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Abstract: Subclinical mastitis (SCM) is a predominant form of mastitis wherein major visible signs of
disease are absent. The present study aimed to determine acute phase proteins (APPs) like ferritin, C-
reactive protein (CRP), and microalbumin (Malb) in 135 composite milk and serum samples of healthy
(n = 25) and SCM (n = 110) cows. As bovine mastitis is an inflammatory disease, the present study also
aimed at finding novel anti-inflammatory compounds from natural sources by repurposing approach
using computational studies. The findings of the present study revealed substantial elevation
(p < 0.001) in milk SCC and an increase in ferritin, CRP, and Malb (p < 0.001) in milk and sera of
the SCM group as compared to healthy animals. Receiver operating characteristics of milk SCC,
milk, and serum APPs unraveled statistically substantial alteration (p < 0.001). Further, SCC was
correlated with milk APPs ferritin (r = 0.26 **, p < 0.002), CRP (r = 0.19 *, p < 0.02), and Malb (r = 0.21 *,
p < 0.01). Additionally, milk SCC was correlated with serum ferritin (r = 0.28 **, p < 0.001), CRP
(r = 0.16, p > 0.05), and Malb (r = 0.16, p > 0.05). The findings of molecular docking revealed that
Chaetoglobosin U was the most effective molecule that showed the highest binding affinity (kcal/mol)
of −10.1 and −8.5 against ferritin and albumin. The present study concluded that the estimation
of cow-side tests, SCC, and APPs in milk/serum is suitable to detect SCM and screening herd
community. Furthermore, Chaetoglobosin U could be developed as a promising anti-inflammatory
inhibitor; however, further studies are required to validate these findings.

Keywords: subclinical mastitis; somatic cell count; acute phase proteins; principal component
analysis; computational approaches

1. Introduction

Bovine mastitis is the persistent inflammatory state of the parenchyma of the mammary
gland, usually accompanied by changes in the physicochemical properties of milk and
pathological changes in the glandular tissue [1]. Subclinical mastitis (SCM) is the major
form of mastitis and is bereft of any obvious manifestations. SCM is 15–40 times more
predominant when compared with clinical mastitis, with infected cows becoming a major
source of infection for healthier cows [2,3]. SCM causes huge economic losses as it decreases
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the quantity and quality of milk and makes it more challenging to identify infected animals
from the herd [4]. Generally, SCM is detected by cow-side tests such as the California
mastitis test (CMT), pH, electrical conductivity (EC), and somatic cell count (SCC) [5–7]. In
dairy cows, SCC is considered the gold standard test to detect SCM and this test measures
somatic cells present in milk, which are released mainly due to microbial invasion [8].
Somatic cells are typically white blood cells and mainly consist of 75% leukocytes, i.e.,
neutrophils, macrophages, lymphocytes, erythrocytes, and 25% epithelial cells [9]. During
mastitis, these cells enter the mammary gland and the measurement of these cells acts as a
reliable indicator for determining SCM [9].

Therefore, for the early diagnosis of mastitis, it is important to identify specific mastitis
biomarkers, so that therapeutic intervention can be provided at an earlier stage to reduce
disease severity as well as huge economic losses to the dairy industry. Following the
tissue damage, a couple of systemic events happen, especially acute phase response (APR)
that is initiated by macrophages or by blood monocytes of the damaged tissue, which
secrete various mediators primarily cytokines and other pro-inflammatory molecules like
interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) [10]. The
utmost prominent variations that are associated with APR are the metabolic changes that
increase the synthesis of a group of plasma proteins commonly known as acute phase
proteins (APPs), largely synthesized by hepatocytes of the liver [11]. APP concentration
changes due to internal or external encounters that include any kind of infection, swelling
or inflammation, and any trauma or stress associated [12]. In dairy herds, the blood–milk
barrier permeability is altered during the dry-off and oestrus phases, leading often to the
seepage of blood proteins directly into the milk [8]. Consequently, the existence of APPs
in milk recommends that there is a self-regulating relationship existing between SCC and
APP [8].

Bovine ferritin is a positive APP primarily synthesized and secreted by hepatocytes.
Serum ferritin in the body acts as an early sensitive marker for iron deficiency, as it senses the
body’s iron stores [13]. In inflammation or infection, ferritin makes iron available to the cells
to protect lipids, proteins, and DNA from probable iron toxicity [14]. Another APP is the
C-reactive protein (CRP), produced by the liver and plays a vital role in phagocytosis [15].
The concentration of serum CRP increases during the early stages of infection [16]. On
the other hand, to our best knowledge, no study has reported the use of Malb as a milk or
serum marker of SCM in dairy cows.

Although of the recent advances made in diagnostic procedures, bovine mastitis re-
mains a major problem in dairy herds, despite the widespread implementation of programs
to control mastitis. However, a major hurdle to controlling mastitis has been caused due
to injudicious and long-term antibiotic use with several antibiotic-resistant bacteria have
emerged therefore leading to treatment failure in dairy cattle. Therefore, it is important
to identify, alternate compounds from natural sources to tackle this inflammatory disease.
In such a scenario, computational approaches have significantly established the rationale
for identifying compounds that can be repurposed as novel inhibitors targeting proteins
associated with anti-inflammatory diseases.

