TGF-β1 Is Associated with Left Ventricular Dysfunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Diagnostic Tests
2.2.1. Ultrasound Techniques
Echocardiography
- -
- Pseudonormalisation: E/A = 1–2.5 and E′/A′ < 1;
- -
- Restriction: E/A > 2.5 and E′/A′ > 1;
- -
- Normalisation: E/A = 1–2.5 and E′/A′ > 1 [17].
A Doppler Ultrasound Scan of the Carotid and Peripheral Arteries
2.2.2. Electrocardiogram
2.2.3. Testing Plasma TGF-β1 and Other Proteins Levels by ELISA Method
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abramavičiūtė, L.; Mongirdienė, A. TGF-beta Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int. J. Mol. Sci. 2024, 25, 2104. [Google Scholar] [CrossRef]
- Derynck, R.; Budi, E.H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 2019, 12, eaav5183. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Buss, A.; Pech, K.; Kakulas, B.A.; Martin, D.; Schoenen, J.; Noth, J.; Brook, G.A. TGF-beta1 and TGF-beta2 expression after traumatic human spinal cord injury. Spinal Cord. 2008, 46, 364–371. [Google Scholar] [CrossRef]
- Bialecka, M.; Rac, M.; Dziedziejko, V.; Safranow, K.; Chlubek, D.; Rać, M.E. An Evaluation of Plasma TNF, VEGF-A, and IL-6 Determination as a Risk Marker of Atherosclerotic Vascular Damage in Early-Onset CAD Patients. J. Clin. Med. 2024, 13, 1742. [Google Scholar] [CrossRef]
- Bax, N.A.; van Oorschot, A.A.M.; Maas, S.; Braun, J.; van Tuyn, J.; de Vries, A.A.F.; Gittenberger-de Groot, A.C.; Goumans, M.J. In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1. Basic Res. Cardiol. 2011, 106, 829–847. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.; Fan, J.; Guan, S.; Li, Y.; Chen, M.; Woodley, D.T.; Li, W. A ”traf c control” role for TGFbeta3: Orchestrating dermal and epidermal cell motility during wound healing. J. Cell Biol. 2006, 172, 1093–1105, Corrected in J. Cell Biol. 2006, 173, 311. [Google Scholar] [CrossRef]
- Ahmadi, J.; Hosseini, E.; Kargar, F.; Ghasemzadeh, M. Stable CAD patients show higher levels of platelet-borne TGF-β1 associated with a superior pro-inflammatory state than the pro-aggregatory status; Evidence highlighting the importance of platelet-derived TGF-β1 in atherosclerosis. J. Thromb. Thrombolysis 2023, 55, 102–115. [Google Scholar] [CrossRef]
- Lievens, D.; Zernecke, A.; Seijkens, T.; Soehnlein, O.; Beckers, L.; Munnix, I.C.; Wijnands, E.; Goossens, P.; van Kruchten, R.; Thevissen, L. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010, 116, 4317–4327. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bernal, F.; Quevedo-Abeledo, J.C.; García-González, M.; Fernández-Cladera, Y.; González-Rivero, A.F.; Martín-González, C.; González-Gay, M.Á. Transforming growth factor beta 1 is associated with subclinical carotid atherosclerosis in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2023, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.K.; Rudling, M.; Zhou, X.; Gorelik, L.; Flavell, R.A.; Hansson, G.K. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Investig. 2003, 112, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Mallat, Z.; Gojova, A.; Marchiol-Fournigault, C.; Esposito, B.; Kamate, C.; Merval, R.; Fradelizi, D.; Tedgui, A. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 2001, 89, 930–934. [Google Scholar] [CrossRef]
