Epigenetic Factors in Pathogenesis of Retinoblastoma: DNA Methylation and Histone Acetylation
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Eligibility Criteria
2.3. Data Management
3. Results
3.1. Methylation
3.1.1. Tumor Suppressive Molecules Affected
3.1.2. Oncogenic Molecules Affected
3.2. Acetylation
3.2.1. Histone Acetyltransferase (HAT)-Mediated Activation
3.2.2. Histone Deacetylase (HDAC)-Dependent Oncogenic Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Li, X.; Sun, Q.; Luan, F.; Feng, J. Molecular Biological Research on the Pathogenic Mechanism of Retinoblastoma. Curr. Issues Mol. Biol. 2024, 46, 5307–5321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, L.; Tong, Y.; Ho, B.M.; Li, J.; Chan, H.Y.E.; Zhang, T.; Du, L.; He, J.N.; Chen, L.J.; Tham, C.C.; et al. Etiology including epigenetic defects of retinoblastoma. Asia Pac. J. Ophthalmol. 2024, 13, 100072. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M.; Stiller, C.A.; Draper, G.J.; Bieber, C.A. The international incidence of childhood cancer. Int. J. Cancer 1988, 42, 511–520. [Google Scholar] [CrossRef]
- Fabian, I.D.; Onadim, Z.; Karaa, E.; Duncan, C.; Chowdhury, T.; Scheimberg, I.; Ohnuma, S.-I.; Reddy, M.A.; Sagoo, M.S. The management of retinoblastoma. Oncogene 2018, 37, 1551–1560. [Google Scholar] [CrossRef]
- Janic, A.; Vincent, A.; Stinson, J.; Dimaras, H. Values of Retinoblastoma Survivors and Parents Regarding Treatment Outcomes: A Qualitative Study. JCO Oncol. Pract. 2022, 18, e1000–e1015. [Google Scholar] [CrossRef]
- Sun, J.; Xi, H.Y.; Shao, Q.; Liu, Q.H. Biomarkers in retinoblastoma. Int. J. Ophthalmol. 2020, 13, 325–341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryl, T.; Afanasyeva, E.; Hartmann, T.; Schwermer, M.; Schneider, M.; Schröder, C.; Wagemanns, M.; Bister, A.; Kanber, D.; Steenpass, L.; et al. Author Correction: A MYCN-driven de-differentiation profile identifies a subgroup of aggressive retinoblastoma. Commun. Biol. 2024, 7, 1119, Erratum in Commun. Biol. 2024, 7, 919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silvera, V.M.; Guerin, J.B.; Brinjikji, W.; Dalvin, L.A. Retinoblastoma: What the Neuroradiologist Needs to Know. AJNR Am. J. Neuroradiol. 2021, 42, 618–626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berry, J.L.; Pike, S.; Rajagopalan, A.; Reid, M.W.; Fabian, I.D.; Global Retinoblastoma Study Group. Retinoblastoma Outcomes in the Americas: A Prospective Analysis of 491 Children With Retinoblastoma From 23 American Countries. Am. J. Ophthalmol. 2024, 260, 91–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiss, A.; Wilson, M.W.; Wime, A.D.C.; Wiwatwongwana, A.; Wiwatwongwana, D.; Wolley Dod, C.; Wongwai, P.; Xiang, D.; Xiao, Y.; Yam, J.C.; et al. Global Retinoblastoma Presentation and Analysis by National Income Level. JAMA Oncol. 2020, 6, 685–695, Erratum in JAMA Oncol. 2020, 6, 1815. [Google Scholar] [CrossRef] [PubMed]
- Ancona-Lezama, D.; Dalvin, L.A.; Shields, C.L. Modern treatment of retinoblastoma: A 2020 review. Indian J. Ophthalmol. 2020, 68, 2356–2365. [Google Scholar] [CrossRef]
- Schlüter, S.; Bornfeld, N.; Valiyev, E.; Flühs, D.; Stuschke, M.; Bechrakis, N.E.; Kiefer, T.; Ketteler, P.; Göricke, S.; Biewald, E.M. Combination of Brachytherapy and Intravitreal Chemotherapy in the Treatment of Retinoblastoma with Vitreous Seeding. Ocul. Oncol. Pathol. 2022, 8, 64–70. [Google Scholar] [CrossRef]
- Martínez-Sánchez, M.; Hernandez-Monge, J.; Rangel, M.; Olivares-Illana, V. Retinoblastoma: From discovery to clinical management. FEBS J. 2022, 289, 4371–4382. [Google Scholar] [CrossRef] [PubMed]
- Fabian, I.D.; Reddy, A.; Sagoo, M.S. Classification and staging of retinoblastoma. Community Eye Health 2018, 31, 11–13. [Google Scholar] [PubMed] [PubMed Central]