The present study aimed to evaluate APPs in milk and serum of cross-bred Holstein-
Friesian (HF) animals affected with SCM, which could act as viable markers for the diag-
nosis of SCM at an early stage. The study also emphasized finding the association of SCC
with APPs based on data from cows in a dairy herd. Thus, rapid tests for the estimation
of APPs can prove as sensitive diagnostic tools to identify SCM and to monitor/improve
herd health which could save the dairy industry from huge economic losses and increase
farm revenue.

Similarly, the present study attempted to identify novel bioactives that can be repur-
posed to treat this inflammatory disease, and, hence, many fungal compounds were selected.
In this study, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analy-
sis of fungal bioactives was determined. Furthermore, the present study determined the
binding affinity (kcal/mol) of bovine ferritin and albumin docked against various fungal
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bioactives. In addition, the topographic and molecular dynamic behavior of the proteins
was evaluated by bioinformatic methods. Moreover, the computational approaches allow
the identification of effective drug targets and pave the way for discovering potential drugs.

2. Materials and Methods
2.1. Sampling Method and Sample Size

A cross-sectional study was conducted in the villages surrounding Ganderbal district
(Jammu and Kashmir, India) to determine biomarkers in milk and serum for early screening
of bovine SCM.

A simple random sampling technique was used to collect samples from the study area
and a total of 135 lactating Holstein-Friesian crossbred dairy animals were taken for this
study. Milk and blood samples were taken from HF dairy cows and collected as per the
protocol suggested [17]. Before collection of samples, teats were properly washed with a
moistened cotton pad soaked with 70% ethyl alcohol. Initial three to four squirts of milk
were taken out from each quarter to reduce chances of bacterial contamination and a total
of 15 mL fresh milk was aseptically drawn from quarters. The composite milk samples
(CMS) were immediately examined for color and further subjected to screening tests, viz.,
CMT, pH, and EC.

The remaining 5 mL of milk was aseptically taken in a sterile falcon tube for estimation
of somatic cell count (SCC) and acute phase proteins (APPs). Similarly, 5 mL of blood
drawn from the jugular vein of each animal was collected in clot activator tubes (RAPID
TM) for serum extraction. The milk and blood samples were transported to the Division of
Veterinary Biochemistry SKUAST-K, Shuhama Alusteng, J&K in a cooler packed with ice
packs. Blood in clot activator tubes was subjected to centrifugation for 10 min at 3000 rpm
for harvesting serum, which was then transferred into a 1.5 mL microcentrifuge tube. The
milk samples and serum samples were stored at −80 ◦C immediately for further use. The
overall distribution of composite milk samples (CMS) collected from selected dairy cows
and put forth for various analyses is shown in Table 1. The Institutional Animal Ethical
Committee (IAEC) approved all pertinent animal health procedures in this study, according
to the relevant laws and institutional regulations (No: DST/SSTP/12th plan/150/J&K date:
27 January 2016).

Table 1. Overall distribution of CMS and volume required to perform various analysis.

S. No Tests Volume

1 Screening tests/cow-side tests (CMT, EC, and pH) 10 mL

2 Somatic cell count (SCC) 2 mL

3 Acute phase proteins analysis 3 mL

Total 15 mL

2.2. Screening Tests
2.2.1. California Mastitis Test (CMT)

The crossbred dairy cows were examined for mastitis based on clinical examination
and the California mastitis test (CMT). CMT was performed based on the protocol described
by Ali et al. [7]. CMT is a simple, quick, and easy-to-perform cow-side diagnostic test to
detect SCM. This test correctly predicts the somatic cell count in the milk of dairy animals.
Approximately 3 mL of composite samples of milk were obtained from each quarter and
mixed in a CMT paddle after a few initial squirts of foremilk were discarded. After this,
an equivalent of CMT reagent (3% sodium dodecyl sulfate) was put into the paddle that
was rotated gently in a horizontal plane for about 10–30 s to mix the contents. The reagent
operates by disrupting the cell membrane of cells allowing the DNA in those cells to react
with the test reagent, forming a gel. Based on gel formation, the results were recorded
as negative (no gel formation) and positive (gel formation) with scores ranging from 1
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(weak positive), 2 (distinct positive), and 3 (strong positive). The severity of infection is
determined by the intensity of the formed gel.

2.2.2. pH

A portable digital pH meter was used to measure the pH of milk samples (Eutech,
Singapore). A milk pH of more than 6.7 was used as a cut-off point to distinguish subclinical
infected animals from healthy [1].

2.2.3. Electrical Conductivity (EC)

The milk conductivity was measured using a portable digital EC meter (Eutech,
Singapore). Milk conductivity greater than 4.44 mS/cm was used to distinguish between
healthy and SCM dairy cows [1].

