Effects of High Glucose Concentrations on PC12 Cells: Possible Implications on Neurodegeneration
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Viability Measurement
2.3. ROS and O2− Detection
2.4. Malondialdehyde (MDA) Determination
2.5. Nitrite Determination
2.6. Western Blotting
2.7. Wound Healing Assay
2.8. Statistical Analysis
3. Results
3.1. Effects of Glucose on Cell Viability
3.2. Effects of Glucose on ROS Levels
3.3. Effects of Glucose on Malondialdehyde (MDA) Levels
3.4. Effects of Glucose on Nitrite Levels
3.5. Effects of Glucose on Full-Length Caspases-3 and -9
3.6. Effects of Glucose Concentrations on PC12 Cells Migration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Häusl, A.S.; Balsevich, G.; Gassen, N.C.; Schmidt, M.V. Focus on FKBP51: A Molecular Link between Stress and Metabolic Disorders. Mol. Metab. 2019, 29, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Howarth, C.; Gleeson, P.; Attwell, D. Updated Energy Budgets for Neural Computation in the Neocortex and Cerebellum. J. Cereb. Blood Flow. Metab. 2012, 32, 1222–1232. [Google Scholar] [CrossRef]
- Chung, M.; Göbel, B. Goryanin, I.I., Goryachev, A.B., Eds.; Mathematical Modeling of the Human Energy Metabolism Based on the Selfish Brain Theory. In Advances in Systems Biology; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2012; Volume 736, pp. 425–440. ISBN 978-1-4419-7209-5. [Google Scholar]
- Yamagata, A.S.; Mansur, R.B.; Rizzo, L.B.; Rosenstock, T.; McIntyre, R.S.; Brietzke, E. Selfish Brain and Selfish Immune System Interplay: A Theoretical Framework for Metabolic Comorbidities of Mood Disorders. Neurosci. Biobehav. Rev. 2017, 72, 43–49. [Google Scholar] [CrossRef]
- Chavda, V.; Yadav, D.; Patel, S.; Song, M. Effects of a Diabetic Microenvironment on Neurodegeneration: Special Focus on Neurological Cells. Brain Sci. 2024, 14, 284. [Google Scholar] [CrossRef]
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef]
- Chen, S.; Tseng, C.-H. Dyslipidemia, Kidney Disease, and Cardiovascular Disease in Diabetic Patients. Rev. Diabet. Stud. 2013, 10, 88–100. [Google Scholar] [CrossRef]
- Koh, J.H.; Lee, E.S.; Hyun, M.; Kim, H.M.; Choi, Y.J.; Lee, E.Y.; Yadav, D.; Chung, C.H. Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model. Int. J. Endocrinol. 2014, 2014, 397307. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Moon, G.-H.; Shim, D.; Kim, J.C.; Lee, K.-J.; Chung, K.-H.; An, J.H. Neuroprotective Effects of Fermented Tea in MPTP-Induced Parkinson’s Disease Mouse Model via MAPK Signaling-Mediated Regulation of Inflammation and Antioxidant Activity. Food Res. Int. 2023, 164, 112133. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Gillespie, K.M. Type 1 Diabetes: Pathogenesis and Prevention. Can. Med. Assoc. J. 2006, 175, 165–170. [Google Scholar] [CrossRef]
- Hirsch, I.B. Glycemic Variability and Diabetes Complications: Does It Matter? Of Course It Does! Diabetes Care 2015, 38, 1610–1614. [Google Scholar] [CrossRef]
- Strachan, M.W.J.; Deary, I.J.; Ewing, F.M.E.; Frier, B.M. Is Type II Diabetes Associated with an Increased Risk of Cognitive Dysfunction?: A Critical Review of Published Studies. Diabetes Care 1997, 20, 438–445. [Google Scholar] [CrossRef]
- Stewart, R.; Liolitsa, D. Type 2 Diabetes Mellitus, Cognitive Impairment and Dementia. Diabet. Med. 1999, 16, 93–112. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Correia, S.C.; Santos, R.X.; Carvalho, C.; Candeias, E.; Duarte, A.I.; Placido, A.I.; Santos, M.S.; Moreira, P.I. Hyperglycemia, Hypoglycemia and Dementia: Role of Mitochondria and Uncoupling Proteins. Curr. Mol. Med. 2013, 13, 586–601. [Google Scholar] [CrossRef]
