Biochemical and Computational Assessment of Acute Phase Proteins in Dairy Cows Affected with Subclinical Mastitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Method and Sample Size
2.2. Screening Tests
2.2.1. California Mastitis Test (CMT)
2.2.2. pH
2.2.3. Electrical Conductivity (EC)
2.2.4. Somatic Cell Count (SCC)
2.2.5. Acute Phase Proteins
2.3. Statistical Analysis
3. Computational Approaches
3.1. Ligand Selection
3.2. Drug Likeliness
3.3. pkCSM
4. Molecular Docking
4.1. AutoDock Vina
4.2. Computed Atlas of Surface Topography of Proteins (CASTp)
4.3. iMODS
5. Results
5.1. Somatic Cell Count
5.2. Acute Phase Proteins
5.3. Milk APPs
5.4. Serum APP’s
5.5. Receiver Operating Characteristics (ROC) Analysis
5.6. Association between SCC and APPs
5.7. Principal Component Analysis (PCA)
5.8. Computational Analysis
5.8.1. Drug Likeliness
5.8.2. ADMET
5.9. Molecular Docking
5.10. CASTp
5.11. iMODS
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ali, A.; Mir, M.U.R.; Ganie, S.A.; Mushtaq, S.; Bukhari, S.I.; Alshehri, S.; Rashid, S.M.; Mir, T.M.; Rehman, M.U. Milk-Compositional Study of Metabolites and Pathogens in the Milk of Bovine Animals Affected with Subclinical Mastitis. Molecules 2022, 27, 8631. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Rehman, M.U.; Ahmad, S.M.; Mehraj, T.; Hussain, I.; Nadeem, A.; Mir, M.U.R.; Ganie, S.A. In Silico Tools for Analysis of Single-Nucleotide Polymorphisms in the Bovine Transferrin Gene. Animals 2022, 12, 693. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, T.; Ruegg, P.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef]
- Guha, A.; Guha, R.; Gera, S. Comparison of α1-Antitrypsin, α1-Acid Glycoprotein, Fibrinogen and NOx as Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis). Asian-Australas. J. Anim. Sci. 2013, 26, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Maqbool, I.; Ayaz, A.; Mir MURGanie, S.A. Ability of Diagnostic Tests to Predict Subclinical Mastitis and Intramammary Infections in Quarters from Lactating Dairy Cows. Res. J. Agric. Sci. Int. J. 2021, 2, 1982–1986. [Google Scholar]
- Wellnitz, O.; Bruckmaier, R.M. The innate immune response of the bovine mammary gland to bacterial infection. Vet. J. 2012, 192, 148–152. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Australas. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: An overview. Vet. J. 2004, 168, 28–40. [Google Scholar] [CrossRef]
- Chen, X.; Scholl, T.O.; Stein, T.P. Association of Elevated Serum Ferritin Levels and the Risk of Gestational Diabetes Mellitus in Pregnant Women: The Camden Study. Diabetes Care 2006, 29, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Knovich, M.A.; Storey, J.A.; Coffman, L.G.; Torti, S.V.; Torti, F.M. Ferritin for the clinician. Blood Rev. 2009, 23, 95–104. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-reactive protein. J. Biol. Chem. 2004, 279, 487–490. [Google Scholar] [CrossRef] [Green Version]
