B.H.; et al. The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease. J. Biol. Chem. 2023, 299, 105185. [Google Scholar] [CrossRef]
- Harley, G.; Katerelos, M.; Gleich, K.; de Souza, D.P.; Narayana, V.K.; Kemp, B.E.; Power, D.A.; Mount, P.F. Blocking AMPK signalling to acetyl-CoA carboxylase increases cisplatin-induced acute kidney injury and suppresses the benefit of metformin. Biomed. Pharmacother. 2022, 153, 113377. [Google Scholar] [CrossRef]
- Kume, S.; Uzu, T.; Araki, S.; Sugimoto, T.; Isshiki, K.; Chin-Kanasaki, M.; Sakaguchi, M.; Kubota, N.; Terauchi, Y.; Kadowaki, T.; et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol. 2007, 18, 2715–2723. [Google Scholar] [CrossRef]
- Ma, H.; Guo, X.; Cui, S.; Wu, Y.; Zhang, Y.; Shen, X.; Xie, C.; Li, J. Dephosphorylation of AMP-activated protein kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction. Kidney Int. 2022, 101, 315–330. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, G.; Ma, L.; Chen, B.; Zhang, D.; Gao, J.; Deng, S.; Chen, Y. Virgin Camellia Seed Oil Improves Glycolipid Metabolism in the Kidney of High Fat-Fed Rats through AMPK-SREBP Pathway. Nutrients 2023, 15, 4888. [Google Scholar] [CrossRef]
- Alqallaf, A.; Swan, P.; Docherty, N.G. Renal insulin resistance in type 2 diabetes mellitus and progression of chronic kidney disease: Potential pathogenic mechanisms. Expert Rev. Endocrinol. Metab. 2022, 17, 523–532. [Google Scholar] [CrossRef]
- Parvathareddy, V.P.; Wu, J.; Thomas, S.S. Insulin Resistance and Insulin Handling in Chronic Kidney Disease. Compr. Physiol. 2023, 13, 5069–5076. [Google Scholar] [CrossRef]
- Xia, W.; Pessentheiner, A.R.; Hofer, D.C.; Amor, M.; Schreiber, R.; Schoiswohl, G.; Eichmann, T.O.; Walenta, E.; Itariu, B.; Prager, G.; et al. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance. Cell Rep. 2018, 23, 1948–1961. [Google Scholar] [CrossRef] [PubMed]
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef]
- Jung, S.W.; Kim, S.M.; Kim, Y.G.; Lee, S.H.; Moon, J.Y. Uric acid and inflammation in kidney disease. Am. J. Physiol. Ren. Physiol. 2020, 318, F1327–F1340. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Dong, B.; Geng, Z.; Xu, L. Excess Uric Acid Induces Gouty Nephropathy Through Crystal Formation: A Review of Recent Insights. Front. Endocrinol. 2022, 13, 911968. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Wang, L.; Huang, Z.; Feng, Z.; Cui, S.; Fu, B.; Cai, G.; Chen, X.; Wu, D. High Concentrations of Uric Acid and Angiotensin II Act Additively to Produce Endothelial Injury. Mediat. Inflamm. 2020, 2020, 8387654. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Fu, P.; Ma, L. Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct. Target. Ther. 2023, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Chertow, G.M.; Devarajan, P.; Levin, A.; Andreoli, S.P.; Bangalore, S.; Warady, B.A. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int. Rep. 2021, 6, 1775–1787. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Esposito, E.; Attley, J.; Cuzzocrea, S. Targeting inflammation: New therapeutic approaches in chronic kidney disease (CKD). Pharmacol. Res. 2014, 81, 91–102. [Google Scholar] [CrossRef]
- Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–646. [Google Scholar] [CrossRef]
- Doke, T.; Susztak, K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 2022, 32, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Hallan, S.; Afkarian, M.; Zelnick, L.R.; Kestenbaum, B.; Sharma, S.; Saito, R.; Darshi, M.; Barding, G.; Raftery, D.; Ju, W.; et al. Metabolomics and Gene Expression Analysis Reveal Down-regulation of the Citric Acid (TCA) Cycle in Non-diabetic CKD Patients. EBioMedicine 2017, 26, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Ahn, S.H.; Choi, P.; Ko, Y.A.; Han, S.H.; Chinga, F.; Park, A.S.; Tao, J.; Sharma, K.; Pullman, J.; et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 2015, 21, 37–46. [Google Scholar] [CrossRef]
- Miguel, V.; Tituaña, J.; Herrero, J.I.; Herrero, L.; Serra, D.; Cuevas, P.; Barbas, C.; Puyol, D.R.; Márquez-Expósito, L.; Ruiz-Ortega, M.; et al. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J. Clin. Investig. 2021, 131, e140695. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.M.; Wingert, R.A. PGC-1α in Disease: Recent Renal Insights into a Versatile Metabolic Regulator. Cells 2020, 9, 2234. [Google Scholar] [CrossRef]