- Rakoczy, B.; Dziedziejko, V.; Safranow, K.; Rac, M. Is TGF-β associated with cytokines and other biochemical or clinical risk parameters in early-onset CAD patients? Biomedicines 2025, 13, 1840. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A. Recommendations for chamber quantification. Eur. J. Echocardiogr. 2006, 7, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef] [PubMed]
- de Simone, G.; Daniels, S.R.; Devereux, R.B.; Meyer, R.A.; Roman, M.J.; de Divitiis, O. Left ventricular mass and body size in normotensive children and adults: Assessment of allometric relations and impact of overweight. J. Am. Coll. Cardiol. 1992, 20, 1251–1260. [Google Scholar] [CrossRef]
- Szczeklik, A.; Tendera, M. Kardiologia, 1st ed.; Wyd. Medycyna Praktyczna: Kraków, Poland, 2010. [Google Scholar]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc. Dis. 2007, 23, 75–80. [Google Scholar] [CrossRef]
- Baranowski, R.; Wojciechowski, D.; Maciejewska, M. Zalecenia dotyczące stosowania rozpoznań elektrokardiograficznych PTK. Kardiol. Pol. 2010, 68, 335–390. [Google Scholar] [CrossRef]
- Tashiro, H.; Shimokawa, H.; Sadamatu, K.; Yamamoto, K. Prognostic significance of plasma concentrations of transforminggrowth factor-beta in patients with coronary artery disease. Coron. Artery Dis. 2002, 13, 139–143. [Google Scholar] [CrossRef]
- Schaan, B.D.; Quadros, A.S.; Sarmento-Leite, R.; De Lucca Jr, G.; Bender, A.; Bertoluci, M. Correction: Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease. Cardiovasc. Diabetol. 2007, 6, 19. [Google Scholar] [CrossRef]
- Nakao, E.; Adachi, H.; Enomoto, M.; Fukami, A.; Kumagai, E.; Nakamura, S.; Nohara, Y.; Kono, S.; Sakaue, A.; Morikawa, N. Elevated plasma transforming growth factor β1 levels predict the development of hypertension in normotensives: The 14-year follow-up study. Am. J. Hypertens. 2017, 30, 808–814. [Google Scholar] [CrossRef]
- Matsuki, K.; Hathaway, C.K.; Lawrence, M.G.; Smithies, O.; Kakoki, M. The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure. Curr. Hypertens. Rev. 2014, 10, 223–238. [Google Scholar] [CrossRef]
- Makowski, L.M.; Leffers, M.; Waltenberger, J.; Pardali, E. Transforming growth factor-β1 signalling triggers vascular endothelial growth factor resistance and monocyte dysfunction in type 2 diabetes mellitus. J. Cell. Mol. Med. 2021, 25, 5316–5325. [Google Scholar] [CrossRef]
- Jie, Y.; Zhang, Y.; Yan, W. Impact of Berberine Hydrochloride-assisted Metformin on the Metabolism of Glycolipids and Serum Levels of TIMP-1 and TGF-β1 in Individuals with Type 2 Diabetes. Pharmacogn. Mag. 2025, 21, 710–716. [Google Scholar] [CrossRef]