- Petersen, H.H.; Nielsen, J.P.; Heegaard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004, 35, 163–187. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.J.; Carter, M.E.; Markey, B.K.; Carter, G.R. Clinical Veterinary Microbiology; Mosby Publishing: London, UK, 2004; pp. 43–55. [Google Scholar]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2018, 35, 1067–1069. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and me-dicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.S.; Janes, H.; Longton, G.; Leisenring, W.; Newcomb, P. Limitations of the odds ratio in gauging the performance of a di-agnostic, prognostic, or screening marker. Am. J. Epidemiol. 2004, 159, 882–890. [Google Scholar] [CrossRef]
- Ali, A.; Mir, B.A.; Bhat, R.R.; Muzamil, S.; Baba, O.K.; Rashid, S.M.; Hussain, I.; Ahmad, S.B.; Mir, M.U.; Mir, M.U. Current Advances in Genetic Resistance to Mastitis in Cattle and the development of sensors. Int. J. Res. 2017, 4, 3631–3647. [Google Scholar]
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.-W. The bovine neutrophil: Structure and function in blood and milk. Vet. J. 2003, 34, 597–627. [Google Scholar] [CrossRef] [Green Version]
- Moroni, P.; Rossi, C.S.; Pisoni, G.; Bronzo, V.; Castiglioni, B.; Boettcher, P. Relationships between Somatic Cell Count and Intramammary Infection in Buffaloes. J. Dairy Sci. 2006, 89, 998–1003. [Google Scholar] [CrossRef] [Green Version]
- Piepers, S.; De Vliegher, S.; de Kruif, A.; Opsomer, G.; Barkema, H. Impact of intramammary infections in dairy heifers on future udder health, milk production, and culling. Vet. Microbiol. 2009, 134, 113–120. [Google Scholar] [CrossRef]
- Zaman, M.; Khan, S.; Avais, M.; Ijaz, M.; Khan, J.A.; Khan, A. Estimation of protein, total leukocyte count and differential leukocyte count in the blood and milk of subclinically mastitic buffaloes. Pak. J. Zool. 2009, 9, 115–118. [Google Scholar]
- Pegolo, S.; Tessari, R.; Bisutti, V.; Vanzin, A.; Giannuzzi, D.; Gianesella, M.; Lisuzzo, A.; Fiore, E.; Barberio, A.; Schiavon, E.; et al. Quarter-level analyses of the associations among subclinical intramammary infection and milk quality, udder health, and cheesemaking traits in Holstein cows. J. Dairy Sci. 2022, 105, 3490–3507. [Google Scholar] [CrossRef]
- Haron, A.W.; Abdullah, F.F.J.; Tijjani, A.; Abba, Y.; Adamu, L.; Mohammed, K.; Amir, A.M.M.; Sadiq, M.A.; Lila, M.A.M. The use of Na+ and K+ ion concentrations as potential diagnostic indicators of subclinical mastitis in dairy cows. Vet. World 2014, 7, 966–969. [Google Scholar] [CrossRef] [Green Version]
- Kamal, R.M.; Bayoumi, M.A.; Abd El Aal, S.F. Correlation between some direct and indirect tests for screen detection of subclinical mastitis. Int. Food Res. J. 2014, 21, 1249–1254. [Google Scholar]
- Dang, A.K.; Singh, M. Udder-The Most Important Asset of Dairy Industry, its Care and Management. Indian Dairym. 2006, 58, 57. [Google Scholar]
- Smith, K.L. Suggested interpretation of mastitis terminology. Bull.-Int. Dairy Fed. 1999, 338, 3–26. [Google Scholar]