- Chung, K.W.; Lee, E.K.; Lee, M.K.; Oh, G.T.; Yu, B.P.; Chung, H.Y. Impairment of PPARα and the Fatty Acid Oxidation Pathway Aggravates Renal Fibrosis during Aging. J. Am. Soc. Nephrol. 2018, 29, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.N.; Knutti, D.; Brogli, K.; Uhlmann, T.; Kralli, A. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J. Biol. Chem. 2003, 278, 9013–9018. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.N.; Emter, R.; Hock, M.B.; Knutti, D.; Cardenas, J.; Podvinec, M.; Oakeley, E.J.; Kralli, A. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 6472–6477. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Zhang, X.; Agborbesong, E.; Li, X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int. J. Mol. Sci. 2021, 22, 11253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, P.; Chen, Q.; Huang, Z.; Zou, D.; Zhang, J.; Gao, X.; Lin, Z. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J. Mol. Cell Biol. 2019, 11, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, S.; Pelegrín, P. Pyroptosis and Redox Balance in Kidney Diseases. Antioxid. Redox Signal 2021, 35, 40–60. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.; Huang, E.Y.; Olzmann, J.A. Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis. Annu. Rev. Nutr. 2016, 36, 511–542. [Google Scholar] [CrossRef] [PubMed]
- Celik, C.; Lee, S.Y.T.; Yap, W.S.; Thibault, G. Endoplasmic reticulum stress and lipids in health and diseases. Prog. Lipid Res. 2023, 89, 101198. [Google Scholar] [CrossRef] [PubMed]
- Cybulsky, A.V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 2017, 13, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020, 21, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Chen, K.; Zhang, L.; Shi, W.; Zhang, Y.; Niu, S.; Jia, M.; Cong, B.; Li, Y. Endoplasmic Reticulum Stress Is Involved in Stress-Induced Hypothalamic Neuronal Injury in Rats via the PERK-ATF4-CHOP and IRE1-ASK1-JNK Pathways. Front. Cell. Neurosci. 2019, 13, 190. [Google Scholar] [CrossRef]
- Wek, R.C.; Cavener, D.R. Translational control and the unfolded protein response. Antioxid. Redox Signal 2007, 9, 2357–2371. [Google Scholar] [CrossRef]
- Donnelly, N.; Gorman, A.M.; Gupta, S.; Samali, A. The eIF2α kinases: Their structures and functions. Cell. Mol. Life Sci. 2013, 70, 3493–3511. [Google Scholar] [CrossRef]
- Yoshida, H.; Matsui, T.; Yamamoto, A.; Okada, T.; Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001, 107, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, J.; Sun, H.; Jiang, C.; Dong, Y.; Shan, Q.; Su, S.; Xie, Y.; Xu, N.; Lou, X.; et al. Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. J. Biol. Chem. 2014, 289, 30567–30577. [Google Scholar] [CrossRef]
- Lei, Y.; Yu, H.; Ding, S.; Liu, H.; Liu, C.; Fu, R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024, 10, e25937. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Davis, R.J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl. Acad. Sci. USA 2003, 100, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- McCullough, K.D.; Martindale, J.L.; Klotz, L.O.; Aw, T.Y.; Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 2001, 21, 1249–1259. [Google Scholar] [CrossRef]
- Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J. 2016, 283, 2640–2652. [Google Scholar] [CrossRef] [PubMed]
- Victor, P.; Umapathy, D.; George, L.; Juttada, U.; Ganesh, G.V.; Amin, K.N.; Viswanathan, V.; Ramkumar, K.M. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy. Cell Stress Chaperones 2021, 26, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan, H.M.; Lee, G.H.; Kim, H.R.; Chae, H.J. Endoplasmic Reticulum Stress and Associated ROS. Int. J. Mol. Sci. 2016, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Lee, A.S. Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J. Cell Physiol. 2015, 230, 1413–1420. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Naik, I.; Braunstein, Z.; Zhong, J.; Ren, B. Transcription Factor C/EBP Homologous Protein in Health and Diseases. Front. Immunol. 2017, 8, 1612. [Google Scholar] [CrossRef]