2.2.4. Somatic Cell Count (SCC)

The gold standard diagnostic test for identifying subclinical mastitis is the estimation
of somatic cell count in milk. The reference method that has been utilized in this work to
detect SCC in milk was by DeLaval cell counter (DCC; DeLaval International AB, Tumba,
Sweden). The detection of SCC in bovine milk at 4 ◦C and 37 ◦C has been well validated
by the DCC method. The DeLaval cell counter is a portable automated cell counter which
measures somatic cells (leukocytes) within a range of 10,000–4,000,000 cells/mL. About
60 µL of the milk sample was loaded into the DeLaval cell counter® (DCC) cassettes which
cross through various portions of the cassette and ultimately utilizes (10 µL) for analysis.
The cassette was then loaded into the digital somatic cell counter and the “start” button
was pressed to obtain the number of somatic cells (cells/µL) present in composite milk
samples. After a delay of 45 s, the result was displayed on the screen, which showed cell
numbers per microliter (µL) of milk. The results were then multiplied by a factor of 1000 to
obtain milk SCC in units of cells/mL. An SCC of >200,000 was used as a cut-off point for
differentiating subclinical infected animals from healthy animals [1].

2.2.5. Acute Phase Proteins

The concentration of APPs (Ferritin, CRP, and Malb) in milk and serum was deter-
mined according to the instructions of the manufacturer. Immunoassay-based fluorescence
kits (QAYEE-BIO, Life Science, Co., Ltd., Daegu, South Korea) were used for the detection
of APPs in the present study.

2.3. Statistical Analysis

Descriptive statistical analysis of milk SCC and APPs have been performed through
GraphPad Prism (version 8) software. A non-parametric test (Mann–Whitney) of signifi-
cance (with significance accepted at p < 0.05) was measured by GraphPad (version 8) soft-
ware. Multivariate, univariate, and biomarker analysis were performed through Metabo-
Analyst software (www.metaboanalyst.ca; accessed on 5 December 2022) an online tool
was used to estimate principal component analysis (PCA), sparse partial least discriminant
analysis (sPLS–DA), and orthogonal partial least square discriminant analysis (oPLS–DA).
In these procedures, data were normalized or filtered, and a 95% confidence interval was
used. The receiver operating characteristics (ROC) analysis was used to determine the test’s
sensitivity and specificity. A VIP (variable importance in the projection) plot was used in
the PLS–DA model to rank the metabolites based on their importance in distinguishing the
SCM group from the healthy group of cows.

3. Computational Approaches
3.1. Ligand Selection

In the present study, various fungal bioactives (Asperflavin, Asperlin, Austinolide,
Cordyol E, Khusinol B, Luteoride E, Cytochalasin E, Chaetoglobosin U) were selected.

www.metaboanalyst.ca
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Two control drugs Penicillin G and Doxycycline were also considered in this study.
The 2D structure of all the compounds was retrieved from PubChem (http://pubchem.
ncbi.nlm.nih.gov/compound; accessed on 5 December 2022) in simple data format (SDF).

3.2. Drug Likeliness

In this study, the SwissADME tool (http://swissadme.ch/index.php; accessed on
5 December 2022) was used to evaluate the drug-likeliness of fungal bioactives. Lipinski’s
rule of five (RO5) was used to predict hits based on different filtering parameters [18,19].
The RO5 includes five attributes, i.e., molecular weight (<500 g/mol, A log P < 5, and the
number of hydrogen bond acceptors and donors should be less than 10 and 5).

3.3. pkCSM

The determination of ADMET properties is crucial in the discovery of lead drug
molecules. In the current study, the ADMET properties of molecules were assessed using
the pkCSM server (https://biosig.lab.ug.edu.au/pkcsm; accessed on 5 December 2022).

4. Molecular Docking
4.1. AutoDock Vina

In the present study, Auto Dock Vina (UCSF-Chimera, version 4.2.6) was used for
molecular docking analysis. A standard protocol was used for the docking analysis of
protein molecules with drugs and phytocompounds as mentioned [20]. The protein struc-
tures were retrieved from the protein data bank with PDB IDs of 7U5L (ferritin) and 3V03
(albumin). In the protein data bank, no PDB ID was available for bovine CRP. In the present
study, proteins were prepared by dehydrating them, then adding polar hydrogen and
Gasteiger charges. Similarly, Gasteiger charges and torsion were added to the compounds
selected as ligands in the input option. The ligand and proteins were both saved in the
pdbqt format. During docking analysis, the protein was chosen as a macromolecule and
phytocompounds as its ligands. The center dimensions in the current study for ferritin
(x = 101.149, y = 127.221, z = 162.022) and albumin (x = 64.296, y = 25.805, z = 32.089) with
spacing of 0.387, respectively.

4.2. Computed Atlas of Surface Topography of Proteins (CASTp)

CASTp identifies and reveals the complete topographic properties of a protein molecule
(http://sts.bioe.uic.edu; accessed 21 July 2022). CASTp employs the alpha shape method
with a default radius of 1.4 A◦ and requires PDB format or a 4-letter PDB ID of the protein
as input.

4.3. iMODS

The iMODS server (http://imods.chaconlab.org; accessed on 5 December 2022) eval-
uated the molecular simulation in normal mode. This server assists us in evaluating
different conformational attributes such as eigenvalues, deformity, B factor, variance%, and
co-variance map.

5. Results

In this study, CMT, pH, and EC were used as confirmatory tests to detect SCM in
dairy animals. In the present study, CMT was found to be negative in the healthy group,
and animals were given a CMT score of (−) or (0), but animals with SCM were given a
CMT score of weak positive (+), distinct positive (++), and strong positive (+++). Positive
quarters were those that presented with a CMT score of (+) or higher.