- Maitray, A.; Khetan, V. Classification of retinoblastoma: Evolution with time and the need for uniformity. Oman. J. Ophthalmol. 2017, 10, 133–134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomar, A.S.; Finger, P.T.; Gallie, B.; Mallipatna, A.; Zhang, C.; Zhao, J.; Wilson, M.W.; Kim, J.; Khetan, V.; Ganesan, S.; et al. A Multicenter, International Collaborative Study for American Joint Committee on Cancer Staging of Retinoblastoma. Ophthalmology 2020, 127, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Li, L.; Wen, X.; Gu, X.; Zhuang, A.; Li, R.; Ye, F.; Ge, S.; Fan, X.; Fan, J.; et al. NSUN2-mediated m5 C RNA methylation dictates retinoblastoma progression through promoting PFAS mRNA stability and expression. Clin. Transl. Med. 2023, 13, e1273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, Y.; He, T.; Liu, J.; Li, Z.; Xie, F.; Chen, C.; Xing, Y. Bioinformatics analysis of multi-omics data identifying molecular biomarker candidates and epigenetically regulatory targets associated with retinoblastoma. Medicine 2020, 99, e23314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCarthy, N. Retinoblastoma: Epigenetic outcome. Nat. Rev. Cancer 2012, 12, 80. [Google Scholar] [CrossRef]
- Benavente, C.A.; Dyer, M.A. Genetics and epigenetics of human retinoblastoma. Annu. Rev. Pathol. 2015, 10, 547–562. [Google Scholar] [CrossRef]
- Raizis, A.M.; Racher, H.M.; Foucal, A.; Dimaras, H.; Gallie, B.L.; George, P.M. DNA hypermethylation/boundary control loss identified in retinoblastomas associated with genetic and epigenetic inactivation of the RB1 gene promoter. Epigenetics 2021, 16, 940–954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, M.; Li, H.; Zhang, J. RB functions as a key regulator of senescence and tumor suppression. Semin. Cancer Biol. 2025, 109, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, Ö.Ş.; Ödemiş, D.A.; Kayım, Z.Y.; Gürbüz, O.; Tunçer, Ş.B.; Kılıç, S.; Çelik, B.; Tuncer, S.; Bay, S.B.; Kebudi, R.; et al. Investigation of the methylation changes in the promoter region of RB1 gene in retinoblastoma: Unraveling the epigenetic puzzle in retinoblastoma. Pathol. Res. Pract. 2024, 253, 154939. [Google Scholar] [CrossRef] [PubMed]
- Greger, V.; Passarge, E.; Höpping, W.; Messmer, E.; Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 1989, 83, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Kanber, D.; Buiting, K.; Roos, C.; Gromoll, J.; Kaya, S.; Horsthemke, B.; Lohmann, D. The origin of the RB1 imprint. PLoS ONE 2013, 8, e81502. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Wu, H.C.; Tigli, H.; Yilmaz, E.Z.; Kebudi, R.; Santella, R.M. High levels of global genome methylation in patients with retinoblastoma. Oncol. Lett. 2020, 20, 715–723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, L.; Ma, X.; Lei, X.; Tong, J.; Wang, R. Cyclophosphamide inhibits Pax5 methylation to regulate the growth of retinoblastoma via the Notch1 pathway. Hum. Exp. Toxicol. 2021, 40 (Suppl. S12), S497–S508. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gu, B.; Zhang, J.; Xu, L.; Sun, Y. CASC8 lncRNA Promotes the Proliferation of Retinoblastoma Cells Through Downregulating miR34a Methylation. Cancer Manag. Res. 2020, 12, 13461–13467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, Q.; Wang, S.; Tan, J.; Chen, L.; Wang, J. The methylation level of TFAP2A is a potential diagnostic biomarker for retinoblastoma: An analytical validation study. PeerJ 2021, 9, e10830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Michalak, E.M.; Burr, M.L.; Bannister, A.J.; Dawson, M.A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Lisek, M.; Tomczak, J.; Swiatek, J.; Kaluza, A.; Boczek, T. Histone Deacetylases in Retinoblastoma. Int. J. Mol. Sci. 2024, 25, 6910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, N.; Chen, P.; Wang, Q.; Liang, M.; Qiu, J.; Zhou, P.; Yang, M.; Yang, P.; Wu, Y.; Han, X.; et al. Histone deacetylase inhibitors differentially regulate c-Myc expression in retinoblastoma cells. Oncol. Lett. 2020, 19, 460–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef]