- Levy, W.C.; Mozaffarian, D.; Linker, D.T.; Sutradhar, S.C.; Anker, S.D.; Cropp, A.B.; Anand, I.; Maggioni, A.; Burton, P.; Sullivan, M.D.; et al. The Seattle Heart Failure Model: Prediction of survival in heart failure. Circulation 2006, 113, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Okura, H.; Takada, Y.; Kubo, T.; Asawa, K.; Taguchi, H.; Toda, I.; Yoshiyama, M.; Yoshikawa, J.; Yoshida, K. Functional mitral regurgitation predicts prognosis independent of left ventricular systolic and diastolic indices in patients with ischemic heart disease. J. Am. Soc. Echocardiogr. 2008, 21, 355–360. [Google Scholar] [CrossRef]
- Rossi, D.; Pinna, G.D.; La Rovere, M.T.; Traversi, E. Prognostic significance of tissue-Doppler imaging in chronic heart failure patients on transplant waiting list: A comparative study with right heart catheterization. Eur. J. Echocardiogr. 2011, 12, 112–119. [Google Scholar] [CrossRef]
- Gilewski, W.; Sinkiewicz, W. Prognostic significance of selected echocardiographic parameters in severe systolic heart failure. Folia Cardiol. 2017, 12, 362–370. [Google Scholar] [CrossRef]
- Morales, F.J.; Asencio, M.C.; Oneto, J.; Lozano, J.; Otero, E.; Maestre, M.; Iraavedra, M.; Martínez, P. Deceleration time of early filling in patients with left ventricular systolic dysfunction: Functional and prognostic independent value. Am. Heart J. 2002, 143, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Shui, W.; Xing, X.; Chen, Y.; Shen, W.; Song, Q.; Wang, J. Relationship Between TGF-β1 and Left Ventricular Geometry and Function in Patients with Essential Hypertension. J. Clin. Ultrasound 2025. early view. [Google Scholar] [CrossRef]
- Parrinello, G.; Licata, A.; Colomba, D.; Di Chiara, T.; Argano, C.; Bologna, P.; Corrao, S.; Avellone, G.; Scaglione, R.; Licata, G. Left Ventricular Filling Abnormalities and Obesity-Associated Hypertension: Relationship with Overproduction of Circulating Transforming Growth Factor Beta1. J. Hum. Hypertens. 2005, 19, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Villar, A.V.; Cobo, M.; Llano, M.; Montalvo, C.; González-Vílchez, F.; Martín-Durán, R.; Hurlé, M.A.; Nistal, J.F. Plasma Levels of Transforming Growth Factor-Beta1 Reflect Left Ventricular Remodeling in Aortic Stenosis. PLoS ONE 2009, 4, e8476. [Google Scholar] [CrossRef] [PubMed]
- Ayça, B.; Sahin, I.; Kucuk, S.H.; Akin, F.; Kafadar, D.; Avşar, M.; Avci, I.I.; Gungor, B.; Okuyan, E.; Dinckal, M.H. Increased Transforming Growth Factor-Β Levels Associated with Cardiac Adverse Events in Hypertrophic Cardiomyopathy. Clin. Cardiol. 2015, 38, 371–377. [Google Scholar] [CrossRef]
- Podolec, J.; Baran, J.; Siedlinski, M.; Urbanczyk, M.; Krupinski, M.; Bartus, K.; Niewiara, L.; Podolec, M.; Guzik, T.; Tomkiewicz-Pajak, L.; et al. Serum Rantes, Transforming Growth Factor-Β1 and Interleukin-6 Levels Correlate with Cardiac Muscle Fibrosis in Patients With Aortic Valve Stenosis. J. Physiol. Pharmacol. 2018, 69, 615–623. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Huang, X.; Li, Y.; Liu, Y.; Shi, L. Association of serum transforming growth factor β1 with left ventricular hypertrophy in children with primary hypertension. Eur. J. Pediatr. 2023, 182, 5439–5446. [Google Scholar] [CrossRef] [PubMed]