- Ferrè, S.; Deng, Y.; Huen, S.C.; Lu, C.Y.; Scherer, P.E.; Igarashi, P.; Moe, O.W. Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney Int. 2019, 96, 1359–1373. [Google Scholar] [CrossRef] [PubMed]
- Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 2003, 3, 285–296. [Google Scholar] [CrossRef]
- Kalinowski, D.S.; Richardson, D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev. 2005, 57, 547–583. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Pope, L.E.; Dixon, S.J. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 2023, 33, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Ru, Q.; Li, Y.; Chen, L.; Wu, Y.; Min, J.; Wang, F. Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduct. Target. Ther. 2024, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Kuragano, T.; Nanami, M.; Nagasawa, Y.; Hasuike, Y. Misdistribution of iron and oxidative stress in chronic kidney disease. Free Radic. Biol. Med. 2019, 133, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Kong, X.Y.; Yao, Y.; Wang, X.A.; Yang, W.; Wu, H.; Li, S.; Ding, J.W.; Yang, J. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: A narrative review. Ann. Transl. Med. 2022, 10, 368. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.; Dong, J.; Wang, R.; Bi, G.; Xu, D.; Zhang, Y.; Deng, Y.; Lin, W.; Yang, Z.; et al. HDAC3 aberration-incurred GPX4 suppression drives renal ferroptosis and AKI-CKD progression. Redox Biol. 2023, 68, 102939. [Google Scholar] [CrossRef]
- Sun, X.; Huang, N.; Li, P.; Dong, X.; Yang, J.; Zhang, X.; Zong, W.X.; Gao, S.; Xin, H. TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury. Life Sci. 2023, 321, 121608. [Google Scholar] [CrossRef]
- Li, S.; Han, Q.; Liu, C.; Wang, Y.; Liu, F.; Pan, S.; Zuo, L.; Gao, D.; Chen, K.; Feng, Q.; et al. Role of ferroptosis in chronic kidney disease. Cell Commun. Signal 2024, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Vogt, A.S.; Arsiwala, T.; Mohsen, M.; Vogel, M.; Manolova, V.; Bachmann, M.F. On Iron Metabolism and Its Regulation. Int. J. Mol. Sci. 2021, 22, 4591. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, W.; Zhang, S.; Liu, S. The cardinal roles of ferroportin and its partners in controlling cellular iron in and out. Life Sci. 2020, 258, 118135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z. Hydroxyl radical generations form the physiologically relevant Fenton-like reactions. Free Radic. Biol. Med. 2023, 208, 510–515. [Google Scholar] [CrossRef]
- Gai, Z.; Wang, T.; Visentin, M.; Kullak-Ublick, G.A.; Fu, X.; Wang, Z. Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019, 11, 722. [Google Scholar] [CrossRef]
- Li, H.; Dixon, E.E.; Wu, H.; Humphreys, B.D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 2022, 34, 1977–1998.e1979. [Google Scholar] [CrossRef]
- Kuwata, H.; Tomitsuka, Y.; Yoda, E.; Hara, S. Role of ACSL4 in the chemical-induced cell death in human proximal tubule epithelial HK-2 cells. Biosci. Rep. 2022, 42, BSR20212433. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Bi, R.; Su, Y.; Quan, F.; Lin, Y.; Yue, C.; Cui, X.; Zhao, Q.; Liu, S.; et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol. 2022, 51, 102262. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kang, R.; Tang, D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022, 289, 7038–7050. [Google Scholar] [CrossRef]
- Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 2016, 113, E4966–E4975. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Ai, Y.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J.; Zhang, Z.; Wang, X. Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids Catalyzed by the Oxidoreductases POR and CYB5R1. Mol. Cell 2021, 81, 355–369.e310. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, Y.; Hong, Y.; Zhang, Q.Y.; Wang, X.N.; Kong, L.D. Quercetin Protects against Cadmium-Induced Renal Uric Acid Transport System Alteration and Lipid Metabolism Disorder in Rats. Evid. Based Complement. Altern. Med. 2012, 2012, 548430. [Google Scholar] [CrossRef] [PubMed]
- Widowati, W.; Prahastuti, S.; Tjokropranoto, R.; Onggowidjaja, P.; Kusuma, H.S.W.; Afifah, E.; Arumwardana, S.; Maulana, M.A.; Rizal, R. Quercetin prevents chronic kidney disease on mesangial cells model by regulating inflammation, oxidative stress, and TGF-β1/SMADs pathway. PeerJ 2022, 10, e13257. [Google Scholar] [CrossRef]