- Marmorstein, R.; Zhou, M.M. Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014, 6, a018762. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Qian, X.; Zhang, F.; Tang, X.; Ju, C.; Liu, R.; Zhou, R.; Zhang, Z.; Lv, X.B.; Zhang, C.; et al. HDAC6 inhibitor WT161 induces apoptosis in retinoblastoma cells and synergistically interacts with cisplatin. Transl. Cancer Res. 2019, 8, 2759–2768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Wu, D.; Xia, F.; Xian, H.; Zhu, X.; Cui, H.; Huang, Z. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma. Biochem. Biophys. Res. Commun. 2016, 473, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Gonzalez-Gomez, P.; Bello, M.J.; Alonso, M.E.; Arjona, D.; Lomas, J.; de Campos, J.M.; Isla, A.; Rey, J.A. CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumours. Br. J. Cancer 2003, 88, 109–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marković, L.; Bukovac, A.; Varošanec, A.M.; Šlaus, N.; Pećina-Šlaus, N. Genetics in ophthalmology: Molecular blueprints of retinoblastoma. Hum. Genom. 2023, 17, 82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raos, D.; Ulamec, M.; Katusic Bojanac, A.; Bulic-Jakus, F.; Jezek, D.; Sincic, N. Epigenetically inactivated RASSF1A as a tumor biomarker. Biomol. Biomed. 2021, 21, 386–397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Queiroz, L.F.; Silva, M.S.D.M.E.; Rosman, F.C.; Rosas, S.L.B.; Souza, H.S.P.; Carvalho, M.D.G.D.C. Molecular monitoring by CDKN2A/p16INK4A and RB1 gene methylation in breast cancer. Rev. Assoc. Med. Bras. 2024, 70, e20231358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weise, A.; Dünker, N. High trefoil factor 1 (TFF1) expression in human retinoblastoma cells correlates with low growth kinetics, increased cyclin-dependent kinase (CDK) inhibitor levels and a selective down-regulation of CDK6. Histochem. Cell Biol. 2013, 139, 323–338. [Google Scholar] [CrossRef]
- Marei, H.E. Epigenetic regulators in cancer therapy and progression. NPJ Precis. Oncol. 2025, 9, 206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janostiak, R.; Torres-Sanchez, A.; Posas, F.; de Nadal, E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers 2022, 14, 1265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCabe, M.T.; Davis, J.N.; Day, M.L. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res. 2005, 65, 3624–3632. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, J.K. Chromatin regulators in retinoblastoma: Biological roles and therapeutic applications. J. Cell Physiol. 2021, 236, 2318–2332. [Google Scholar] [CrossRef]
- Asnaghi, L.; Tripathy, A.; Yang, Q.; Kaur, H.; Hanaford, A.; Yu, W.; Eberhart, C.G. Targeting Notch signaling as a novel therapy for retinoblastoma. Oncotarget 2016, 7, 70028–70044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yin, W.; Gao, F.; Zhang, S. MicroRNA-34a inhibits the proliferation and promotes the chemosensitivity of retinoblastoma cells by downregulating Notch1 expression. Mol. Med. Rep. 2020, 22, 1613–1620. [Google Scholar] [CrossRef]
- Yu, G.; Li, H.; Wang, J.; Gumireddy, K.; Li, A.; Yao, W.; Tang, K.; Xiao, W.; Hu, J.; Xiao, H.; et al. miRNA-34a suppresses cell proliferation and metastasis by targeting CD44 in human renal carcinoma cells. J. Urol. 2014, 192, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Buranjiang, G.; Mutalifu, Z.; Jin, H.; Yao, L. KIF14 affects cell cycle arrest and cell viability in cervical cancer by regulating the p27Kip1 pathway. World J. Surg. Oncol. 2022, 20, 125. [Google Scholar] [CrossRef]