In the selected animals, the values of pH, EC, and SCC in milk greater than 6.7,
4.44 mS/cm, and 200,000 cells/mL were used as an optimal cut-off point for differentiating
healthy from SCM-infected animals. The dairy animals that showed values pH, EC, and
SCC in milk higher than the optimal point were grouped under the SCM group.

http://pubchem.ncbi.nlm.nih.gov/compound
http://pubchem.ncbi.nlm.nih.gov/compound
http://swissadme.ch/index.php
https://biosig.lab.ug.edu.au/pkcsm
http://sts.bioe.uic.edu
http://imods.chaconlab.org
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5.1. Somatic Cell Count

The measurement of SCC in milk is considered a gold standard test for detecting SCM
(Table 2). An SCC value of >200,000 somatic cells/mL of milk was put as a cut-off point to
separate the healthy group from the SCM group. In the present study, SCC in the healthy
group ranged from 114–200 cells/mL with a median of 184 cells/mL and a mean value of
180.2 ± 4.12 cells/mL, while as in SCM, the concentration ranged from 203–1473 cells/mL
with a median of 300 cells/mL and a mean value of 348.3 ± 17.27 cells/mL, respectively.
Substantial elevation (p < 0.001) in SCC concentration was observed in SCM dairy cows as
compared to the healthy group (Table 3 and Figure 1).

Table 2. Milk somatic cell count as a gold standard test to detect SCM.

Test SCC Range
Samples Tested (n = 135)

Healthy SCM

SCC (cells/mL)

When the milk SCC was <200,000 cells/mL,
the animals were considered healthy.
Similarly SCC > 200,000 cells/mL, the
animals were considered as SCM.

25 110

Table 3. Descriptive statistics of milk SCC in healthy and subclinical mastitis dairy cows.

Animal Health
Status Mean SEM Median SD Min Max Skewness

Somatic cell count
SCC cells/µL

Healthy 180.2 b 4.12 184 20.60 114 200 −1.81

Subclinical 348.3 a 17.27 300 181.1 203 1473 4.04

Means in the same columns with different superscripts are significant (p < 0.001); SEM: standard error of the mean;
SD: standard deviation; Max: maximum; Min: minimum, SCC: somatic cell count.
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5.2. Acute Phase Proteins

In this study, the profile of APPs (Ferritin, CRP, and Malb) were studied to determine
their concentrations in milk and serum of healthy and SCM-affected Holstein-Friesian cows
for early diagnosis.
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5.3. Milk APPs

The milk samples of both groups were used for quantitative estimation of ferritin, CRP,
and Malb. In the present study, the skewness statistics showed the higher distribution of
ferritin and CRP in the milk of the SCM group as compared to the healthy group as scores
clustered to the right. Furthermore, skewness statistics of Malb revealed higher distribution
in the SCM group as scores gathered to the right as compared to the healthy group who
had a minor range of scores having negative skewness value.

Further, the concentration of ferritin in the milk of healthy animals had a mean value
of 5.07 ± 0.19 ng/mL, whereas in SCM the mean concentration was 35.10 ± 1.89 ng/mL,
respectively (Table 4 and Figure 2a–c).

Table 4. Descriptive statistics of milk acute phase proteins in healthy and subclinical mastitis dairy
cows.

APP Animal Health
Status Mean SEM Median SD Min Max Skewness

Ferritin
(ng/mL)

Healthy 5.07 b 0.19 5.01 0.98 3.26 6.96 0.66

Subclinical 35.10 a 1.89 29.69 19.77 10.51 90.37 1.28

CRP
(pg/mL)

Healthy 4.64 b 0.34 4.18 1.71 1.33 10.00 1.44

Subclinical 20.19 a 1.14 17.50 11.97 6.31 64.52 1.59

Malb
(pg/mL)

Healthy 1.59 b 0.06 1.68 0.33 0.94 2.00 −0.75

Subclinical 5.03 a 0.21 4.44 2.21 1.65 10.75 0.96

Means in the same columns with different superscripts are significant (p < 0.001); SEM: standard error of mean;
SD: standard deviation; Max: maximum; Min: minimum, APP: acute phase proteins (ferritin; CRP: C-reactive
protein; Malb: microalbumin).

Similarly, CRP concentration in the milk of healthy had a mean value of 4.64 ± 0.34 pg/mL,
whereas in SCM it was 20.19 ± 1.14 pg/mL, respectively (Table 4 and Figure 2a–c).

Moreover, the concentration of Malb in the milk of healthy animals had a mean value
of 1.59 ± 0.06 pg/mL, whereas in SCM the mean concentration was 5.03 ± 0.21 pg/mL,
respectively (Table 4 and Figure 2a–c).

Substantial elevation (p < 0.001) in milk APPs (Ferritin, CRP, Malb) was observed in
SCM dairy cows as compared to the healthy animals. Descriptive statistics of milk APPs
concentration in healthy and SCM-affected Holstein-Friesian dairy cows are presented in
Table 4 and Figure 2a–c.

5.4. Serum APP’s

In this study, the skewness statistics showed the higher distribution of serum ferritin in
SCM as compared to the healthy group, as scores clustered to the right. Further, skewness
statistics of CRP in the SCM group were found to be lower in comparison to the healthy
group which showed a slight increase in value. Furthermore, skewness statistics of Malb
revealed higher distribution in the SCM group as scores clustered to the right, whereas the
lower range of scores with negative skewness values was observed in the healthy group.