- Alshammari, G.M.; Al-Qahtani, W.H.; AlFaris, N.A.; Albekairi, N.A.; Alqahtani, S.; Eid, R.; Yagoub, A.E.A.; Al-Harbi, L.N.; Yahya, M.A. Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2α. Biomed. Pharmacother. 2021, 141, 111862. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, Q.; Wang, S.; Wang, T.; Pan, L.; Wang, X.; Chi, Y.; Jin, Z. Quercetin ameliorates renal injury in hyperuricemic rats via modulating ER stress pathways. Front. Pharmacol. 2025, 16, 1660599. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Quan, F.; Cao, Q.; Lin, Y.; Yue, C.; Bi, R.; Cui, X.; Yang, H.; Yang, Y.; Birnbaumer, L.; et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2021, 28, 231–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, H.; Li, C.; Sun, W.; Chen, X.; Cao, Y.; Liu, Y.; Liu, Y.; Chen, J.; Qi, J.; et al. Gandi Capsule Improved Podocyte Lipid Metabolism of Diabetic Nephropathy Mice through SIRT1/AMPK/HNF4A Pathway. Oxid. Med. Cell. Longev. 2022, 2022, 6275505. [Google Scholar] [CrossRef]
- Ma, L.; Wu, F.; Shao, Q.; Chen, G.; Xu, L.; Lu, F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des. Dev. Ther. 2021, 15, 3207–3221. [Google Scholar] [CrossRef] [PubMed]
- Waisundara, V.Y.; Hsu, A.; Tan, B.K.; Huang, D. Baicalin improves antioxidant status of streptozotocin-induced diabetic Wistar rats. J. Agric. Food Chem. 2009, 57, 4096–4102. [Google Scholar] [CrossRef]
- Zheng, X.P.; Nie, Q.; Feng, J.; Fan, X.Y.; Jin, Y.L.; Chen, G.; Du, J.W. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol. 2020, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ma, W.; Xiao, Y.; Wu, B.; Li, X.; Liu, F.; Qiu, J.; Zhang, G. High doses of baicalin induces kidney injury and fibrosis through regulating TGF-β/Smad signaling pathway. Toxicol. Appl. Pharmacol. 2017, 333, 1–9. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, J.; Dong, L.; Dang, X.; Wang, L.; Cheng, L.; Huang, Y. Dihydromyricetin Attenuates Metabolic Syndrome And Improves Insulin Sensitivity By Upregulating Insulin Receptor Substrate-1 (Y612) Tyrosine Phosphorylation In db/db Mice. Diabetes Metab. Syndr. Obes. 2019, 12, 2237–2249. [Google Scholar] [CrossRef]
- Guo, L.; Tan, K.; Luo, Q.; Bai, X. Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy. Bosn. J. Basic Med. Sci. 2020, 20, 372–380. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, X.; Xiong, J.; Han, W.; Xiao, T.; Xu, X.; Yang, K.; Liu, C.; Jiang, W.; He, T.; et al. MicroRNA-34a Promotes Renal Fibrosis by Downregulation of Klotho in Tubular Epithelial Cells. Mol. Ther. 2019, 27, 1051–1065. [Google Scholar] [CrossRef]
- Dong, C.; Wu, G.; Li, H.; Qiao, Y.; Gao, S. Ampelopsin inhibits high glucose-induced extracellular matrix accumulation and oxidative stress in mesangial cells through activating the Nrf2/HO-1 pathway. Phytother. Res. 2020, 34, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Albukhari, T.A.; Bagadood, R.M.; Bokhari, B.T.; Filimban, W.A.; Sembawa, H.; Nasreldin, N.; Gadalla, H.E.; El-Boshy, M.E. Chrysin Attenuates Gentamicin-Induced Renal Injury in Rats Through Modulation of Oxidative Damage and Inflammation via Regulation of Nrf2/AKT and NF-kB/KIM-1 Pathways. Biomedicines 2025, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, H.; Akaras, N.; Gür, C.; Küçükler, S.; Kandemir, F.M. Beneficial effects of Chrysin on Cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene 2023, 875, 147502. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.D.; Kalvala, A.K.; Koneru, M.; Mahesh Kumar, J.; Kuncha, M.; Rachamalla, S.S.; Sistla, R. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS ONE 2014, 9, e105070. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.N.; Yang, L.T.; Liang, Y.; Guo, F.; Fu, P.; Ma, L. Fisetin ameliorates fibrotic kidney disease in mice via inhibiting ACSL4-mediated tubular ferroptosis. Acta Pharmacol. Sin. 2024, 45, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Tan, R.Z.; Li, J.C.; Liu, T.T.; Zhong, X.; Yan, Y.; Yang, J.K.; Lin, X.; Fan, J.M.; Wang, L. Isoliquiritigenin Attenuates UUO-Induced Renal Inflammation and Fibrosis by Inhibiting Mincle/Syk/NF-Kappa B Signaling Pathway. Drug Des. Dev. Ther. 2020, 14, 1455–1468. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.; Zaitone, S.A.; Said, E.; El-Sherbiny, M.; Ajwah, S.; Alsharif, S.Y.; Elsherbiny, N.M. Protective effect of isoliquiritigenin on experimental diabetic nephropathy in rats: Impact on Sirt-1/NFκB balance and NLRP3 expression. Int. Immunopharmacol. 2020, 87, 106813. [Google Scholar] [CrossRef]