- Petzer, I.M.; Karzis, J.; Donkin, E.F.; Webb, E.C.; Etter, E. Somatic cell count thresholds in composite and quarter milk samples as in-dicator of bovine intramammary infection status. Onderstepoort J. Vet. Res. 2017, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Diarra, M.; Petitclerc, D.; Lacasse, P. Response of Staphylococcus aureus Isolates from Bovine Mastitis to Exogenous Iron Sources. J. Dairy Sci. 2002, 85, 2141–2148. [Google Scholar] [CrossRef] [Green Version]
- Orino, K.; Watanabe, S.; Ohtsuka, H.; Kohiruimaki, M.; Watanabe, K. Measurement of ferritin in bovine milk and its clinical signifi-cance. J. Dairy Sci. 2006, 89, 3842–3845. [Google Scholar] [CrossRef] [Green Version]
- Orino, K.; Watanabe, K. Molecular, physiological and clinical aspects of the iron storage protein ferritin. Vet. J. 2008, 178, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Schrödl, W.; Krüger, M.; Hien, T.T.; Füldner, M.; Kunze, R. C-reactive protein as a new parameter of mastitis. Tierarztl. Prax. 1995, 23, 337–341. [Google Scholar] [PubMed]
- Krüger, M.; Neumann, A. Investigations on the behavior of C-reactive protein, cell count, lactose content as well as electric conductivity in quarter milk samples of subclinically diseased quarters of the udders in relation to bacteriologic results. Tierarztl. Praxis. Ausg. G Grosstiere/Nutztiere 1999, 27, 164–167. [Google Scholar]
- Lee, W.-C.; Hsiao, H.-C.; Wu, Y.-L.; Lin, J.-H.; Lee, Y.-P.; Fung, H.-P.; Chen, H.-H.; Chen, Y.-H.; Chu, R.-M. Serum C-reactive protein in dairy herds. Can. J. Vet. Res. 2003, 67, 102–107. [Google Scholar]
- Vicentini, J.; Valentini, J.; Grotto, D.; Paniz, C.; Roehrs, M.; Brucker, N.; Charão, M.F.; Moro, A.M.; Tonello, R.; Moreira, A.P.; et al. As-sociation among microalbuminuria and oxidative stress biomarkers in patients with type 2 diabetes. J. Investig. Med. 2011, 59, 649–654. [Google Scholar] [CrossRef]
- Rehman, M.U.; Ali, A.; Ansar, R.; Arafah, A.; Imtiyaz, Z.; Wani, T.A.; Zargar, S.; Ganie, S.A. In Silico molecular docking and dynamic analysis of natural compounds against major non-structural proteins of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Malla, B.A.; Ali, A.; Maqbool, I.; Dar, N.A.; Ahmad, S.B.; Alsaffar, R.M.; Rehman, M.U. Insights into molecular docking and dynamics to reveal therapeutic potential of natural compounds against P53 protein. J. Biomol. Struct. Dyn. 2022, 40, 1–20. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mir, G.J.; Ayaz, A.; Maqbool, I.; Ahmad, S.B.; Mushtaq, S.; Khan, A.; Mir, T.M.; Rehman, M.U. In silico analysis and molecular docking studies of natural compounds of Withania somnifera against bovine NLRP9. J. Mol. Model. 2023, 29, 171. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. [Google Scholar] [CrossRef] [Green Version]
- Thohinung, S.; Kanokmedhakul, S.; Kanokmedhakul, K.; Kukongviriyapan, V.; Tusskorn, O.; Soytong, K. Cytotoxic 10-(indol-3-yl)-[13]cytochalasans from the fungus Chaetomium elatum ChE01. Arch. Pharmacal Res. 2010, 33, 1135–1141. [Google Scholar] [CrossRef]
