Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4+ T-Cells While Decreasing Protein Synthesis in Kidney Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Toxins
2.2. Media and Reagents
2.3. Cells and Cell Lines
2.4. Measuring Fluorescence of GFP-Transduced Vero Cells
2.5. Measurement of IL-2 Secretion by ELISA
2.6. Statistical Analysis
3. Results
3.1. Milk Reduces Biological Activity of Abrin to Inhibit Protein Synthesis
3.2. Abrin Toxin Induces Excessive IL-2 Secretion in SEA-Stimulated Human T-Cell Line CCRF-CEM
3.3. Abrin Toxin Induces NFAT Signaling Pathway Activation and IFN-γ and IL-2 Secretion in SEE, SED, or SPE-C-Stimulated CD4+ T-Cells Expressing TCR Vβ8
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Love, S. Demyelinating diseases. J. Clin. Pathol. 2006, 59, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, R.; Hamide, A.; Amalnath, S.D.; Narayana, B.S. Acute demyelinating encephalitis due to Abrus precatorius poisoning—Complete recovery after steroid therapy. Clin. Toxicol. 2008, 46, 1071–1073. [Google Scholar] [CrossRef]
- Pithadia, A.B.; Kakadia, N. Guillain-Barre syndrome (GBS). Pharmacol. Rep. 2010, 62, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.N.; Khichar, S.; Kasundra, G.M.; Bhushan, B.S. Staphylococcus aureus tropical pyomyositis induced Guillain-Barre syndrome. Ann. Indian. Acad. Neurol. 2014, 17, 139. [Google Scholar]
- Lee, K.Y.; Han, J.W.; Lee, J.S. Kawasaki disease may be a hyperimmune reaction of genetically susceptible children to variants of normal environmental flora. Med. Hypotheses 2007, 69, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Ly, A.T.; Noto, J.P.; Walwyn, O.L.; Tanz, R.R.; Shulman, S.T.; Kabat, W.; Bessen, D.E. Differences in SpeB protease activity among group A streptococci associated with superficial, invasive, and autoimmune disease. PLoS ONE 2017, 12, e0177784. [Google Scholar] [CrossRef]
- Leung, D.Y.; Meissner, H.; Shulman, S.T.; Mason, W.H.; Gerber, M.A.; Glode, M.P.; Myones, B.L.; Wheeler, J.; Ruthazer, R.; Schlievert, P.M. Prevalence of superantigen-secreting bacteria in patients with Kawasaki disease. J. Pediatr. 2002, 140, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, A.R.; Salgado-Pabon, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.; Schlievert, P.M. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef]
- Matsubara, K.; Fukaya, T.; Miwa, K.; Shibayama, N.; Nigami, H.; Harigaya, H.; Nozaki, H.; Hirata, T.; Baba, K.; Suzuki, T.; et al. Development of serum IgM antibodies against superantigens of Staphylococcus aureus and Streptococcus pyogenes in Kawasaki disease. Clin. Exp. Immunol. 2006, 143, 427–434. [Google Scholar] [CrossRef]
- Nomura, Y.; Yoshinaga, M.; Masuda, K.; Takei, S.; Miyata, K. Maternal antibody against toxic shock syndrome toxin-1 may protect infants younger than 6 months of age from developing Kawasaki syndrome. J. Infect. Dis. 2002, 185, 1677–1680. [Google Scholar] [CrossRef]
- Leung, D.Y.; Harbeck, R.; Bina, P.; Reiser, R.F.; Yang, E.; Norris, D.A.; Hanifin, J.M.; Sampson, H.A. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J. Clin. Investig. 1993, 92, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.P.; Noble, W.C.; Camp, R.D. Superantigenic exotoxin-secreting potential of staphylococci isolated from atopic eczematous skin. Br. J. Dermatol. 1993, 128, 631–632. [Google Scholar] [CrossRef]
- Strickland, I.; Hauk, P.J.; Trumble, A.E.; Picker, L.J.; Leung, D.Y. Evidence for superantigen involvement in skin homing of T cells in atopic dermatitis. J. Investig. Dermatol. 1999, 112, 249–253. [Google Scholar] [CrossRef]
- Bunikowski, R.; Mielke, M.; Skarabis, H.; Herz, U.; Bergmann, R.L.; Wahn, U.; Renz, H. Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J. Allergy Clin. Immunol. 1999, 103 Pt 1, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Yang, Y.H.; Hwang, Y.W.; Tsai, M.J.; Tsao, P.N.; Chiang, B.L.; Shau, W.Y.; Wang, L.F. Comparison of serum specific IgE antibodies to staphylococcal enterotoxins between atopic children with and without atopic dermatitis. Allergy 2000, 55, 641–646. [Google Scholar] [CrossRef]