- Zhong, M.; Gong, L.; Li, N.; Guan, H.; Gong, K.; Zhong, Y.; Zhu, E.; Wang, X.; Jiang, S.; Li, J.; et al. Pan-cancer analysis of kinesin family members with potential implications in prognosis and immunological role in human cancer. Front. Oncol. 2023, 13, 1179897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, C.; Wu, X.; Shen, Y.; Li, Q. KIF14 and KIF23 Promote Cell Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis of Patients with HCC. Cancer Manag. Res. 2020, 12, 13241–13257. [Google Scholar] [CrossRef]
- Shao, G.; Fan, X.; Zhang, P.; Liu, X.; Huang, L.; Ji, S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging 2021, 13, 4962–4975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Liu, H.; Zhu, D.; Dou, C.; Gang, B.; Zhang, M.; Wan, Z. Biological function, molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol. Res. 2024, 205, 107222. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, L.; Li, J.; Chen, Y.; Wang, Y.; Zhang, Y.; Dong, Z.; Xue, W.; Sun, R.; Cui, G. NSUN2 stimulates tumor progression via enhancing TIAM2 mRNA stability in pancreatic cancer. Cell Death Discov. 2023, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Zikanova, M.; Skopova, V.; Stuurman, K.E.; Baresova, V.; Souckova, O.; Hnizda, A.; Krijt, M.; Bleyer, A.J.; Zeman, J.; Kmoch, S. Phosphoribosylformylglycinamidine Synthase (PFAS) Deficiency: Clinical, Genetic and Metabolic Characterisation of a Novel Defect in Purine de Novo Synthesis. J. Inherit. Metab. Dis. 2025, 48, e70041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, P.; Huang, D. NSUN2-mediated RNA methylation: Molecular mechanisms and clinical relevance in cancer. Cell. Signal. 2024, 111, 111375. [Google Scholar] [CrossRef]
- Mao, P.; Shen, Y.; Xu, X.; Zhong, J. Comprehensive Analysis of the Immune Cell Infiltration Landscape and Immune-Related Methylation in Retinoblastoma. Front. Genet. 2022, 13, 864473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, W.D.; Melville, D.B.; Montero-Balaguer, M.; Hatzopoulos, A.K.; Knapik, E.W. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev. Biol. 2011, 360, 173–185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, T.T.; Mitchell, J.M.; Kiel, M.D.; Kenny, C.P.; Li, H.; Jones, K.L.; Cornell, R.A.; Williams, T.J.; Nichols, J.T.; Van Otterloo, E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024, 151, dev202095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, H.; Igata, T.; Etoh, K.; Koga, T.; Takebayashi, S.I.; Nakao, M. The NSD2/WHSC1/MMSET methyltransferase prevents cellular senescence-associated epigenomic remodeling. Aging Cell 2020, 19, e13173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.W.; Chae, Y.C.; Kim, J.Y.; Oh, H.; Seo, S.B. Methylation of Aurora kinase A by MMSET reduces p53 stability and regulates cell proliferation and apoptosis. Oncogene 2018, 37, 6212–6224. [Google Scholar] [CrossRef] [PubMed]
- Grigoreva, T.A.; Romanova, A.A.; Tribulovich, V.G.; Pestov, N.B.; Oganov, R.A.; Kovaleva, D.K.; Korneenko, T.V.; Barlev, N.A. p53: The Multifaceted Roles of Covalent Modifications in Cancer. Pharmaceuticals 2024, 17, 1682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murphy, D.M.; Buckley, P.G.; Bryan, K.; Das, S.; Alcock, L.; Foley, N.H.; Prenter, S.; Bray, I.; Watters, K.M.; Higgins, D.; et al. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS ONE 2009, 4, e8154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chai, P.; Jia, R.; Jia, R.; Pan, H.; Wang, S.; Ni, H.; Wang, H.; Zhou, C.; Shi, Y.; Ge, S.; et al. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis. Nucleic Acids Res. 2018, 46, 6041–6056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Luo, X.; Zhang, J. LincRNA-ROR is activated by H3K27 acetylation and induces EMT in retinoblastoma by acting as a sponge of miR-32 to activate the Notch signaling pathway. Cancer Gene Ther. 2021, 28, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ruan, H.; Dong, L.; Li, S.; Wu, Z.; Guan, M. lncRNA GAU1 Induces GALNT8 Overexpression and Potentiates Colorectal Cancer Progression. Gastroenterol. Res. Pract. 2021, 2021, 5960821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lapierre, M.; Linares, A.; Dalvai, M.; Duraffourd, C.; Bonnet, S.; Boulahtouf, A.; Rodriguez, C.; Jalaguier, S.; Assou, S.; Orsetti, B.; et al. Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget 2016, 7, 19693–19708. Available online: https://www.oncotarget.com/article/7564/text/ (accessed on 12 October 2025). [CrossRef] [PubMed]
- Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021, 277, 119504. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Benavente, C.A.; McEvoy, J.; Flores-Otero, J.; Ding, L.; Chen, X.; Ulyanov, A.; Wu, G.; Wilson, M.; Wang, J.; et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 2012, 481, 329–334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Kim, M.E.; Polski, A.; Prabakar, R.K.; Shen, L.; Peng, C.C.; Reid, M.W.; Chévez-Barrios, P.; Kim, J.W.; Shah, R.; et al. Establishing the Clinical Utility of ctDNA Analysis for Diagnosis, Prognosis, and Treatment Monitoring of Retinoblastoma: The Aqueous Humor Liquid Biopsy. Cancers 2021, 13, 1282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pasanen, A.; Loukovaara, M.; Kaikkonen, E.; Olkinuora, A.; Pylvänäinen, K.; Alhopuro, P.; Peltomäki, P.; Mecklin, J.-P.; Bützow, R. Testing for Lynch Syndrome in Endometrial Carcinoma: From Universal to Age-Selective MLH1 Methylation Analysis. Cancers 2022, 14, 1348. [Google Scholar] [CrossRef] [PubMed]
- Thériault, B.L.; Dimaras, H.; Gallie, B.L.; Corson, T.W. The genomic landscape of retinoblastoma: A review. Clin. Exp. Ophthalmol. 2014, 42, 33–52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geissler, F.; Nesic, K.; Kondrashova, O.; Dobrovic, A.; Swisher, E.M.; Scott, C.L.; Wakefield, M.J. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther. Adv. Med. Oncol. 2024, 16, 17588359231220511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herman, J.G.; Umar, A.; Polyak, K.; Graff, J.R.; Ahuja, N.; Issa, J.-P.J.; Markowitz, S.; Willson, J.K.V.; Hamilton, S.R.; Kinzler, K.W.; et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 1998, 95, 6870–6875. [Google Scholar] [CrossRef]
- Manning-Geist, B.L.; Liu, Y.L.; Devereaux, K.A.; Da Cruz Paula, A.; Zhou, Q.C.; Ma, W.; Selenica, P.; Ceyhan-Birsoy, O.; Moukarzel, L.A.; Hoang, T.; et al. Microsatellite instability-high endometrial cancers with MLH1 promoter hypermethylation have distinct molecular and clinical profiles. Clin. Cancer Res. 2022, 28, 4302–4311. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, C.M.; Cohn, D.E.; Hampel, H.; Frankel, W.L.; Jones, D.; McElroy, J.P.; Suarez, A.A.; Zhao, W.; Chenc, W.; Salani, R.; et al. Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival. Gynecol. Oncol. 2017, 146, 588–595. [Google Scholar] [CrossRef]
- Sherwani, Z.; Damast, S.; Fields, E.C.; Shah, S.; Beriwal, S.; Horne, Z.D.; Parks, E.; Kidd, E.A.; Leung, E.W.; Khoja, L.W.; et al. The prognostic impact of MLH1 promoter hypermethylation in stage I–II endometrial cancer treated with adjuvant radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120 (Suppl. S2), S32. [Google Scholar] [CrossRef]
- Craig, A.; Huang, M.; Huelsmann, E.; Chu, C.; Mantia-Smaldone, G. Evaluating the impact of epigenetics: Does MLH1 promoter hypermethylation negate stage in early endometrial cancer? Gynecol. Oncol. 2023, 176 (Suppl. S1), S82. [Google Scholar]