- Shinohara, C.; Chikanishi, T.; Nakashima, S.; Hashimoto, A.; Hamanaka, A.; Endo, A.; Hasumi, K. Enhancement of Fibrinolytic Activity of Vascular Endothelial Cells by Chaetoglobosin A, Crinipellin B, Geodin and Triticone B. J. Antibiot. 2000, 53, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flewelling, A.J.; Bishop, A.L.; Johnson, J.A.; Gray, C.A. Polyketides from an endophytic Aspergillus fumigatus isolate inhibit the growth of Mycobacterium tuberculosis and MRSA. Nat. Prod. Commun. 2015, 10, 1934578X1501001009. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, S.; Helaly, S.; Schroers, H.-J.; Stadler, M.; Richert-Poeggeler, K.R.; Dababat, A.A.; Maier, W. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi. PLoS ONE 2017, 12, e0180032. [Google Scholar] [CrossRef]
- Ruan, B.-H.; Yu, Z.-F.; Yang, X.-Q.; Yang, Y.-B.; Hu, M.; Zhang, Z.-X.; Zhou, Q.-Y.; Zhou, H.; Ding, Z.-T. New bioactive compounds from aquatic endophyte Chaetomium globosum. Nat. Prod. Res. 2017, 32, 1050–1055. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, H.; Wang, J.; Yang, J.; Li, X.N.; Wang, J.; Chen, K.; Wang, Y.; Luo, Z.; Yao, G.; et al. Armochaetoglobins K–R, Anti-HIV Pyrrole-Based Cytochalasans from Chaetomium globosum TW1-1. Eur. J. Org. Chem. 2015, 2015, 3086–3094. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, H.-X.; He, C.-P.; Fan, S.; Zhu, Y.-L.; Qi, C.; Huang, N.-P.; Xiao, Z.-D.; Lu, Z.-H.; Tannous, B.A.; et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2017, 150, 137–149. [Google Scholar] [CrossRef]
- Ali, A.; Malla, B.A.; Manzoor, Z.; Bashir, S.M.; Dar, M.A.; Ganie, S.A.; Mir, M.U. Immunogenetic disorders: Treatment with phytomedicines. In Clinical Applications of Immunogenetics; Academic Press: Cambridge, MA, USA, 2022; pp. 89–130. [Google Scholar]
- Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA 2017, 114, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, S.; Holbrook-Smith, D.; Stogios, P.J.; Onopriyenko, O.; Lumba, S.; Tsuchiya, Y.; Savchenko, A.; McCourt, P. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 2015, 350, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Shahine, A.; Van Rhijn, I.; Cheng, T.Y.; Iwany, S.; Gras, S.; Moody, D.B.; Rossjohn, J. A molecular basis of human T cell receptor auto-reactivity toward self-phospholipids. Sci. Immunol. 2017, 2, eaao1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melaccio, F.; Marín, M.D.C.; Valentini, A.; Montisci, F.; Rinaldi, S.; Cherubini, M.; Yang, X.; Kato, Y.; Stenrup, M.; Orozco-Gonzalez, Y.; et al. Toward Automatic Rhodopsin Modeling as a Tool for High-Throughput Computational Photobiology. J. Chem. Theory Comput. 2016, 12, 6020–6034. [Google Scholar] [CrossRef]
S. No | Tests | Volume |
---|---|---|
1 | Screening tests/cow-side tests (CMT, EC, and pH) | 10 mL |
2 | Somatic cell count (SCC) | 2 mL |
3 | Acute phase proteins analysis | 3 mL |
Total | 15 mL |
Test | SCC Range | Samples Tested (n = 135) | |
---|---|---|---|
Healthy | SCM | ||
SCC (cells/mL) | When the milk SCC was <200,000 cells/mL, the animals were considered healthy. Similarly SCC > 200,000 cells/mL, the animals were considered as SCM. | 25 | 110 |
Animal Health Status | Mean | SEM | Median | SD | Min | Max | Skewness | |
