Codon Usage Bias Analysis in the Chloroplast Genome of Actinostemma tenerum (Cucurbitaceae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling, DNA Extraction and Sequencing
2.2. Chloroplast Genome Assembly and Annotation
2.3. Calculation of Parameters Related to Codon Usage Bias
2.4. Neutrality Plot Analysis
2.5. ENC-Plot Analysis
2.6. PR2-Bias Plot Analysis
2.7. Identification of Optimal Codons
3. Results
3.1. Chloroplast Genome Characteristics of A. tenerum
3.2. Codon Usage Patterns
3.3. Neutrality Plot Analysis
3.4. ENC-Plot Analysis
3.5. Parity-Rule 2 (PR2) Bias Plot Analysis
3.6. Identification of Optimal Codons
4. Discussion
4.1. The Chloroplast Genome Characteristics of A. tenerum
4.2. Codon Usage Patterns and Their Drivers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corriveau, J.L.; Coleman, A.W. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am. J. Bot. 1988, 75, 1443–1458. [Google Scholar] [CrossRef]
 - Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; dePamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Method Enzymol. 2005, 395, 348–384. [Google Scholar] [CrossRef]
 - Cai, Z.-Q.; Guisinger, M.; Kim, H.-G.; Ruck, E.; Blazier, J.C.; McMurtry, V.; Kuehl, J.V.; Boore, J.; Jansen, R.K. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J. Mol. Evol. 2008, 67, 696–704. [Google Scholar] [CrossRef] [PubMed]
 - Jing, M.-L.; Bao, H.-J.; Ma, Y.-S.; Yang, X.-G. The complete chloroplast genome of Poa pratensis (Poaceae), a high-quality forage. Am. J. Plant Sci. 2021, 12, 1755–1760. [Google Scholar] [CrossRef]
 - Chen, S.-L.; Yin, X.-M.; Han, J.-P.; Sun, W.; Yao, H.; Song, J.-Y.; Li, X.-W. DNA barcoding in herbal medicine: Retrospective and prospective. J. Pharm. Anal. 2023, 13, 431–441. [Google Scholar] [CrossRef] [PubMed]
 - Li, H.-T.; Luo, Y.; Gan, L.; Ma, P.-F.; Gao, L.-M.; Yang, J.-B.; Cai, J.; Gitzendanner, M.A.; Fritsch, P.W.; Zhang, T.; et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 2021, 19, 232. [Google Scholar] [CrossRef]
 - Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
 - Kaushal, C.; Abdin, M.Z.; Kumar, S. Chloroplast genome transformation of medicinal plant Artemisia annua. Plant Biotechnol. 2020, 18, 2155–2157. [Google Scholar] [CrossRef]
 - Dobrogojski, J.; Adamiec, M.; Luciński, R. The chloroplast genome: A review. Acta Physiol. Plant. 2020, 42, 98. [Google Scholar] [CrossRef]
 - Cauz-Santos, L.A. Beyond conservation: The landscape of chloroplast genome rearrangements in angiosperms. New Phytol. 2025, 247, 2571–2580. [Google Scholar] [CrossRef]
 - Li, N.; Li, Y.; Zheng, C.; Huang, J.; Zhang, S. Genome-wide comparative analysis of the codon usage patterns in plants. Genes Genom. 2016, 38, 723–731. [Google Scholar] [CrossRef]
 - Iriarte, A.; Lamolle, G.; Musto, H. Codon usage bias: An endless tale. J. Mol. Evol. 2021, 89, 589–593. [Google Scholar] [CrossRef]
 - Xu, C.; Cai, X.-N.; Chen, Q.-Z.; Zhou, H.-X.; Cai, Y.; Ben, A.-L. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey. Evol. Bioinform. 2011, 7, 271–278. [Google Scholar] [CrossRef]
 - Romero, H.; Zavala, A.; Musto, H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucl. Acid. Res. 2000, 28, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
 - Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 2000, 16, 287–289. [Google Scholar] [CrossRef] [PubMed]
 - Lu, A.M.; Jeffrey, C. Actinostemma. In Flora of China; Wu, Z.-Y., Raven, P.H., Hong, D.-Y., Eds.; Science Press: Beijing, China, 2011; Volume 19, p. 18. [Google Scholar]