The concentration of ferritin in the serum of healthy animals ranged had a mean con-
centration of 5.67 ± 0.28 ng/mL, whereas in SCM the mean concentration was
14.54 ± 0.77 ng/mL, respectively. Similarly, CRP in the serum of healthy animals had a
mean concentration of 5.42 ± 0.47 pg/mL, whereas in SCM the mean value was
29.71 ± 1.25 pg/mL, respectively (Table 5 and Figure 2a–c).
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Subclinical 5.61 a 0.21 5.19 2.20 1.66 11.85 0.90

Means in the same columns with different superscripts are significant (p < 0.001); SEM: standard error of mean;
SD: standard deviation; Max: maximum; Min: minimum; APP: acute phase proteins (ferritin, CRP: C-reactive
protein, Malb: microalbumin).
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Moreover, the concentration of Malb in the serum of healthy animals had a mean value
of 1.77 ± 0.08 pg/mL, whereas in SCM the mean concentration was 5.61 ± 0.21 pg/mL,
respectively.

Substantial elevation (p < 0.001) in ferritin, CRP, and Malb concentration in serum was
observed in the SCM group in comparison to the healthy group (Table 5 and Figure 2a–c).

5.5. Receiver Operating Characteristics (ROC) Analysis

ROC curves are the overview of the set of possible groupings of sensitivity and
specificity likely for predictors [21]. The area under the curve (AUC) for SCC was 1
with a standard error of 0.00. The results prove that 100% of cases could be forecasted
as mastitis with SCC being a marker (p < 0.001). At a cut-off point of 202,000 cells/mL
of milk, the sensitivity and specificity are 100%. However, at cut-off scores of 204,000,
211,000, 229,000, 233,000, 237,000, 240,000, and 242,000 cells/mL, the sensitivity found
was 100%, whereas the respective specificity was 99.09%, 98.18%, 96.36%, 95.45%, 94.55%,
90%, and 90%, respectively. With the increase in the SCC of milk beyond this point, the
specificity decreased.

The ROC analysis of milk APPs (ferritin, CRP, Malb) is at a cut-off value of 8.74, 8.82,
and 2.03. The AUC for ferritin is 1 for CRP 0.99 and in the case of Malb, it is 0.98 which is
considered to be good. The sensitivity and specificity of milk parameters for differentiating
between mastitis and normal dairy cows was 100% for the ferritin test, while milk CRP
showed 93% and 96%, and in the case of Malb, it was 96% and 100%, respectively.

ROC analysis of serum APPs (ferritin, CRP, Malb) is at a cut-off value of 6.79, 11, and
2.63. The AUC for ferritin was 0.95 for CRP 0.99 and 0.98 for Malb, which determines the
reliability of a very good test. The sensitivity and specificity of ferritin, CRP, and Malb in
serum for differentiating between mastitis and normal cows were 92% and 84%, 98% and
100%, and 95% and 100%, respectively. ROC curve analysis for SCC and APPs in milk is
shown in Table 6 and Figure 3a–d, whereas Table 6 and Figure 4a–c represent ROC analysis
for sera APPs.
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5.6. Association between SCC and APPs

To study the association of SCC with milk and serum APPs, Pearson’s correlation
technique was used. Correlation matrix results showed low positive significant correlations
of SCC with APPs: Ferritin (r = 0.26 **, p < 0.002), CRP (r = 0.19 *, p < 0.02), and Malb
(r = 0.21 *, p < 0.01) concentrations in milk. The correlation matrix results revealed that a
low positive noteworthy association (r = 0.28 **, p < 0.001) exists amid serum ferritin and
milk SCC. However, no correlation of milk SCC was found with CRP (r = 0.16, p > 0.05)
and Malb (r = 0.16, p > 0.05) of serum samples. The correlation coefficient between SCC,
ferritin, CRP, and Malb in milk and serum of healthy and SCM dairy animals is presented
in Tables 7 and 8.

Table 7. Correlation coefficients between SCC and APP’s in milk (Ferritin, CRP, Malb) in healthy and
SCM dairy cows.

Parameters SCC Ferritin CRP Malb p Value

SCC 1 0.26 ** 0.20 * 0.22 * 0.000

Ferritin 0.26 ** 1 0.31 0.35 0.002

CRP 0.20 * 0.31 1 0.23 0.022

Malb 0.22 * 0.35 0.23 1 0.011
** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
SCC: somatic cell count; CRP: C-reactive protein; Malb: microalbumin.

Table 8. Correlation coefficients between milk SCC and serum APP’s (Ferritin, CRP, and Malb) in
healthy and SCM dairy cows.

Parameters SCC Ferritin CRP MAlb p Value

SCC 1 0.28 ** 0.17 0.17 0.000

Ferritin 0.28 ** 1 0.18 0.22 0.001

CRP 0.17 0.18 1 0.31 0.051

Malb 0.17 0.22 0.31 1 0.054
** Correlation is significant at the 0.01 level (2-tailed). SCC: somatic cell count; CRP: C-reactive protein;
Malb: microalbumin.