- Tomlinson, D.R.; Gardiner, N.J. Glucose Neurotoxicity. Nat. Rev. Neurosci. 2008, 9, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.A.; Yaqoob, M.M.; Harwood, S.M. Mechanisms of High Glucose-Induced Apoptosis and Its Relationship to Diabetic Complications. J. Nutr. Biochem. 2005, 16, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Patching, S.G. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol. Neurobiol. 2017, 54, 1046–1077. [Google Scholar] [CrossRef]
- Sharifi, A.M.; Mousavi, S.H.; Farhadi, M.; Larijani, B. Study of High Glucose-Induced Apoptosis in PC12 Cells: Role of Bax Protein. J. Pharmacol. Sci. 2007, 104, 258–262. [Google Scholar] [CrossRef]
- Sharifi, A.M.; Eslami, H.; Larijani, B.; Davoodi, J. Involvement of Caspase-8, -9, and -3 in High Glucose-Induced Apoptosis in PC12 Cells. Neurosci. Lett. 2009, 459, 47–51. [Google Scholar] [CrossRef]
- Rassu, G.; Fancello, S.; Roldo, M.; Malanga, M.; Szente, L.; Migheli, R.; Gavini, E.; Giunchedi, P. Investigation of Cytotoxicity and Cell Uptake of Cationic Beta-Cyclodextrins as Valid Tools in Nasal Delivery. Pharmaceutics 2020, 12, 658. [Google Scholar] [CrossRef]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef]
- Langasco, R.; Fancello, S.; Rassu, G.; Cossu, M.; Cavalli, R.; Galleri, G.; Giunchedi, P.; Migheli, R.; Gavini, E. Increasing Protective Activity of Genistein by Loading into Transfersomes: A New Potential Adjuvant in the Oxidative Stress-Related Neurodegenerative Diseases? Phytomedicine 2019, 52, 23–31. [Google Scholar] [CrossRef]
- Campesi, I.; Brunetti, A.; Capobianco, G.; Galistu, A.; Montella, A.; Ieri, F.; Franconi, F. Sex Differences in X-Ray-Induced Endothelial Damage: Effect of Taurine and N-Acetylcysteine. Antioxidants 2022, 12, 77. [Google Scholar] [CrossRef]
- Aronson, D. Fisman, E.Z., Tenenbaum, A., Eds.; Hyperglycemia and the Pathobiology of Diabetic Complications. In Advances in Cardiology; KARGER: Basel, Switzerland, 2008; Volume 45, pp. 1–16. ISBN 978-3-8055-8427-2. [Google Scholar]
- Weinger, K.; Jacobson, A.M. Cognitive Impairment in Patients with Type 1 (Insulin-Dependent) Diabetes Mellitus: Incidence, Mechanisms and Therapeutic Implications. CNS Drugs 1998, 9, 233–252. [Google Scholar] [CrossRef]
- Saberi Firouzi, S.; Namazi Sarvestani, N.; Bakhtiarian, A.; Ghazi Khansari, M.; Karimi, M.Y.; Ranjbar, A.; Safa, M.; Hosseini, A. Sildenafil Protective Effects on High Glucose-Induced Neurotoxicity in PC12 Cells: The Role of Oxidative Stress, Apoptosis, and Inflammation Pathways in an in Vitro Cellular Model for Diabetic Neuropathy. Neurol. Res. 2018, 40, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Namazi Sarvestani, N.; Saberi Firouzi, S.; Falak, R.; Karimi, M.Y.; Davoodzadeh Gholami, M.; Rangbar, A.; Hosseini, A. Phosphodiesterase 4 and 7 Inhibitors Produce Protective Effects against High Glucose-Induced Neurotoxicity in PC12 Cells via Modulation of the Oxidative Stress, Apoptosis and Inflammation Pathways. Metab. Brain Dis. 2018, 33, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
- Albert-Garay, J.S.; Riesgo-Escovar, J.R.; Salceda, R. High Glucose Concentrations Induce Oxidative Stress by Inhibiting Nrf2 Expression in Rat Müller Retinal Cells in Vitro. Sci. Rep. 2022, 12, 1261. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, J.; Wu, X.; Kou, J.; Feng, T.; Zhang, R.; Xu, C.; Kong, F.; Tang, B. A Sequentially Activated Probe for Imaging of Superoxide Anion and Peroxynitrite in PC12 Cells under Oxidative Stress. Anal. Chem. 2024, 96, 7138–7144. [Google Scholar] [CrossRef]
- Radi, E.; Formichi, P.; Battisti, C.; Federico, A. Apoptosis and Oxidative Stress in Neurodegenerative Diseases. J. Alzheimer’s Dis. 2014, 42, S125–S152. [Google Scholar] [CrossRef]