- Almendral, J.L.; Shick, V.; Rosendorff, C.; Atlas, S.A. Association between transforming growth factor-β1 and left ventricular mass and diameter in hypertensive patients. J. Am. Soc. Hypertens. 2010, 4, 135–141. [Google Scholar] [CrossRef]
- Aziz, T.; Saad, R.A.; Burgess, M.; Yonan, N.; Hasleton, P.; Hutchinson, I.V. Transforming growth factor beta and myocardial dysfunction following heart transplantation. Eur. J. Cardiothorac. Surg. 2001, 20, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Kempf, K.; Haltern, G.; Füth, R.; Herder, C.; Müller-Scholze, S.; Gülker, H.; Martin, S. Increased TNF-α and Decreased TGF-β Expression in Peripheral Blood Leukocytes after Acute Myocardial Infarction. Horm. Metab. Res. 2006, 38, 346–351. [Google Scholar] [CrossRef]
- Babapoor-Farrokhran, S.; Tarighati Rasekhi, R.; Gill, D.; Alzubi, J.; Mainigi, S.K. How Transforming Growth Factor Contributes to Atrial Fibrillation? Life Sci. 2021, 266, 118823. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Ng, C.Y.; Zhang, Z.; Liu, T.; Li, G. Association of Plasma Transforming Growth Factor-Β1 Levels and the Risk of Atrial Fibrillation: A Meta-Analysis. PLoS ONE 2016, 11, e0155275. [Google Scholar] [CrossRef]
- Salvarani, N.; Maguy, A.; De Simone, S.A.; Miragoli, M.; Jousset, F.; Rohr, S. TGF-β (Transforming Growth Factor-Β) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity. Circ. Arrhythmia Electrophysiol. 2017, 10, e004567. [Google Scholar] [CrossRef]
- Ramos-Mondragón, R.; Galindo, C.A.; Avila, G. Role of TGF-beta on Cardiac Structural and Electrical Remodeling. Vasc. Health Risk Manag. 2008, 4, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.H.; Hao, Y.; Chen, L.F.; Cheng, J.; Wang, Y.Q.; Xu, L.H.; Li, J.M. Echogenicity of carotid plaques as a predictor of regression following lipid-lowering therapy. Thromb. J. 2025, 23, 66. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Miyazaki, A.; Tamagawa, H.; Wang, G.P.; Horiuchi, S. Specific interaction of oxidized low-density lipoprotein with thrombospondin-1 inhibits transforming growth factor-beta from its activation. Atherosclerosis 2005, 183, 85–93. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Qin, X. Age-related differences in serum MFG-E8, TGF-β1 and correlation to the severity of atherosclerosis determined by ultrasound. Mol. Med. Rep. 2017, 16, 9741–9748. [Google Scholar] [CrossRef]
- Deng, H.B.; Jiang, C.Q.; Tomlinson, B.; Liu, B.; Lin, J.M.; Wong, K.S.; Cheung, B.M.Y.; Lam, T.H.; Thomas, G.N. A polymorphism in transforming growth factor-β1 is associated with carotid plaques and increased carotid intima-media thickness in older Chinese men: The Guangzhou Biobank Cohort Study-Cardiovascular Disease Subcohort. Atherosclerosis 2011, 214, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Santo Signorelli, S.; Anzaldi, M.; Fiore, V.; Simili, M.; Puccia, G.; Libra, M.; Malaponte, G.; Neri, S. Patients with unrecognized peripheral arterial disease (PAD) assessed by ankle-brachial index (ABI) present a defined profile of proinflammatory markers compared to healthy subjects. Cytokine 2012, 59, 294–298. [Google Scholar] [CrossRef] [PubMed]