5.7. Principal Component Analysis (PCA)

In this study, by a combination of univariate and multivariate analysis, we compared
the subclinical mastitic group with the healthy group. In this study, Figures 5a and 6a
represent VIP plots of metabolites in dairy cow milk from healthy and subclinical cows. The
most powerful group discriminators are the metabolites with the highest VIP values. VIP
values greater than 1 are considered significant, and VIP values greater than 2 are considered
extremely significant. The VIP plots show the top four most important metabolites that
distinguished the two groups. The greater the VIP value, the greater the contribution of
metabolite molecules in differentiating subclinical mastitis cows from healthy animals. The
VIP plots indicate that ferritin and somatic cell count in milk and sera CRP are the strongest
discriminators for distinguishing mastitis animals from healthy.



Curr. Issues Mol. Biol. 2023, 45 5328

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 12 
 

 

partial least squares discriminant analysis on the milk and serum of healthy and subclin-
ical infected animals (o–PLSDA). The results (shown in Figures 5c and 6c) show the two 
groups’ similarities and separations. Moreover, the model evaluation revealed a high fit-
ting accuracy (p < 0.001), with a 30.9% variation between the two groups, and separated 
pure milk from mastitis-infected milk (x-axis). Furthermore, the analysis revealed a 19.9% 
(milk) and 24.3% (serum) difference between groups, indicating a high level of variation 
in the detected metabolites and a good separation. In addition, we created a heat map to 
organize the accumulation levels of the top four contributors across the various spatial 
samples (Figures 5d and 6d). Based on this visualization, many of these metabolites in 
both groups showed a decreasing trend from the outer to the inner layers. In general, the 
two groups showed similar trends in metabolite spatial distribution, though distinct pat-
terns were observed in each group. The principal component analysis of milk and serum 
APPs is shown in Figures 5 and 6. 

 
Figure 5. Principal component analysis of milk SCC and APPs. (a) VIP scores (b) sPLS–DA (c) oPLS–
DA (d) Heat map. 

Figure 5. Principal component analysis of milk SCC and APPs. (a) VIP scores (b) sPLS–DA
(c) oPLS–DA (d) Heat map.

We performed a supervised PCA, sparse version of the partial least-squares discrimi-
nant analysis (sPLS–DA) among the two groups to assess the performance classification
of metabolite sets (Figures 5b and 6b). The findings revealed that the main principal
components (PC1 and PC2) explained 99.6% of the variability in milk samples and 99.8%
of the variability in serum samples. Our study had 2 components, PC1 and PC2, which
accounted for 98.2% and 1.4% variability in milk samples, whereas in serum the variability
was 99.1% and 0.7%, respectively. The PLS–DA model’s classification performance was
evaluated using the perf function and five-fold cross-validation repeated ten times, and
the overall and balanced error rates per class were less than 0.2 within components. To
evaluate differences among healthy and mastitis-infected animals, we used orthogonal
partial least squares discriminant analysis on the milk and serum of healthy and subclinical
infected animals (o–PLSDA). The results (shown in Figures 5c and 6c) show the two groups’
similarities and separations. Moreover, the model evaluation revealed a high fitting ac-
curacy (p < 0.001), with a 30.9% variation between the two groups, and separated pure
milk from mastitis-infected milk (x-axis). Furthermore, the analysis revealed a 19.9% (milk)
and 24.3% (serum) difference between groups, indicating a high level of variation in the
detected metabolites and a good separation. In addition, we created a heat map to organize
the accumulation levels of the top four contributors across the various spatial samples
(Figures 5d and 6d). Based on this visualization, many of these metabolites in both groups



Curr. Issues Mol. Biol. 2023, 45 5329

showed a decreasing trend from the outer to the inner layers. In general, the two groups
showed similar trends in metabolite spatial distribution, though distinct patterns were
observed in each group. The principal component analysis of milk and serum APPs is
shown in Figures 5 and 6.
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5.8. Computational Analysis
5.8.1. Drug Likeliness

In the present study, all the fungal bioactive compounds followed the parameters
of drug likeliness. All the bioactive compounds followed Lipinski’s rule of five except
Chaetoglobosin U showed one violation with a molecular weight greater than 500 g/mol.
The drug-likeness properties of bioactive compounds and drugs are shown in Table 9.

Table 9. Drug-like properties of bioactive compounds based on Lipinski’s rule of five.