 - Iwamoto, M.; Fujioka, T.; Okabe, H.; Mihashi, K.; Yamauchi, T. Studies on the constituents of Actinostemma lobatum Maxim. I. Structures of Actinostmmosides A, B, C and D, dammarane triterpene glycosides isolated from the herb. Chem. Pharm. Bull. 1987, 35, 553–561. [Google Scholar] [CrossRef]
 - Fujioka, T.; Iwase, Y.; Okabe, H.; Mihashi, K.; Yamauchi, T. Studies on the constituents of Actinostemma lobatum Maxim. II. Structures of actinostemmosides G and H, new dammarane triterpene glycosides isolated from the herb. Chem. Pharm. Bull. 1987, 35, 3870–3873. [Google Scholar] [CrossRef]
 - Fujioka, T.; Iwamoto, M.; Iwase, Y.; Okabe, H.; Mihashi, K.; Yamauchi, T. Studies on the constituents of Actinostemma lobatum Maxim. III. Structures of actinostemmosides E and F, new baccharane-type triterpene glycosides isolated from the herb. Chem. Pharm. Bull. 1988, 36, 2772–2777. [Google Scholar] [CrossRef]
 - Fujioka, T.; Iwamoto, M.; Iwase, Y.; Hachiyama, S.; Okabe, H.; Yamauchi, T.; Mihashi, K. Studies on the constituents of Actinostemma lobatum Maxim. IV. Structures of lobatosides C, D and H, the dicrotalic acid esters of bayogenin bisdesmosides isolated from the herb. Chem. Pharm. Bull. 1989, 37, 1770–1775. [Google Scholar] [CrossRef]
 - Fujioka, T.; Iwamoto, M.; Iwase, Y.; Hachiyama, S.; Okabe, H.; Yamauchi, T.; Mihashi, K. Studies on the constituents of Actinostemma lobatum Maxim. V. Structures of lobatosides B, E, F and G, the dicrotalic acid esters of bayogenin bisdesmosides isolated from the herb. Chem. Pharm. Bull. 1989, 37, 2355–2360. [Google Scholar] [CrossRef]
 - Fujioka, T.; Nagao, T.; Okabe, H.; Mihashi, K. Studies on the constituents of Actinostemma lobatum Maxim. VI. Structures of lobatosides I, J and K, oleanolic acid and gypsogenin glycosides isolated from the seed. Chem. Pharm. Bull. 1992, 40, 1105–1109. [Google Scholar] [CrossRef]
 - Fujioka, T.; Kashiwada, Y.; Okabe, H.; Mihashi, K.; Lee, K.H. Antitumor agents 171. Cytotoxicities of lobatosides B, C, D, and E, cyclic bisdesmosides isolated from Actinostemma lobatum maxim. Bioorg. Med. Chem. Lett. 1996, 6, 2807–2810. [Google Scholar] [CrossRef]
 - Wu, Q.-N.; Wang, L.X.; Wang, Y.Z. Analyzing the inorganic elements and fat oil of the seeds in Actinostemma tenerum Griff. Nat. Prod. Res. Deve. 2001, 3, 33–35, (In Chinese with English abstract). [Google Scholar]
 - Kim, D.K. Antioxidative constituents from the whole plant of Actinostemma lobatum maxim. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 746–751. [Google Scholar] [CrossRef]
 - Zhong, W.; Wang, Z.; Han, L.-N.; Gao, D.-Y.; Zhu, M.-M.; Jia, H.-T.; Xie, L.-L.; Xie, D.; Guo, H.-Y.; Zheng, L.-Y. Research progress on the chemical constituents and biological activities of Actinostemma lobatum Griff. Farm Prod. Proc. 2024, 11, 1–14, (In Chinese, with English abstract). [Google Scholar]
 - Li, W.; Shi, S.-M.; Tang, Y.; Cao, J.-Q.; Yue, W.-W.; Zhao, Y.-Q. Chemical constituents from Actinostemma lobatum (I). Chin. Tradit. Herb. Drugs 2014, 45, 2143–2147, (In Chinese, with English abstract). [Google Scholar]
 - Li, W.; Shi, S.-M.; Tang, Y.; Cao, J.-Q.; Zhao, Y.-Q. Chemical constituents from Actinostemma lobatum (II). Chin. Tradit. Herb. Drugs 2016, 47, 209–213, (In Chinese, with English abstract). [Google Scholar]
 - Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
 - Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
 - Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; dePamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
 - Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq-versatile and accurate annotation of organelle genomes. Nucl. Acid. Res. 2017, 45, 6–11. [Google Scholar] [CrossRef]
 - Chen, X.-H.; Zhao, Y.-D.; Xu, S.-H.; Zhou, Y.-Z.; Zhang, L.-J.; Qu, B.; Xu, Y.-F. Analysis of codon usage bias in the plastid genome of Diplandrorchis sinica (Orchidaceae). Curr. Issues Mol. Biol. 2024, 46, 9807–9820. [Google Scholar] [CrossRef] [PubMed]
 - Vicario, S.; Moriyama, E.N.; Powell, J.R. Codon usage in twelve species of Drosophila. BMC Evol. Biol. 2007, 7, 226. [Google Scholar] [CrossRef]
 - Tao, P.; Dai, L.; Luo, M.-C.; Tang, F.-Q.; Tien, P.; Pan, Z.-S. Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 2009, 38, 104–112. [Google Scholar] [CrossRef]
 - Yang, G.-F.; Su, K.-L.; Zhao, Y.-R.; Sun, J.; Song, Z.-B. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sin. 2015, 24, 171–179. [Google Scholar]
 - Sueoka, N. Translation-coupled violation of parity rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 1999, 238, 53–58. [Google Scholar] [CrossRef]
 - Sueoka, N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses. J. Mol. Evol. 2001, 53, 469–476. [Google Scholar] [CrossRef]
 - Zhang, X.; Zhou, T.; Yang, J.; Sun, J.-J.; Ju, M.-M.; Zhao, Y.-M.; Zhao, G.-F. Comparative analyses of chloroplast genomes of Cucurbitaceae species: Lights into selective pressures and phylogenetic relationships. Molecules 2018, 23, 2165. [Google Scholar] [CrossRef] [PubMed]
 - Shi, H.-W.; Yang, M.; Mo, C.-M.; Xie, W.-J.; Liu, C.; Wu, B.; Ma, X.-J. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS ONE 2019, 14, e0226865. [Google Scholar] [CrossRef] [PubMed]
 - Bellot, S.; Mitchell, T.C.; Schaefer, H. Phylogenetic informativeness analyses to clarify past diversification processes in Cucurbitaceae. Sci. Rep. 2020, 10, 488. [Google Scholar] [CrossRef]
 - Jiang, Z.-Z.; Hu, S.-B.; Yang, H.-D.; Guo, J. Comparative evolution of Trichosanthes based on chloroplast genomes. J. Anqing Norm. Univ. 2023, 29, 87–95, (In Chinese with English Abstract). [Google Scholar]
 - Zhang, Y.; Shen, Z.-N.; Meng, X.-R.; Zhang, L.-M.; Liu, Z.-G.; Liu, M.-J.; Zhang, F.; Zhao, J. Codon usage patterns across seven Rosales species. BMC Plant Biol. 2022, 22, 65. [Google Scholar] [CrossRef]
 - Liu, X.-Y.; Li, Y.; Ji, K.-K.; Zhu, J.; Ling, P.; Zhou, T.; Fan, L.-Y.; Xie, S.-Q. Genome-wide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in Cuscuta australis. Genomics 2020, 112, 2695–2702. [Google Scholar] [CrossRef]
 - Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef]
 - Goetz, R.M.; Fuglsang, A. Correlation of codon bias measures with mRNA levels: Analysis of transcriptome data from Escherichia coli. Biochem. Biophys. Res. Commun. 2005, 327, 4–7. [Google Scholar] [CrossRef]
 - Zhang, P.-P.; Xu, W.-B.; Lu, X.; Wang, L. Analysis of codon usage bias of chloroplast genomes in Gynostemma species. Physiol. Mol. Biol. Plants 2021, 27, 2727–2737. [Google Scholar] [CrossRef]
 - Yang, Q.; Xin, C.; Xiao, Q.-S.; Lin, Y.-T.; Li, L.; Zhao, J.-L. Codon usage bias in chloroplast genes implicate adaptive evolution of four ginger species. Front. Plant Sci. 2023, 14, 1304264. [Google Scholar] [CrossRef]
 - Jia, X.-B.; Wei, J.-Q.; Chen, Y.-W.; Zeng, C.-H.; Deng, C.; Zeng, P.-C.; Tang, Y.-F.; Zhou, Q.-H.; Huang, Y.-J.; Zhu, Q.-L. Codon usage patterns and genomic variation analysis of chloroplast genomes provides new insights into the evolution of Aroideae. Sci. Rep. 2025, 15, 4333. [Google Scholar] [CrossRef]