- Capasso, I.; Perrone, E.; Duranti, S.; Giannarelli, D.; Nero, C.; Lucci Cordisco, E.; Pomponi, M.G.; Remondini, L.; Piermattei, A.; Valente, M.; et al. Are all mismatch repair deficient endometrial cancers created equal? A large, retrospective, tertiary center experience. Eur. J. Cancer 2025, 220, 115344. [Google Scholar] [CrossRef]
- Wolde, T.; Huang, J.; Huang, P.; Pandey, V.; Qin, P. Depleted-MLH1 Expression Predicts Prognosis and Immunotherapeutic Efficacy in Uterine Corpus Endometrial Cancer: An In Silico Approach. BioMedInformatics 2024, 4, 326–346. [Google Scholar] [CrossRef]
- Helderman, N.C.; Andini, K.D.; van Leerdam, M.E.; van Hest, L.P.; Hoekman, D.R.; Ahadova, A.; Bajwa-ten Broeke, S.W.; Bosse, T.; van der Logt, E.M.J.; Imhann, F.; et al. MLH1 promotor hypermethylation in colorectal and endometrial carcinomas from patients with Lynch syndrome. J. Mol. Diagn. 2024, 26, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, X.; Yuan, Y.; Dong, C.; Yang, M. APC promoter methylation in gastrointestinal cancer. Front. Oncol. 2021, 11, 653222. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Xu, L.; Weisenberger, D.J.; Li, M.; Zhou, W.; Peng, C.C.; Stachelek, K.; Cobrinik, D.; Liang, G.; Berry, J.L. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat. Commun. 2022, 13, 5523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Lu, E.; Weisenberger, D.; Pandya, D.; Galarneau, H.; Goni, N.; Cobrinik, D.; Liang, G.; Berry, J.L. Identify DNA methylation signatures to predict chemo-resistance retinoblastoma in aqueous humor liquid biopsy. Cancer Res. 2025, 85, B016. [Google Scholar] [CrossRef]
- Muniyandi, A.; Jensen, N.R.; Devanathan, N.; Dimaras, H.; Corson, T.W. The potential of aqueous humor sampling in diagnosis, prognosis, and treatment of retinoblastoma. Invest. Ophthalmol. Vis. Sci. 2024, 65, 18. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Chijiwa, T.; Okamura, T.; Akashi, K.; Fukumaki, Y.; Niho, Y.; Sasaki, H. Expression of DNA methyltransferases DNMT1,3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001, 97, 1172–1179. [Google Scholar] [CrossRef]
- Yazici, H.; Wu, H.-C.; Tigli, H.; Akisik, E.; Kebudi, R.; Ayan, I.; Peksayar, G.; Dalay, N.; Santella, R. Genome-wide methylation levels in peripheral blood and tumor tissue of retinoblastoma patients and their healthy siblings. Cancer Res. 2007, 67 (Suppl. S9), LB-206. [Google Scholar]
- Stirzaker, C.; Millar, D.S.; Paul, C.L.; Warnecke, P.M.; Harrison, J.; Vincent, P.C.; Frommer, M.; Clark, S.J. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997, 57, 2229–2237. [Google Scholar] [PubMed]
- Carnevali, I.W.; Cini, G.; Libera, L.; Sahnane, N.; Facchi, S.; Viel, A.; Sessa, F.; Tibiletti, M.G. MLH1 Promoter Methylation Could Be the Second Hit in Lynch Syndrome Carcinogenesis. Genes 2023, 14, 2060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalachand, R.D.; Stordal, B.; Madden, S.; Chandler, B.; Cunningham, J.; Goode, E.L.; Ruscito, I.; Braicu, E.I.; Sehouli, J.; Ignatov, A.; et al. BRCA1 Promoter Methylation and Clinical Outcomes in Ovarian Cancer: An Individual Patient Data Meta-Analysis. J. Natl. Cancer Inst. 2020, 112, 1190–1203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pritchard, E.M.; Dyer, M.A.; Guy, R.K. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma. Mini. Rev. Med. Chem. 2016, 16, 430–454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaczmarek, J.V.; Bogan, C.M.; Pierce, J.M.; Tao, Y.K.; Chen, S.-C.; Liu, Q.; Liu, X.; Boyd, K.L.; Calcutt, M.W.; Bridges, T.M.; et al. Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model. Invest. Ophthalmol. Vis. Sci. 2021, 62, 8. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Wang, Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J. Natl. Cancer Cent. 2022, 2, 277–290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, J.; Song, C.; Zhan, X. The Role of Protein Acetylation in Carcinogenesis and Targeted Drug Discovery. Front. Endocrinol. 2022, 13, 972312. [Google Scholar] [CrossRef]