- Hamdy, S.; Elshopakey, G.E.; Risha, E.F.; Rezk, S.; Ateya, A.I.; Abdelhamid, F.M. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem. Toxicol. 2024, 183, 114323. [Google Scholar] [CrossRef]
- Alvarenga, L.; Salarolli, R.; Cardozo, L.; Santos, R.S.; de Brito, J.S.; Kemp, J.A.; Reis, D.; de Paiva, B.R.; Stenvinkel, P.; Lindholm, B.; et al. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin. Nutr. 2020, 39, 3594–3600. [Google Scholar] [CrossRef]
- Pivari, F.; Mingione, A.; Piazzini, G.; Ceccarani, C.; Ottaviano, E.; Brasacchio, C.; Dei Cas, M.; Vischi, M.; Cozzolino, M.G.; Fogagnolo, P.; et al. Curcumin Supplementation (Meriva(®)) Modulates Inflammation, Lipid Peroxidation and Gut Microbiota Composition in Chronic Kidney Disease. Nutrients 2022, 14, 231. [Google Scholar] [CrossRef]
- He, X.; Li, G.; Chen, Y.; Xiao, Q.; Yu, X.; Yu, X.; Lu, X.; Xiang, Z. Pharmacokinetics and Pharmacodynamics of the Combination of Rhein and Curcumin in the Treatment of Chronic Kidney Disease in Rats. Front. Pharmacol. 2020, 11, 573118. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jo, C.; Choi, H.Y.; Lee, K. Effect of Co-Administration of Curcumin with Amlodipine in Hypertension. Nutrients 2021, 13, 2797. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lim, J.H.; Youn, H.H.; Hong, Y.A.; Yang, K.S.; Park, H.S.; Chung, S.; Ko, S.H.; Shin, S.J.; Choi, B.S.; et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 2013, 56, 204–217, Erratum in Diabetologia 2013, 56, 681. [Google Scholar] [CrossRef]
- Chowdhury, F.I.; Yasmin, T.; Akter, R.; Islam, M.N.; Hossain, M.M.; Khan, F.; Aldhahrani, A.; Soliman, M.M.; Subhan, N.; Haque, M.A.; et al. Resveratrol treatment modulates several antioxidant and anti-inflammatory genes expression and ameliorated oxidative stress mediated fibrosis in the kidneys of high-fat diet-fed rats. Saudi Pharm. J. 2022, 30, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, L.N.; Zakaraya, Z.; Hailat, M.; Abu Dayyih, W.; Daoud, E.; Abed, A.; Saadh, M.J.; Majeed, B.; Abumansour, H.; Aburumman, A.; et al. Anti-diabetic effect of cotreatment with resveratrol and pioglitazone in diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Meinhart, A.D.; Damin, F.M.; Caldeirão, L.; da Silveira, T.F.F.; Filho, J.T.; Godoy, H.T. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res. Int. 2017, 99, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Jiang, D.; Wang, Y.Z.; Duan, M.Y.; Huang, Y.W.; Wang, X.J.; Xiang, Z.M.; Sheng, J.; Zhu, Q.Q. Chlorogenic acid alleviates renal fibrosis by reducing lipid accumulation in diabetic kidney disease through suppressing the Notch1 and Stat3 signaling pathway. Ren. Fail. 2024, 46, 2371988. [Google Scholar] [CrossRef]
- Arfian, N.; Wahyudi, D.A.P.; Zulfatina, I.B.; Citta, A.N.; Anggorowati, N.; Multazam, A.; Romi, M.M.; Sari, D.C.R. Chlorogenic Acid Attenuates Kidney Ischemic/Reperfusion Injury via Reducing Inflammation, Tubular Injury, and Myofibroblast Formation. Biomed. Res. Int. 2019, 2019, 5423703. [Google Scholar] [CrossRef]
- Bao, L.; Gong, Y.; Xu, W.; Dao, J.; Rao, J.; Yang, H. Chlorogenic acid inhibits NLRP3 inflammasome activation through Nrf2 activation in diabetic nephropathy. PLoS ONE 2025, 20, e0316615. [Google Scholar] [CrossRef]
- Park, J.H.; Leem, J.; Lee, S.J. Protective Effects of Carnosol on Renal Interstitial Fibrosis in a Murine Model of Unilateral Ureteral Obstruction. Antioxidants 2022, 11, 2341. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Ma, G.; Wu, C.; Zhu, W.; Sun, P.; Lu, W.; Yang, X.; Zhang, Y.; Liu, N.; et al. Mechanism of dioscin ameliorating renal fibrosis through NF-κB signaling pathway-mediated inflammatory response. Mol. Med. Rep. 2023, 27, 93. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, X.; Yin, L.; Xu, L.; Xu, Y.; Qi, Y.; Han, X.; Song, S.; Zhao, Y.; Lin, Y.; et al. Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway. Br. J. Pharmacol. 2017, 174, 2512–2527, Erratum in Br. J. Pharmacol. 2019, 176, 4787. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, Y.; Jin, S.; Fu, Y.; Liu, Y. Dioscin Protects against Cisplatin-Induced Acute Kidney Injury by Reducing Ferroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling. Antioxidants 2022, 11, 2443. [Google Scholar] [CrossRef]