- Tomczak, H.; Wróbel, J.; Jenerowicz, D.; Sadowska-Przytocka, A.; Wachal, M.; Adamski, Z.; Czarnecka-Operacz, M.M. The role of Staphylococcus aureus in atopic dermatitis: Microbiological and immunological implications. Adv. Dermatol. Allergol. 2019, 36, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Ataee, R.A.; Kahani, M.S.; Alishiri, G.H.; Ahamadi, Z. Staphylococcal Enterotoxin A Detection from Rheumatoid Arthritis Patients’ Blood and Synovial Fluid. Electron. Physician 2016, 8, 1850–1856. [Google Scholar] [CrossRef]
- Hedegaard, C.J.; Chen, N.; Sellebjerg, F.; Sørensen, P.S.; Leslie, R.G.Q.; Bendtzen, K.; Nielsen, C.H. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: A role in regulating cytokine responses to MBP. Immunology 2009, 128, e451–e461. [Google Scholar] [CrossRef]
- Soos, J.M.; Schiffenbauer, J.; Johnson, H.M. Treatment of PL/J mice with the superantigen, staphylococcal enterotoxin B, prevents development of experimental allergic encephalomyelitis. J. Neuroimmunol. 1993, 43, 39–43. [Google Scholar] [CrossRef]
- Rashid, T.; Ebringer, A. Autoimmunity in Rheumatic Diseases Is Induced by Microbial Infections via Crossreactivity or Molecular Mimicry. Autoimmune Dis. 2012, 2012, 539282. [Google Scholar] [CrossRef]
- Seyyed Mousavi, M.N.; Mehramuz, B.; Sadeghi, J.; Alizadeh, N.; Oskouee, M.A.; Kafil, H.S. The pathogenesis of Staphylococcus aureus in autoimmune diseases. Microb. Pathog. 2017, 111, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, M.; Wang, Z.; Wang, J. IFN-gamma Mediates the Development of Systemic Lupus Erythematosus. Biomed. Res. Int. 2020, 2020, 7176515. [Google Scholar]
- Lauwerys, B.R.; Houssiau, F.A. Involvement of cytokines in the pathogenesis of systemic lupus erythematosus. Adv. Exp. Med. Biol. 2003, 520, 237–251. [Google Scholar]
- Stirpe, F.; Battelli, M.G. Ribosome-inactivating proteins: Progress and problems. Cell Mol. Life Sci. 2006, 63, 1850–1866. [Google Scholar] [CrossRef]
- Olsnes, S. The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Hung, C.H.; Liaw, Y.C.; Lin, J.Y. Identification of amino acid residues of abrin-a A chain is essential for catalysis and reassociation with abrin-a B chain by site-directed mutagenesis. Protein Eng. 1997, 10, 827–833. [Google Scholar] [CrossRef]
- Van Vliet, S.J.; Vuist, I.M.; Lenos, K.; Tefsen, B.; Kalay, H.; García-Vallejo, J.J.; Van Kooyk, Y. Human T cell activation results in extracellular signal-regulated kinase (ERK)-calcineurin-dependent exposure of Tn antigen on the cell surface and binding of the macrophage galactose-type lectin (MGL). J. Biol. Chem. 2013, 288, 27519–27532. [Google Scholar] [CrossRef]
- Rasooly, R.; Balaban, N. Trypanosome microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness. Vaccine 2004, 22, 1007–1015. [Google Scholar] [CrossRef]
- Rasooly, R.; Do, P.M. Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. Int. J. Food Microbiol. 2010, 136, 290–294. [Google Scholar] [CrossRef]
- Ramnath, V.; Kuttan, G.; Kuttan, R. Antitumour effect of abrin on transplanted tumours in mice. Indian J. Physiol. Pharmacol. 2002, 46, 69–77. [Google Scholar]
- Li, Y.; Chen, J.A.; Zhao, Q.; Pu, C.; Qiu, Z.; Zhang, R.; Shu, W. A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the Three Gorges Reservoir Region, China. Environ. Health Perspect. 2011, 119, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernlem, B.; Rasooly, R. Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4+ T-Cells While Decreasing Protein Synthesis in Kidney Cells. Curr. Issues Mol. Biol. 2024, 46, 13970-13978. https://doi.org/10.3390/cimb46120835
Hernlem B, Rasooly R. Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4+ T-Cells While Decreasing Protein Synthesis in Kidney Cells. Current Issues in Molecular Biology. 2024; 46(12):13970-13978. https://doi.org/10.3390/cimb46120835
Chicago/Turabian StyleHernlem, Bradley, and Reuven Rasooly. 2024. "Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4+ T-Cells While Decreasing Protein Synthesis in Kidney Cells" Current Issues in Molecular Biology 46, no. 12: 13970-13978. https://doi.org/10.3390/cimb46120835
APA StyleHernlem, B., & Rasooly, R. (2024). Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4+ T-Cells While Decreasing Protein Synthesis in Kidney Cells. Current Issues in Molecular Biology, 46(12), 13970-13978. https://doi.org/10.3390/cimb46120835