- Tao, L.; Zhou, Y.; Luo, Y.; Qiu, J.; Xiao, Y.; Zou, J.; Zhang, Y.; Liu, X.; Yang, X.; Gou, K.; et al. Epigenetic Regulation in Cancer Therapy: From Mechanisms to Clinical Advances. MedComm. Oncol. 2024, 3, e59. [Google Scholar] [CrossRef]
- Song, C.; Liu, X.; Lin, W.; Lai, K.; Pan, S.; Lu, Z.; Li, D.; Li, N.; Geng, Q. Systematic analysis of histone acetylation regulators across human cancers. BMC Cancer 2023, 23, 733. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Z.; Liu, J. Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer 2020, 19, 5, Erratum in Mol. Cancer 2020, 19, 55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Wang, H.; Zhan, Z.; Gan, L.; Bai, O. Mechanisms of HDACs in cancer development. Front. Immunol. 2025, 16, 1529239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, T.; Wang, F.; Elhassan, R.M.; Cheng, Y.; Tang, X.; Chen, W.; Fang, H.; Hou, X. Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm. Sin. B 2023, 13, 2425–2463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miziak, P.; Baran, M.; Borkiewicz, L.; Trombik, T.; Stepulak, A. Acetylation of Histone H3 in Cancer Progression and Prognosis. Int. J. Mol. Sci. 2024, 25, 10982. [Google Scholar] [CrossRef] [PubMed]
- Natu, A.; Verma, T.; Khade, B.; Thorat, R.; Gera, P.; Dhara, S.; Gupta, S. Histone acetylation: A key determinant of acquired cisplatin resistance in cancer. Clin. Epigenet. 2024, 16, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, M.Q.; Xu, Y.; Fu, X.; Pan, D.-S.; Lu, X.-P.; Xiao, Y. Advances in targeting histone deacetylase for treatment of solid tumors. J. Hematol. Oncol. 2024, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.D.; Kumar Halder, A.; Mukherjee, U.; Kumar, D.; Dey, Y.N.; Mogana, R. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front. Chem. 2022, 10, 948217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
# | Author Year | Population | Affected Structure | Observed Change | Result |
---|---|---|---|---|---|
[6,21] | Jie Sun et al., 2020 A M Raizis et al., 2021 | [6]. review [21]. n = 25 | CpG islands in the RB1 gene | Hypermethylation of the promoter or first exon | Decreased expression of RB1 |
[23] | Özge Şükrüoğlu Erdoğan et al., 2024 | n = 102 (50 retinoblastoma patients and 52 healthy individuals.) | RB1 promoter | Not methylated | No association between methylation of RB1 promoter and cancer |
[21] | A M Raizis et al., 2021 | n = 25 | CpGs upstream of the RB1 promoter | Hypomethylation | Decreased expression of RB1 |
[6] | Jie Sun et al., 2020 | review | tumor suppressor genes RASSF1A, p16INK4A, MGMT, TFF1 | Hypermethylation in genes or in their promoters | Decreased expression of the genes, Increased viability of retinoblastoma cells |
[26] | Hülya Yazici et al., 2020 | n = 113 (69 patients with retinoblastoma, 26 healthy siblings, 18 healthy unrelated children) | Global genome including tumor suppressor genes | Hypermethylated by DNMT1 | Inactivation of tumor suppressor genes |
[27] | Lan Jin et al., 2021 | n = 20 patients with retinoblastoma | Pax5 gene | Hypermethylated | Hyperexpression that inhibited proliferation and migration of retinoblastoma |
[28] | Bo Yang et al., 2020 | n= 62 Patients with retinoblastoma | miR34a | Hypermethylation due to CASC8 | Decreased expression that inhibits cancer growth |
[6,7] | Tatsiana Ryl et al., 2024, Jie Sun et al., 2020 | [6]. review [7]. n= 59 samples from retinoblastoma patients | TFF1 | Hypermethylated | Decreased expression, Increased viability of retinoblastoma cells |