- González-Polo, R.A.; Soler, G.; Rodrıguezmartın, A.; Morán, J.M.; Fuentes, J.M. Protection against MPP+ Neurotoxicity in Cerebellar Granule Cells by Antioxidants. Cell Biol. Int. 2004, 28, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.Y.; Smulders-Srinivasan, T.K.; Kirby, D.M.; Acin-Perez, R.; Enriquez, J.A.; Lightowlers, R.N.; Duchen, M.R.; Turnbull, D.M. Mechanism of Neurodegeneration of Neurons with Mitochondrial DNA Mutations. Brain 2010, 133, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Angelova, P.R.; Abramov, A.Y. Role of Mitochondrial ROS in the Brain: From Physiology to Neurodegeneration. FEBS Lett. 2018, 592, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Graier, W.F.; Simecek, S.; Kukovetz, W.R.; Kostner, G.M. High D-Glucose–Induced Changes in Endothelial Ca2+/EDRF Signaling Are Due to Generation of Superoxide Anions. Diabetes 1996, 45, 1386–1395. [Google Scholar] [CrossRef]
- Thakkar, H.; Chatterjee, S.; Verma, A.; Chandrasekar, N.; Khairnar, A.; Shah, R.P. Malondialdehyde Mediated Alpha-Synuclein Aggregation: A Plausible Etiology of Parkinson’s Disease in Oxidative Stress. Chem. Res. Toxicol. 2025, 38, 573–582. [Google Scholar] [CrossRef]
- Kaeidi, A.; Hajializadeh, Z.; Jahandari, F.; Fatemi, I. Leptin Attenuates Oxidative Stress and Neuronal Apoptosis in Hyperglycemic Condition. Fundamemntal Clin. Pharma 2019, 33, 75–83. [Google Scholar] [CrossRef]
- Sidorova, Y.; Domanskyi, A. Detecting Oxidative Stress Biomarkers in Neurodegenerative Disease Models and Patients. Methods Protoc. 2020, 3, 66. [Google Scholar] [CrossRef]
- Vassalle, C.; Lubrano, V.; L’Abbate, A.; Clerico, A. Determination of Nitrite Plus Nitrate and Malondialdehyde in Human Plasma: Analytical Performance and the Effect of Smoking and Exercise. Clin. Chem. Lab. Med. 2002, 40, 802–809. [Google Scholar] [CrossRef]
- Noyman, I.; Marikovsky, M.; Sasson, S.; Stark, A.H.; Bernath, K.; Seger, R.; Madar, Z. Hyperglycemia Reduces Nitric Oxide Synthase and Glycogen Synthase Activity in Endothelial Cells. Nitric Oxide 2002, 7, 187–193. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Cui, Y. Pathways to Caspase Activation. Cell Biol. Int. 2005, 29, 489–496. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxidative Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef]
- Buranasin, P.; Mizutani, K.; Iwasaki, K.; Pawaputanon Na Mahasarakham, C.; Kido, D.; Takeda, K.; Izumi, Y. High Glucose-Induced Oxidative Stress Impairs Proliferation and Migration of Human Gingival Fibroblasts. PLoS ONE 2018, 13, e0201855. [Google Scholar] [CrossRef]
- Zhu, L.; Li, C.; Du, G.; Pan, M.; Liu, G.; Pan, W.; Li, X. High Glucose Upregulates Myosin Light Chain Kinase to Induce Microfilament Cytoskeleton Rearrangement in Hippocampal Neurons. Mol. Med. Rep. 2018, 18, 216–222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannas, C.; Galleri, G.; Doro, L.; Campesi, I.; Peana, A.T.; Migheli, R. Effects of High Glucose Concentrations on PC12 Cells: Possible Implications on Neurodegeneration. Curr. Issues Mol. Biol. 2025, 47, 801. https://doi.org/10.3390/cimb47100801
Cannas C, Galleri G, Doro L, Campesi I, Peana AT, Migheli R. Effects of High Glucose Concentrations on PC12 Cells: Possible Implications on Neurodegeneration. Current Issues in Molecular Biology. 2025; 47(10):801. https://doi.org/10.3390/cimb47100801
Chicago/Turabian StyleCannas, Claudia, Grazia Galleri, Laura Doro, Ilaria Campesi, Alessandra Tiziana Peana, and Rossana Migheli. 2025. "Effects of High Glucose Concentrations on PC12 Cells: Possible Implications on Neurodegeneration" Current Issues in Molecular Biology 47, no. 10: 801. https://doi.org/10.3390/cimb47100801
APA StyleCannas, C., Galleri, G., Doro, L., Campesi, I., Peana, A. T., & Migheli, R. (2025). Effects of High Glucose Concentrations on PC12 Cells: Possible Implications on Neurodegeneration. Current Issues in Molecular Biology, 47(10), 801. https://doi.org/10.3390/cimb47100801