- Feng, H.; Zhu, X.; Tang, Y.; Fu, S.; Kong, B.; Liu, X. Astragaloside IV ameliorates diabetic nephropathy in db/db mice by inhibiting NLRP3 inflammasome-mediated inflammation. Int. J. Mol. Med. 2021, 48, 164. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, H.M. Astragaloside IV ameliorates high glucose-induced HK-2 cell apoptosis and oxidative stress by regulating the Nrf2/ARE signaling pathway. Exp. Ther. Med. 2019, 17, 4409–4416. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Su, Y.; Chen, Q.; Ma, K.; Ji, T.; Wang, Z.; Li, W.; Li, W. Protective effects of Astragaloside IV on endoplasmic reticulum stress-induced renal tubular epithelial cells apoptosis in type 2 diabetic nephropathy rats. Biomed. Pharmacother. 2019, 109, 84–92. [Google Scholar] [CrossRef]
- Zhan, H.; Han, P.; Wang, M.; Wang, Y.; Weng, W.; Yu, X.; Yuan, C.; Li, Y.; Shao, M.; Sun, H. Combination of astragaloside IV and ACEi ameliorates renal injuries in db/db mice. Int. J. Clin. Exp. Pathol. 2020, 13, 827–836. [Google Scholar]
- Xie, X.S.; Liu, H.C.; Yang, M.; Zuo, C.; Deng, Y.; Fan, J.M. Ginsenoside Rb1, a panoxadiol saponin against oxidative damage and renal interstitial fibrosis in rats with unilateral ureteral obstruction. Chin. J. Integr. Med. 2009, 15, 133–140. [Google Scholar] [CrossRef]
- Ni, Y.H.; Deng, H.F.; Zhou, L.; Huang, C.S.; Wang, N.N.; Yue, L.X.; Li, G.F.; Yu, H.J.; Zhou, W.; Gao, Y. Ginsenoside Rb1 Ameliorated Bavachin-Induced Renal Fibrosis via Suppressing Bip/eIF2α/CHOP Signaling-Mediated EMT. Front. Pharmacol. 2022, 13, 872474. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lu, Q.; Wu, J.; Li, Y.; Sun, J. Impact of extended ginsenoside Rb1 on early chronic kidney disease: A randomized, placebo-controlled study. Inflammopharmacology 2017, 25, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Mao, X.Q.; Wang, N.; Liu, J.; Ou-Yang, J.P. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK. Acta Pharmacol. Sin. 2009, 30, 1607–1615. [Google Scholar] [CrossRef]
- Guo, M.; Gao, J.; Jiang, L.; Dai, Y. Astragalus Polysaccharide Ameliorates Renal Inflammatory Responses in a Diabetic Nephropathy by Suppressing the TLR4/NF-κB Pathway. Drug Des. Dev. Ther. 2023, 17, 2107–2118. [Google Scholar] [CrossRef]
- Jing, B.; Wei, M.; Chen, H.; Xie, W.; An, S.; Li, J.; Wang, S.; Zhou, X. Pharmacodynamic Evaluation and Mechanism of Ginseng Polysaccharide against Nephrotoxicity Induced by Hexavalent Chromium. Nutrients 2024, 16, 1416. [Google Scholar] [CrossRef]
- Wei, X.M.; Jiang, S.; Li, S.S.; Sun, Y.S.; Wang, S.H.; Liu, W.C.; Wang, Z.; Wang, Y.P.; Zhang, R.; Li, W. Endoplasmic Reticulum Stress-Activated PERK-eIF2α-ATF4 Signaling Pathway is Involved in the Ameliorative Effects of Ginseng Polysaccharides against Cisplatin-Induced Nephrotoxicity in Mice. ACS Omega 2021, 6, 8958–8966. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wang, L.; Dong, Z.; Wang, X.; Qin, X.; Wang, C.; Wang, J.; Huang, Q. Preparation, structural characterization, antioxidant activity and protection against cisplatin-induced acute kidney injury by polysaccharides from the lateral root of Aconitum carmichaelii. Front. Pharmacol. 2022, 13, 1002774. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Si, F.; Hao, R.; Zheng, J.; Zhang, C. Nuciferine Protects against Obesity-Induced Nephrotoxicity through Its Hypolipidemic, Anti-Inflammatory, and Antioxidant Effects. J. Agric. Food Chem. 2023, 71, 18769–18779. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, B.; Fan, Y.; Liu, M.; Han, B.; Meng, Y.; Xu, X.; Song, Z.; Liu, X.; Hao, Q.; et al. Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis. Br. J. Pharmacol. 2021, 178, 1182–1199, Erratum in Br. J. Pharmacol. 2022, 179, 2313–2317. [Google Scholar] [CrossRef]