---|---|---|---|---|---|---|---|---|
Somatic cell count SCC cells/µL | Healthy | 180.2 b | 4.12 | 184 | 20.60 | 114 | 200 | −1.81 |
Subclinical | 348.3 a | 17.27 | 300 | 181.1 | 203 | 1473 | 4.04 |
APP | Animal Health Status | Mean | SEM | Median | SD | Min | Max | Skewness |
---|---|---|---|---|---|---|---|---|
Ferritin (ng/mL) | Healthy | 5.07 b | 0.19 | 5.01 | 0.98 | 3.26 | 6.96 | 0.66 |
Subclinical | 35.10 a | 1.89 | 29.69 | 19.77 | 10.51 | 90.37 | 1.28 | |
CRP (pg/mL) | Healthy | 4.64 b | 0.34 | 4.18 | 1.71 | 1.33 | 10.00 | 1.44 |
Subclinical | 20.19 a | 1.14 | 17.50 | 11.97 | 6.31 | 64.52 | 1.59 | |
Malb (pg/mL) | Healthy | 1.59 b | 0.06 | 1.68 | 0.33 | 0.94 | 2.00 | −0.75 |
Subclinical | 5.03 a | 0.21 | 4.44 | 2.21 | 1.65 | 10.75 | 0.96 |
APP | Animal Health Status | Mean | SEM | Median | SD | Min | Max | Skewness |
---|---|---|---|---|---|---|---|---|
Ferritin (ng/mL) | Healthy | 5.67 b | 0.28 | 5.26 | 1.44 | 4.26 | 9.56 | 1.51 |
Subclinical | 14.54 a | 0.77 | 13.16 | 8.11 | 4.86 | 55.36 | 1.93 | |
CRP (pg/mL) | Healthy | 5.42 b | 0.47 | 5.04 | 2.39 | 2.57 | 10.14 | 0.74 |
Subclinical | 29.71 a | 1.25 | 24.83 | 13.21 | 9.71 | 68.46 | 0.63 | |
Malb (pg/mL) | Healthy | 1.77 b | 0.08 | 1.73 | 0.33 | 1.01 | 2.51 | −0.15 |
Subclinical | 5.61 a | 0.21 | 5.19 | 2.20 | 1.66 | 11.85 | 0.90 |
Parameter | Cutoff | Sensitivity | Specificity | Area under Curve (AUC) | p Value |
---|---|---|---|---|---|
Milk SCC | 202 | 100% (1.00) | 100% (1.00) | 1.00 | <0.001 |
Acute phase proteins (milk) | |||||
Ferritin | 8.74 | 100% (1.00) | 100% (1.00) | 1.00 | <0.001 |
C-reactive Protein (CRP) | 8.82 | 93% (0.93) | 96% (0.96) | 0.99 | <0.001 |
Microalbumin (Malb) | 2.03 | 96% (0.96) | 100% (1.00) | 0.98 | <0.001 |
Acute phase proteins (serum) | |||||
Ferritin | 6.79 | 92% (0.92) | 84% (0.84) | 0.95 | <0.001 |
C-reactive Protein (CRP) | 10.98 | 98% (0.98) | 100% (1.00) | 0.99 | <0.001 |
Microalbumin (Malb) | 2.63 | 95% (0.95) | 100% (1.00) | 0.98 | <0.001 |
Parameters | SCC | Ferritin | CRP | Malb | p Value |
---|---|---|---|---|---|
SCC | 1 | 0.26 ** | 0.20 * | 0.22 * | 0.000 |
Ferritin | 0.26 ** | 1 | 0.31 | 0.35 | 0.002 |
CRP | 0.20 * | 0.31 | 1 | 0.23 | 0.022 |
Malb | 0.22 * | 0.35 | 0.23 | 1 | 0.011 |
Parameters | SCC | Ferritin | CRP | MAlb | p Value |
---|---|---|---|---|---|
SCC | 1 | 0.28 ** | 0.17 | 0.17 | 0.000 |
Ferritin | 0.28 ** | 1 | 0.18 | 0.22 | 0.001 |
CRP | 0.17 | 0.18 | 1 | 0.31 | 0.051 |
Malb | 0.17 | 0.22 | 0.31 | 1 | 0.054 |
Compound | Molecular Weight (g/mol) | H-Bond Donors | H-Bond Acceptors | A log P | TPSA Å2 |
---|---|---|---|---|---|
Asperflavin | 288.29 | 3 | 5 | 2.13 | 120.95 |
Asperlin | 212.20 | 0 | 5 | 0.18 | 86.98 |
Austinolide | 434.44 | 1 | 9 | 0.83 | 178.89 |
Cordyol E | 244.29 | 1 | 3 | 3.80 | 106.60 |
Khusinol B | 238.37 | 2 | 2 | 2.60 | 104.73 |
Luteoride E | 300.35 | 2 | 4 | 3.22 | 128.83 |
Cytochalasin E | 495.57 | 2 | 7 | 3.08 | 115 |
Chaetoglobosin U | 528.64 | 3 | 5 | 4.43 | 112 |
Penicillin G | 334.39 | 2 | 4 | 0.86 | 137.78 |
Doxycycline | 480.90 | 6 | 9 | −0.08 | 194.58 |