Parameter | CAD n = 100 | Males n = 75 | Females n = 25 |
---|---|---|---|
TGF-β1 ng/mL | 31.45 ± 0.74 | 31.92 ± 0.91 | 30.81 ± 1.25 |
Age of the patients (years) | 50.2 ± 5.88 | 49.7 ± 5.61 | 51.4 ± 6.39 |
T2DM [%] | 13% | 16% | 4% |
Metformin treatment [number] | 5 | 4 | 1 |
Insulin treatment [number] | 2 | 2 | 0 |
Sulfonylureas treatment [number] | 8 | 8 | 0 |
History of hypertension [%] | 66% | 69% | 56% |
Systolic BP (mmHg) | 127 ± 14.2 | 128 ± 14.1 | 124 ± 14.7 |
Diastolic BP (mmHg) | 77.0 ± 9.01 | 76.9 ± 9.02 | 77.1 ± 9.23 |
MAP (mmHg) | 93.8 ± 9.35 | 94.0 ± 9.42 | 92.8 ± 9.39 |
LVEF [%] | 53.6 ± 11.1 | 54.1 ± 11.0 | 52.0 ± 11.7 |
LVMI [g/m2] | 183 ± 62.3 | 195 ± 57.2 | 142 ± 64.5 |
Left ventricular end–diastolic diameter [mm] | 51.3 ± 7.17 | 53.0 ± 6.37 | 45.9 ± 7.22 |
Left ventricular end–diastolic volume [mL] | 121 ± 43.4 | 130 ± 42.8 | 92.2 ± 32.9 |
Left atrium diameter [mm] | 38.6 ± 5.71 | 39.7 ± 5.25 | 35.1 ± 5.86 |
LVDF normal | 38% | 36% | 36% |
LVDF impaired | 54% | 55% | 40% |
LVDF pseudonormal | 8% | 5% | 8% |
Right ventricular end–diastolic diameter [mm] | 32.9 ± 5.60 | 33.7 ± 5.21 | 30.6 ± 6.04 |
Right ventricular mean systolic pressure [mmHg] | 22.0 ± 6.27 | 22.2 ± 6.65 | 21.8 ± 5.18 |
DT [ms] | 221 ± 69.5 | 228 ± 71.3 | 200 ± 61.8 |
E/A ratio | 1.12 ± 0.37 | 1.09 ± 0.34 | 1.24 ± 0.47 |
Tissue Doppler E′ [cm/s] | 10.1 ± 11.0 | 10.4 ± 12.6 | 9.18 ± 2.12 |
FS [%] | 29.3 ± 0.8 | 30 ± 0.9 | 26.1 ± 1.76 |
Parameter | % of All CAD Cases | Mean ± SD | p-Value | |
---|---|---|---|---|
type 2 diabetes mellitus | present | 13 | 33.7 ± 5.98 | 0.51 |
absent | 87 | 30.2 ± 7.44 | ||
metabolic syndrome | present | 28 | 34.0 ± 6.46 | 0.23 |
absent | 72 | 31.0 ± 7.69 | ||
past MI | present | 70 | 31.4 ± 7.02 | 0.81 |
absent | 30 | 31.6 ± 7.73 | ||
history of hypertension | present | 66 | 33.0 ± 6.43 | 0.25 |
absent | 34 | 30.7 ± 8.80 | ||
LVDF impaired | present | 41 | 30.8 ± 6.37 | 0.02 |
absent | 59 | 33.6 ± 8.30 | ||
left ventricular hypertrophy | present | 13 | 30.9 ± 5.45 | 0.42 |
absent | 87 | 31.6 ± 7.64 |
Parameter | Correlations for CAD Patients (n = 100) | |
---|---|---|
Rs | p-Value | |
Systolic BP (mmHg) | −0.03 | 0.77 |
Diastolic BP (mmHg) | −0.08 | 0.48 |
MAP (mmHg) | −0.06 | 0.59 |
Right ventricular end–diastolic diameter [mm] | 0.21 | 0.04 |
Right ventricular mean systolic pressure [mmHg] | −0.23 | 0.04 |
Left ventricular end–diastolic diameter [mm] | 0.22 | 0.03 |
Left ventricular end–systolic diameter [mm] | 0.23 | 0.03 |
Left ventricular end–diastolic volume [mL] | 0.26 | 0.01 |
Left ventricular end–systolic volume [mL] | 0.15 | 0.17 |
LVEF [%] | −0.13 | 0.20 |
FS [%] | −0.28 | 0.009 |
Aorta diameter [mm] | 0.04 | 0.72 |
Left atrium diameter [mm] | 0.12 | 0.28 |
Intraventricular septum end–diastolic thickness [mm] | 0.01 | 0.93 |
Posterior wall end–diastolic thickness [mm] | 0.05 | 0.62 |
LVMI [g/m2] | 0.22 | 0.05 |
E/A ratio | 0.13 | 0.20 |
DT [ms] | −0.35 | 0.0006 * |
IVRT [ms] | −0.13 | 0.23 |