[18] | Yuyang Zeng et al., 2020 | n= 127 (119 retinoblastoma samples, 8 healthy control samples) | KIF14, MCM6 genes | Hypermethylation | Hypermethylated genes become oncogenes |
[17] | Sipeng Zuo et al., 2023 | not mentioned | N5-methylcytosine (m5C) PFAS mRNA | High global m5C levels Overexpression of PFAS modulated by NSUN2 | Enhanced biosynthesis of purines |
[58] | Peiyao Mao et al., 2022 | n = 59 retinoblastoma samples | BIRC5 (survinin), CD83, HLA-DOA, IRF4, DOK3, and CXCR1 genes | Hypermethylated | Dysregulated expression compatible with tumorigenesis |
[29] | Qi Zeng et al., 2021 | not mentioned | CpG logi at TFAP2A, cfDNA | Hypermethylated | Dysregulated closure of neural tube |
[61] | Hiroshi Tanaka et al., 2020 | not mentioned | AURCA | Methylated | Degradation of p53 |
[7] | Tatsiana Ryl et al., 2024 | n = 59 retinoblastoma samples | bHLH transcription factor NHLH1 | Hypomethylated | Overexpression |
# | Author/Authors | Population | Affected Structure | Observed Change | Result |
---|---|---|---|---|---|
[2] | Linbin Zhou et al., 2024 | Not mentioned | GAU1/GALNT8 site, Oncogene SYK | Acetylation of histones H3K9ac and H3K27ac, Acetylation of histone H3K9/14ac | Overexpression and Oncogenesis |
[1,2] | Linbin Zhou et al., 2024 and Xiangyi Ma et al., 2024 | [1]. review [2]. not mentioned | LincRNA-ROR | Acetylation of histone H3K27 | Increased production and oncogenesis |
[1] | Xiangyi Ma et al., 2024 | review | Chr12p13.32 | Overacetylation of histones H3K4me, HEK4m3, HEK9ac and HEK27ac | Overexpression of IncRNA GAU1 and oncogene GALNT8 |
[31] | Malwina Lisek et al., 2024 | review | Cell cycle’s proteins | Interaction with HDACs | Oncogenesis |
DNA damage repair mechanism | Interaction with HDACs | Oncogenesis | |||
Rb protein | Interaction with class I HDACs Overexpression | Decreased transcription of E2F | |||
Class 3 Deacetylases | Retinoblastoma | ||||
[31,32] | Malwina Lisek et al., 2024 and Na Yu et al., 2019 | [31]. review [32]. not mentioned | Oncogene c-Myc | Interaction with HDAC 2 | Underexpression in two specific retinoblastoma cases |
[35] | Jun Sun et al., 2019 | Not mentioned | HDAC 6 | Interaction with WT161 | Retinoblastoma cell apoptosis |
[36] | Yiting Zhang et al., 2016 | n = 55 (50 retinoblastoma samples, 5 healthy controls) | HDAC 9 | Increased expression | Retinoblastoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiosis, G.; Skourtsidis, K.; Ioannou, D.; Tseriotis, V.-S.; Stergiou, K.; Akritidou, F.; Papamitsou, T.; Kourti, M.; Karachrysafi, S. Epigenetic Factors in Pathogenesis of Retinoblastoma: DNA Methylation and Histone Acetylation. Curr. Issues Mol. Biol. 2025, 47, 844. https://doi.org/10.3390/cimb47100844
Kiosis G, Skourtsidis K, Ioannou D, Tseriotis V-S, Stergiou K, Akritidou F, Papamitsou T, Kourti M, Karachrysafi S. Epigenetic Factors in Pathogenesis of Retinoblastoma: DNA Methylation and Histone Acetylation. Current Issues in Molecular Biology. 2025; 47(10):844. https://doi.org/10.3390/cimb47100844
Chicago/Turabian StyleKiosis, Georgios, Kanellos Skourtsidis, Despoina Ioannou, Vasilis-Spyridon Tseriotis, Konstantinos Stergiou, Fani Akritidou, Theodora Papamitsou, Maria Kourti, and Sofia Karachrysafi. 2025. "Epigenetic Factors in Pathogenesis of Retinoblastoma: DNA Methylation and Histone Acetylation" Current Issues in Molecular Biology 47, no. 10: 844. https://doi.org/10.3390/cimb47100844
APA StyleKiosis, G., Skourtsidis, K., Ioannou, D., Tseriotis, V.-S., Stergiou, K., Akritidou, F., Papamitsou, T., Kourti, M., & Karachrysafi, S. (2025). Epigenetic Factors in Pathogenesis of Retinoblastoma: DNA Methylation and Histone Acetylation. Current Issues in Molecular Biology, 47(10), 844. https://doi.org/10.3390/cimb47100844