HIA | BBB | Water Solubility | CYP2D6 | Hepatotoxicity | Ames Toxicity | Caco2 | log KP | |
---|---|---|---|---|---|---|---|---|
Asperflavin | 91.03 | −0.74 | −3.17 | No | No | No | 1.1 | −6.43 |
Asperlin | 100 | −0.03 | −1.27 | No | No | Yes | 0.89 | −2.99 |
Austinolide | 88.27 | −1.07 | −4.37 | No | No | No | 0.58 | −2.96 |
Cordyol E | 92.67 | −0.10 | −3.87 | No | No | Yes | 1.89 | −2.51 |
Khusinol B | 94.78 | −0.05 | −3.50 | No | No | Yes | 1.69 | −2.77 |
Luteoride E | 91.63 | −0.33 | −3.75 | No | Yes | Yes | 0.96 | −2.83 |
Cytochalasin E | 100 | −0.56 | −4.93 | No | No | Yes | 0.84 | −3.18 |
Chaetoglobosin U | 93.98 | −0.48 | −4.54 | No | Yes | No | 1.06 | −2.79 |
Penicillin G | 59.90 | −0.86 | −2.47 | No | Yes | No | 0.11 | −2.73 |
Doxycycline | 44.27 | −0.93 | −2.50 | No | No | No | 0.14 | −2.73 |
Compounds | Binding Affinity (kcal/mol) | |
---|---|---|
Ferritin | Albumin | |
Asperflavin | −8.0 | −6.8 |
Asperlin | −6.3 | −5.4 |
Austinolide | −7.4 | −6.7 |
Cordyol E | −7.4 | −6.2 |
Khusinol B | −7.3 | −5.7 |
Luteoride E | −8.5 | −5.7 |
Cytochalasin E | −9.3 | −7.5 |
Chaetoglobosin U | −10.1 | −8.5 |
Doxycycline | −8.1 | −6.9 |
Penicillin G | −7.9 | −6.4 |
Ferritin | ||||
Poc ID | MS Volume | Pocket MS Area | Openings | Mouth MS Area |
1 | 183.5 | 127.0 | 1 | 76.2 |
2 | 220.4 | 184.2 | 3 | 83.5 |
3 | 253.6 | 268.8 | 1 | 21.6 |
4 | 253.7 | 268.9 | 1 | 21.6 |
5 | 233.4 | 230.2 | 2 | 54.6 |
Albumin | ||||
Poc ID | MS Volume | Pocket MS Area | Openings | Mouth MS Area |
1 | 26,186.5 | 10,694.3 | 13 | 3035.5 |
2 | 3061.5 | 2196.2 | 3 | 359.5 |
3 | 1292.6 | 1077.3 | 3 | 151.9 |
4 | 572.0 | 371.7 | 2 | 102.6 |
5 | 836.2 | 681.0 | 6 | 211.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Rehman, M.U.; Mushtaq, S.; Ahmad, S.B.; Khan, A.; Karan, A.; Bashir Wani, A.; Ganie, S.A.; Mir, M.U.R. Biochemical and Computational Assessment of Acute Phase Proteins in Dairy Cows Affected with Subclinical Mastitis. Curr. Issues Mol. Biol. 2023, 45, 5317-5346. https://doi.org/10.3390/cimb45070338
Ali A, Rehman MU, Mushtaq S, Ahmad SB, Khan A, Karan A, Bashir Wani A, Ganie SA, Mir MUR. Biochemical and Computational Assessment of Acute Phase Proteins in Dairy Cows Affected with Subclinical Mastitis. Current Issues in Molecular Biology. 2023; 45(7):5317-5346. https://doi.org/10.3390/cimb45070338
Chicago/Turabian StyleAli, Aarif, Muneeb U. Rehman, Saima Mushtaq, Sheikh Bilal Ahmad, Altaf Khan, Anik Karan, Amir Bashir Wani, Showkat Ahmad Ganie, and Manzoor Ur Rahman Mir. 2023. "Biochemical and Computational Assessment of Acute Phase Proteins in Dairy Cows Affected with Subclinical Mastitis" Current Issues in Molecular Biology 45, no. 7: 5317-5346. https://doi.org/10.3390/cimb45070338
APA StyleAli, A., Rehman, M. U., Mushtaq, S., Ahmad, S. B., Khan, A., Karan, A., Bashir Wani, A., Ganie, S. A., & Mir, M. U. R. (2023). Biochemical and Computational Assessment of Acute Phase Proteins in Dairy Cows Affected with Subclinical Mastitis. Current Issues in Molecular Biology, 45(7), 5317-5346. https://doi.org/10.3390/cimb45070338