Compound Molecular Weight
(g/mol) H-Bond Donors H-Bond Acceptors A log P TPSA

Å2

Asperflavin 288.29 3 5 2.13 120.95

Asperlin 212.20 0 5 0.18 86.98

Austinolide 434.44 1 9 0.83 178.89

Cordyol E 244.29 1 3 3.80 106.60

Khusinol B 238.37 2 2 2.60 104.73

Luteoride E 300.35 2 4 3.22 128.83

Cytochalasin E 495.57 2 7 3.08 115

Chaetoglobosin U 528.64 3 5 4.43 112

Penicillin G 334.39 2 4 0.86 137.78

Doxycycline 480.90 6 9 −0.08 194.58

5.8.2. ADMET

In this study, all the bioactives showed good human intestinal absorption (HIA), as
the scores were higher than 30% (poor absorption). The results of the blood–brain bar-
rier (BBB) indicate that compounds with values higher than 0.3 can cross BBB, whereas
values < −1 depict poor distribution to the brain. The bioactive compounds showed good
findings for water solubility (log S). The epithelial colorectal adenocarcinoma cell line
(Caco-2) describes the absorption of an oral drug entity, as values higher than 0.90 indicate
higher permeability. Asperflavin, Cordyol E, Khusinol B, Luteoride E, and Chaetoglobosin
U showed a favorable Caco-2 value in this study, in contrast to the other compounds’
negative results. Skin permeability (log Kp) is an important predictor in this study, and
scores > −2.5 indicate lower skin permeability. Luteoride E, Chaetoglobosin U, and Peni-
cillin G showed hepatotoxicity in this study, while the other compounds did not affect the
liver. Similarly, while the remaining compounds reported inactive activity, Luteoride E,
Asperlin, Cordyol E, Khusinol B, and Cytochalasin E were active for carcinogenicity. In the
present study, Table 10 represents the ADMET properties of the bioactives and the drugs.

Table 10. ADMET analysis of bioactives and drugs.

HIA BBB Water
Solubility CYP2D6 Hepatotoxicity Ames

Toxicity Caco2 log KP

Asperflavin 91.03 −0.74 −3.17 No No No 1.1 −6.43

Asperlin 100 −0.03 −1.27 No No Yes 0.89 −2.99

Austinolide 88.27 −1.07 −4.37 No No No 0.58 −2.96

Cordyol E 92.67 −0.10 −3.87 No No Yes 1.89 −2.51

Khusinol B 94.78 −0.05 −3.50 No No Yes 1.69 −2.77

Luteoride E 91.63 −0.33 −3.75 No Yes Yes 0.96 −2.83
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Table 10. Cont.

HIA BBB Water
Solubility CYP2D6 Hepatotoxicity Ames

Toxicity Caco2 log KP

Cytochalasin E 100 −0.56 −4.93 No No Yes 0.84 −3.18

Chaetoglobosin U 93.98 −0.48 −4.54 No Yes No 1.06 −2.79

Penicillin G 59.90 −0.86 −2.47 No Yes No 0.11 −2.73

Doxycycline 44.27 −0.93 −2.50 No No No 0.14 −2.73

5.9. Molecular Docking

In this study, Chaetoglobosin U was the most effective compound and showed the
highest binding affinity (kcal/mol) of −10.1 and −8.5 when docked against bovine ferritin
and albumin. Cytochalasin E was the second most effective compound with a binding
affinity (kcal/mol) of −9.3 and −7.5 against ferritin and albumin. Among the bioactives, the
least binding affinity was shown by Asperlin, with docking scores of −6.3 kcal/mol (ferritin)
and −5.4 kcal/mol (albumin), respectively. Moreover, among the drugs, Doxycycline
showed the highest binding affinity (kcal/mol) of −8.1 and −6.9 against ferritin and
albumin, whereas Penicillin G reported the lowest with −7.9 (ferritin) and −6.4 (albumin),
respectively. The binding affinities of all the bioactives docked against bovine ferritin and
albumin are shown in Table 11. In the present study, Figures 7 and 8 represent the 2D
molecular interaction of fungal bioactives docked against bovine ferritin and albumin.
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Figure 7. A 2D molecular interaction of bovine ferritin with (a) Asperflavin; (b) Asperlin; (c) Aus-
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Penicillin G; (j) Doxycycline. 
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Figure 8. A 2D molecular interaction of bovine albumin with (a) Asperflavin; (b) Asperlin; (c) Aus-
tinolide; (d) Cordyol E; (e) Khusinol B; (f) Luteoride E; (g) Cytochalasin E; (h) Chaetoglobosin U; (i) 
Penicillin G; (j) Doxycycline. 

5.10. CASTp 
The top five binding pockets of the bovine ferritin and albumin proteins are shown 

in Figures 9 and 10 along with their respective molecular surface (MS) volumes, pocket 
molecular surface (MS) areas, openings, and molecular surface (MS) mouth areas. Figure 
9a–e and Figure 10a–e depict the topmost five binding sites of ferritin and albumin, re-
spectively. The top five binding sites’ pocket imprints are displayed in different colors 
(yellow, red, green, blue, and black). The pocket panel contains significant residues, and 
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Table 12. CASTp data statistics of bovine ferritin and albumin. 

Ferritin 
Poc ID  MS Volume Pocket MS Area Openings Mouth MS Area 
1 183.5 127.0 1 76.2 
2 220.4 184.2 3 83.5 
3 253.6 268.8 1 21.6 
4 253.7 268.9 1 21.6 
5 233.4 230.2 2 54.6 

Albumin 
Poc ID  MS Volume Pocket MS Area Openings Mouth MS Area 
1 26,186.5 10,694.3 13 3035.5 
2 3061.5 2196.2 3 359.5 
3 1292.6 1077.3 3 151.9 
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Figure 8. A 2D molecular interaction of bovine albumin with (a) Asperflavin; (b) Asperlin;
(c) Austinolide; (d) Cordyol E; (e) Khusinol B; (f) Luteoride E; (g) Cytochalasin E; (h) Chaetoglobosin
U; (i) Penicillin G; (j) Doxycycline.