Tissue Doppler S′ [cm/s] | 0.19 | 0.18 |
Tissue Doppler E′ [cm/s] | 0.14 | 0.19 |
Tissue Doppler A′ [cm/s] | −0.08 | 0.46 |
E′/A′ ratio | 0.13 | 0.24 |
Parameter | Mean ± SD | Rs | p-Value |
---|---|---|---|
Heart rate [1/min] | 72.2 ± 12.5 | −0.07 | 0.54 |
QRS II width [s] | 0.082 ± 0.022 | 0.39 | 0.0002 * |
QRS V5 width [s] | 0.084 ± 0.031 | 0.39 | 0.0002 * |
RV5(6) amplitude [mm] | 12.6 ± 6.23 | −0.21 | 0.05 |
SV1(2) amplitude [mm] | 9.36 ± 4.81 | −0.17 | 0.13 |
RV1(2) amplitude [mm] | 2.84 ± 2.83 | 0.02 | 0.85 |
SV5(6) amplitude [mm] | 3.40 ± 3.24 | −0.001 | 0.99 |
RV1(2) + SV5(6) amplitude [mm] | 5.62 ± 4.56 | 0.04 | 0.91 |
RV5(6) + SV1(2) amplitude [mm] | 21.6 ± 8.63 | −0.17 | 0.12 |
QTc II interval [s] | 0.41 ± 0.04 | 0.23 | 0.03 |
QTc V4 interval [s] | 0.41 ± 0.04 | 0.20 | 0.07 |
Parameter | Correlations for CAD Patients | |
---|---|---|
Rs | p-Value | |
ABI right | −0.09 | 0.45 |
ABI left | −0.16 | 0.20 |
ABI mean | −0.14 | 0.28 |
IMC cca right | 0.17 | 0.17 |
IMC cca left | 0.21 | 0.09 |
IMC cca mean | 0.20 | 0.10 |
IMC ba right | −0.14 | 0.25 |
IMC ba left | −0.06 | 0.63 |
IMC ba mean | −0.15 | 0.23 |
PLA thickness left | 0.35 | 0.09 |
PLA length left | −0.02 | 0.91 |
PLA density left | −0.08 | 0.70 |
PLA thickness right | 0.26 | 0.14 |
PLA length right | 0.12 | 0.52 |
PLA density right | 0.37 | 0.03 |
PLA thickness mean | 0.14 | 0.43 |
PLA length mean | 0.17 | 0.32 |
PLA density mean | 0.27 | 0.10 |
Parameter | Mean ± SD | p-Value |
---|---|---|
ABI < 0.9 (right or left side) | 31.9 ± 5.84 | 0.67 |
ABI > 0.9 (right or left side) | 30.8 ± 7.51 | |
IMC cca mean > 0.9 mm | 34.0 ± 6.07 | 0.03 |
IMC cca mean < 0.9 mm | 30.8 ± 7.55 | |
PLA present (right or left side) | 31.4 ± 6.54 | 0.64 |
PLA absent (right or left side) | 29.5 ± 8.39 | |
PLA length mean > 6.0 mm | 32.2 ± 6.31 | 0.22 |
PLA length mean < 6.0 mm | 30.4 ± 7.20 | |
PLA density mean > 70 AU | 33.0 ± 7.70 | 0.13 |
PLA density mean < 70 AU | 30.8 ± 4.37 | |
IMC ba mean > 0.6 mm | 29.5 ± 9.42 | 0.22 |
IMC ba mean < 0.6 mm | 31.9 ± 5.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakoczy, B.; Rac, M.; Krzystolik, A.; Dziedziejko, V.; Safranow, K.; Omede, J.; Rac, M. TGF-β1 Is Associated with Left Ventricular Dysfunction. Curr. Issues Mol. Biol. 2025, 47, 800. https://doi.org/10.3390/cimb47100800
Rakoczy B, Rac M, Krzystolik A, Dziedziejko V, Safranow K, Omede J, Rac M. TGF-β1 Is Associated with Left Ventricular Dysfunction. Current Issues in Molecular Biology. 2025; 47(10):800. https://doi.org/10.3390/cimb47100800
Chicago/Turabian StyleRakoczy, Bartosz, Michal Rac, Andrzej Krzystolik, Violetta Dziedziejko, Krzysztof Safranow, John Omede, and Monika Rac. 2025. "TGF-β1 Is Associated with Left Ventricular Dysfunction" Current Issues in Molecular Biology 47, no. 10: 800. https://doi.org/10.3390/cimb47100800
APA StyleRakoczy, B., Rac, M., Krzystolik, A., Dziedziejko, V., Safranow, K., Omede, J., & Rac, M. (2025). TGF-β1 Is Associated with Left Ventricular Dysfunction. Current Issues in Molecular Biology, 47(10), 800. https://doi.org/10.3390/cimb47100800