- Qin, X.; Jiang, M.; Zhao, Y.; Gong, J.; Su, H.; Yuan, F.; Fang, K.; Yuan, X.; Yu, X.; Dong, H.; et al. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis. Br. J. Pharmacol. 2020, 177, 3646–3661. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Shalkami, A.S.; Khalaf, M.M.; Mohamed, W.R.; Cai, Y.; Hemeida, R.A.M. The impact of Keap1/Nrf2, P(38)MAPK/NF-κB and Bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity. Biomed. Pharmacother. 2019, 109, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.I.; Velarde, V. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β. Int. J. Mol. Sci. 2018, 19, 1864. [Google Scholar] [CrossRef]
- Hernández-Salinas, R.; Vielma, A.Z.; Arismendi, M.N.; Boric, M.P.; Sáez, J.C.; Velarde, V. Boldine prevents renal alterations in diabetic rats. J. Diabetes Res. 2013, 2013, 593672. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.; Shi, G.; Yang, W.; Zhang, Y.; Chen, W.; Wan, S.; Xiong, F.; Wang, Z. Emodin Ameliorates Renal Damage and Podocyte Injury in a Rat Model of Diabetic Nephropathy via Regulating AMPK/mTOR-Mediated Autophagy Signaling Pathway. Diabetes Metab. Syndr. Obes. 2021, 14, 1253–1266. [Google Scholar] [CrossRef]
- Luo, L.P.; Suo, P.; Ren, L.L.; Liu, H.J.; Zhang, Y.; Zhao, Y.Y. Shenkang Injection and Its Three Anthraquinones Ameliorates Renal Fibrosis by Simultaneous Targeting IƙB/NF-ƙB and Keap1/Nrf2 Signaling Pathways. Front. Pharmacol. 2021, 12, 800522. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Gao, Y.; Wang, X.; Wu, X.; Zou, D.; Zhu, Z.; Han, Z.; Wang, T.; Shi, Y. Emodin mitigates podocytes apoptosis induced by endoplasmic reticulum stress through the inhibition of the PERK pathway in diabetic nephropathy. Drug Des. Devel Ther. 2018, 12, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of EMODIN (CAS NO. 518-82-1) Feed Studies in F344/N Rats and B6C3F1 Mice. Natl. Toxicol. Program. Tech. Rep. Ser. 2001, 493, 1–278. [Google Scholar]
- Chen, Y.; Mu, L.; Xing, L.; Li, S.; Fu, S. Rhein alleviates renal interstitial fibrosis by inhibiting tubular cell apoptosis in rats. Biol. Res. 2019, 52, 50. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Hu, W.; Han, X.; Cai, Y. Rhein Inhibited Ferroptosis and EMT to Attenuate Diabetic Nephropathy by Regulating the Rac1/NOX1/β-Catenin Axis. Front. Biosci. 2023, 28, 100. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.F.; Huang, W.Y.; Li, Y.Q.; Luo, Y.; Jiang, Q.; Liang, Y.S.; Zhu, Z.W.; Wang, P.; Meng, X.L. Mechanism of rhein on renal toxicity of mice. Chin. J. Exp. Tradit. Med. Formulae 2019, 25, 54–59. [Google Scholar] [CrossRef]
- Wang, D.T.; Huang, R.H.; Cheng, X.; Zhang, Z.H.; Yang, Y.J.; Lin, X. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats. Int. Immunopharmacol. 2015, 26, 4–12. [Google Scholar] [CrossRef]
- Wu, Q.; Guan, Y.B.; Zhang, K.J.; Li, L.; Zhou, Y. Tanshinone IIA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis. J. Ethnopharmacol. 2023, 316, 116667. [Google Scholar] [CrossRef]
- Xu, S.; He, L.; Ding, K.; Zhang, L.; Xu, X.; Wang, S.; Qian, X. Tanshinone IIA Ameliorates Streptozotocin-Induced Diabetic Nephropathy, Partly by Attenuating PERK Pathway-Induced Fibrosis. Drug Des. Dev. Ther. 2020, 14, 5773–5782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Z.; Xing, H.; Kang, L.; Chen, X.; Liu, B.; Niu, K. Renoprotective effects of oleanolic acid and its possible mechanisms in rats with diabetic kidney disease. Biochem. Biophys. Res. Commun. 2022, 636, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Kim, H.M.; Kang, J.S.; Lee, E.Y.; Yadav, D.; Kwon, M.H.; Kim, Y.M.; Kim, H.S.; Chung, C.H. Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol. Dial. Transplant. 2016, 31, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Mukundwa, A.; Mukaratirwa, S.; Masola, B. Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. J. Diabetes 2016, 8, 98–108. [Google Scholar] [CrossRef]
- Chen, Q.; Xiao, D.; Wang, Y.; Zhang, Z.; Lin, X.; Ji, Q.; Han, Y.; Yu, L.; Xu, J. Neutrophil-Mimetic oleanolic acid-loaded Liposomes targeted to alleviate oxidative stress for renal ischemia-reperfusion injury treatment. Int. J. Pharm. X 2025, 9, 100344. [Google Scholar] [CrossRef]