 - Chen, H.; Zhang, J.-S. Chloroplast genome evolution and codon usage in the medicinal plant Pothos chinensis (Araceae). Genes 2025, 16, 1017. [Google Scholar] [CrossRef]
 - Luo, Y.; Luo, W.; Zhao, T.-X.; Yang, J.; Yuan, L.; Zhang, P.-Z.; Gong, Z.-X.; Li, H.-Z.; Sima, Y.; Xu, T. The complete chloroplast genomes of three Manglietia species and phylogenetic insight into the genus Manglietia Blume. Curr. Issues Mol. Biol. 2025, 47, 737. [Google Scholar] [CrossRef]
 - Shen, L.-W.; Chen, S.-Q.; Liang, M.; Qu, S.; Feng, S.-J.; Wang, D.-W.; Wang, G. Comparative analysis of codon usage bias in chloroplast genomes of ten medicinal species of Rutaceae. BMC Plant Biol. 2024, 24, 424. [Google Scholar] [CrossRef]
 - Niu, Y.; Luo, Y.-Y.; Wang, C.-L.; Liao, W.-B. Deciphering codon usage patterns in genome of Cucumis sativus in comparison with nine species of Cucurbitaceae. Agronomy 2021, 11, 2289. [Google Scholar] [CrossRef]
 




| Variation | GC1 | GC2 | GC3 | GC_all | ENC | 
|---|---|---|---|---|---|
| GC2 | 0.363 ** | ||||
| GC3 | 0.090 | 0.159 | |||
| GC_all | 0.787 ** | 0.775 ** | 0.461 ** | ||
| ENC | 0.015 | −0.190 | 0.349 * | 0.025 | |
| Codon No. | −0.028 | −0.126 | 0.257 | 0.003 | 0.192 | 
| Class Range | Class Mid Value | Frequency Number | Frequency | 
|---|---|---|---|
| −0.05~0.05 | 0 | 8 | 0.157 | 
| 0.05~0.15 | 0.1 | 33 | 0.647 | 
| 0.15~0.25 | 0.2 | 6 | 0.118 | 
| 0.25~0.35 | 0.3 | 4 | 0.078 | 
| Total | 51 | 1 | 
| Amino Acid | Codon | High-Expression Gene | Low-Expression Gene | ∆RSCU | ||
|---|---|---|---|---|---|---|
| RSCU | No. | RSCU | No. | |||
| Ala | GCA ** | 1.54 | 15 | 1.05 | 25 | 0.49 | 
| Arg | AGA * | 1.97 | 21 | 1.76 | 57 | 0.21 | 
| Gln | CAA * | 1.53 | 13 | 1.38 | 80 | 0.15 | 
| Glu | GAA * | 1.59 | 27 | 1.31 | 109 | 0.28 | 
| Gly | GGA * | 1.78 | 24 | 1.65 | 56 | 0.13 | 
| GGU ** | 1.41 | 19 | 1.06 | 36 | 0.35 | |
| His | CAU ** | 1.76 | 15 | 1.46 | 52 | 0.30 | 
| Ile | AUA * | 1.19 | 25 | 1.02 | 84 | 0.17 | 
| AUU * | 1.33 | 28 | 1.24 | 102 | 0.09 | |
| Leu | UUA *** | 2.06 | 22 | 1.09 | 55 | 0.97 | 
| UUG * | 1.59 | 17 | 1.47 | 74 | 0.12 | |
| Lys | AAA ** | 1.60 | 32 | 1.29 | 117 | 0.31 | 
| Phe | UUU ** | 1.48 | 17 | 1.03 | 99 | 0.45 | 
| Ser | UCU *** | 2.05 | 14 | 1.52 | 70 | 0.53 | 
| Thr | ACA * | 1.55 | 12 | 1.31 | 41 | 0.24 | 
| Tyr | UAU * | 1.69 | 22 | 1.59 | 90 | 0.10 | 
| Val | GUA ** | 1.66 | 17 | 1.25 | 33 | 0.41 | 
| GUU * | 1.46 | 15 | 1.17 | 31 | 0.29 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, J.-J.; Zhang, J.-S. Codon Usage Bias Analysis in the Chloroplast Genome of Actinostemma tenerum (Cucurbitaceae). Curr. Issues Mol. Biol. 2025, 47, 833. https://doi.org/10.3390/cimb47100833
Mu J-J, Zhang J-S. Codon Usage Bias Analysis in the Chloroplast Genome of Actinostemma tenerum (Cucurbitaceae). Current Issues in Molecular Biology. 2025; 47(10):833. https://doi.org/10.3390/cimb47100833
Chicago/Turabian StyleMu, Jing-Jing, and Ji-Si Zhang. 2025. "Codon Usage Bias Analysis in the Chloroplast Genome of Actinostemma tenerum (Cucurbitaceae)" Current Issues in Molecular Biology 47, no. 10: 833. https://doi.org/10.3390/cimb47100833
APA StyleMu, J.-J., & Zhang, J.-S. (2025). Codon Usage Bias Analysis in the Chloroplast Genome of Actinostemma tenerum (Cucurbitaceae). Current Issues in Molecular Biology, 47(10), 833. https://doi.org/10.3390/cimb47100833
        