- Chen, C.M.; Chung, Y.P.; Liu, C.H.; Huang, K.T.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. Withaferin A protects against endoplasmic reticulum stress-associated apoptosis, inflammation, and fibrosis in the kidney of a mouse model of unilateral ureteral obstruction. Phytomedicine 2020, 79, 153352. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ou, Z.; Gao, T.; Yang, Y.; Shu, A.; Xu, H.; Chen, Y.; Lv, Z. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomed. Pharmacother. 2022, 156, 113953. [Google Scholar] [CrossRef]
- Li, Z.; Guo, H.; Li, J.; Ma, T.; Zhou, S.; Zhang, Z.; Miao, L.; Cai, L. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin. Sci. 2020, 134, 2469–2487. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Aparicio-Trejo, O.E.; Tapia, E.; Sánchez-Lozada, L.G.; García-Arroyo, F.E.; Amador-Martínez, I.; Orozco-Ibarra, M.; Fernández-Valverde, F.; Pedraza-Chaverri, J. Sulforaphane Protects against Unilateral Ureteral Obstruction-Induced Renal Damage in Rats by Alleviating Mitochondrial and Lipid Metabolism Impairment. Antioxidants 2022, 11, 1854. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Beltrán, C.E.; Calderón-Oliver, M.; Martínez-Abundis, E.; Tapia, E.; Zarco-Márquez, G.; Zazueta, C.; Pedraza-Chaverri, J. Protective effect of sulforaphane against cisplatin-induced mitochondrial alterations and impairment in the activity of NAD(P)H: Quinone oxidoreductase 1 and γ glutamyl cysteine ligase: Studies in mitochondria isolated from rat kidney and in LLC-PK1 cells. Toxicol. Lett. 2010, 199, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Alvarenga, L.; Coutinho-Wolino, K.S.; Nakao, L.S.; Cardozo, L.F.; Mafra, D. Sulforaphane upregulates the mRNA expression of NRF2 and NQO1 in non-dialysis patients with chronic kidney disease. Free Radic. Biol. Med. 2024, 221, 181–187. [Google Scholar] [CrossRef]
- Baptista, B.G.; Fanton, S.; Ribeiro, M.; Cardozo, L.F.; Regis, B.; Alvarenga, L.; Ribeiro-Alves, M.; Berretta, A.A.; Shiels, P.G.; Mafra, D. The effect of Brazilian Green Propolis extract on inflammation in patients with chronic kidney disease on peritoneal dialysis: A randomised double-blind controlled clinical trial. Phytomedicine 2023, 114, 154731. [Google Scholar] [CrossRef]
- Duarte Silveira, M.A.; Malta-Santos, H.; Rebouças-Silva, J.; Teles, F.; Batista Dos Santos Galvão, E.; Pinto de Souza, S.; Dantas Dutra, F.R.; Dantas Gomes, M.M.; Teixeira, M.B.; Miranda Rebelo da Conceição, L.F.; et al. Effects of Standardized Brazilian Green Propolis Extract (EPP-AF®) on Inflammation in Haemodialysis Patients: A Clinical Trial. Int. J. Nephrol. 2022, 2022, 1035475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xiao, X.; Li, M.; Yu, M.; Ping, F. Bailing capsule (Cordyceps sinensis) ameliorates renal triglyceride accumulation through the PPARα pathway in diabetic rats. Front. Pharmacol. 2022, 13, 915592. [Google Scholar] [CrossRef]
- Pan, M.M.; Zhang, M.H.; Ni, H.F.; Chen, J.F.; Xu, M.; Phillips, A.O.; Liu, B.C. Inhibition of TGF-β1/Smad signal pathway is involved in the effect of Cordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats. Food Chem. Toxicol. 2013, 58, 487–494. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhang, Y.; Ye, G. Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy. Urol. Int. 2011, 86, 298–301. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Tong, Y. The Pathogenesis of Chronic Kidney Disease (CKD) and the Preventive and Therapeutic Effects of Natural Products. Curr. Issues Mol. Biol. 2025, 47, 853. https://doi.org/10.3390/cimb47100853
Dong Y, Tong Y. The Pathogenesis of Chronic Kidney Disease (CKD) and the Preventive and Therapeutic Effects of Natural Products. Current Issues in Molecular Biology. 2025; 47(10):853. https://doi.org/10.3390/cimb47100853
Chicago/Turabian StyleDong, Yuxin, and Yanqing Tong. 2025. "The Pathogenesis of Chronic Kidney Disease (CKD) and the Preventive and Therapeutic Effects of Natural Products" Current Issues in Molecular Biology 47, no. 10: 853. https://doi.org/10.3390/cimb47100853
APA StyleDong, Y., & Tong, Y. (2025). The Pathogenesis of Chronic Kidney Disease (CKD) and the Preventive and Therapeutic Effects of Natural Products. Current Issues in Molecular Biology, 47(10), 853. https://doi.org/10.3390/cimb47100853