Table 11. Binding affinity of fungal bioactives against bovine ferritin and albumin.

Compounds Binding Affinity (kcal/mol)

Ferritin Albumin

Asperflavin −8.0 −6.8

Asperlin −6.3 −5.4

Austinolide −7.4 −6.7

Cordyol E −7.4 −6.2

Khusinol B −7.3 −5.7

Luteoride E −8.5 −5.7

Cytochalasin E −9.3 −7.5

Chaetoglobosin U −10.1 −8.5

Doxycycline −8.1 −6.9

Penicillin G −7.9 −6.4

5.10. CASTp

The top five binding pockets of the bovine ferritin and albumin proteins are shown in
Figures 9 and 10 along with their respective molecular surface (MS) volumes, pocket molecu-
lar surface (MS) areas, openings, and molecular surface (MS) mouth areas.
Figures 9a–e and 10a–e depict the topmost five binding sites of ferritin and albumin,
respectively. The top five binding sites’ pocket imprints are displayed in different colors
(yellow, red, green, blue, and black). The pocket panel contains significant residues, and
drugs may be used to target these areas. The CASTp data is displayed in Table 12, along
with information about the binding pockets’ volume, area, and openings.
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Figure 9. (a–e) CASTp data analysis of top five binding sites of ferritin. 
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5.11. iMODS

In the present study, molecular dynamics of bovine ferritin and albumin was evaluated
via the iMODS server and are illustrated in Figures 11 and 12. The graph’s peaks correspond
to regions of the protein that are deformable (main-chain deformity) (Figures 11a and 12a).
Since the hinges in the protein were not essential, the structure remained stable, and the
regions with high deformability show where the chain hinges are. In this study, the B-
factor evaluates the molecule’s ability to deform at each residue (Figures 11b and 12b).
The B-factor analysis revealed no significant fluctuations, which suggests fewer loops.
The eigenvalues linked to each normal mode serve as a representation of the molecule’s
stiffness in motion (Figures 11c and 12c). Lower eigenvalues signify simple deformation,
whereas higher eigenvalues are related to higher variance. The covariance map shown in
Figures 11d and 12d was calculated using Cartesian coordinates Cα, and the red color
denotes that the motion of the residues is correlated, while the blue and white colors are
anti-correlated and uncorrelated, respectively. Individual variances are represented by the
color red and cumulative variances are represented by the color green in the variance plots
(Figures 11e and 12e).
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Table 12. CASTp data statistics of bovine ferritin and albumin.

Ferritin

Poc ID MS Volume Pocket MS Area Openings Mouth MS Area

1 183.5 127.0 1 76.2

2 220.4 184.2 3 83.5

3 253.6 268.8 1 21.6

4 253.7 268.9 1 21.6

5 233.4 230.2 2 54.6

Albumin

Poc ID MS Volume Pocket MS Area Openings Mouth MS Area

1 26,186.5 10,694.3 13 3035.5

2 3061.5 2196.2 3 359.5
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Table 12. Cont.

3 1292.6 1077.3 3 151.9

4 572.0 371.7 2 102.6

5 836.2 681.0 6 211.2

6. Discussion

In dairy cattle, the health status of the mammary gland is primarily determined,
qualitatively and quantitatively, by milk production. SCC is considered an important
inflammatory biomarker of bovine mammary glands. In the case of microbial invasion,
a major proportion of cell subpopulation that originates in the blood by the process of
chemotaxis and diapedesis are found to be the neutrophils [22,23]. In the current work,
a substantial increase in milk SCC was observed in SCM dairy cows as compared to the
healthy group. This change can be linked to the inflammatory response produced by the
udder and is directly related to the neutrophil influx. Previous work supports the current
study findings [24–26]. Different studies have reported that due to the inflammation
in the udder, total SCC increases in milk [27–29]. The overall ROC data had a cut-off
point < 202 with an AUC of 1, which is considered to be ideal for an model. The test also
had a sensitivity and specificity of 1 (100%) which is considered excellent. The findings of
ROC analysis of milk SCC in this study are in contrast to the results of previous research
data [30]. The International Dairy Federation had recommended that in sub-clinically
infected quarters the mean values present were 500,000 cells/mL of milk and above [31]. In
South Africa, a study reported a cut-off point of 150,000 cells/mL of milk, and the ROC
curve analysis in composite milk samples revealed sensitivity and specificity of 65.3% and
66.8%, respectively, with AUC of 0.7084, which indicates SCC to be a good indicator of
mammary gland infections [32].

In the current work, a significant increase in the concentration of milk ferritin was
found in SCM, as compared to healthy animals. The increase in ferritin concentration
in SCM milk is due to the death of epithelial cells which release ferritin into the milk,
thereby raising its levels [33]. Similar findings of increased milk ferritin in SCM have
been reported by Orino et al. (2006), which are in agreement with the current work [34].
A similar substantial increase in the concentration of serum ferritin was found in SCM-
affected animals as compared to the healthy group. Serum ferritin is considered a sensitive
gauge of total body iron stores with relatively low concentrations (<1 µg/mL), whereas
elevated extracellular ferritin levels are seen in inflammatory or malignant diseases [35].
Our findings are in agreement with the studies of Ornio and Watanabe (2008), who also
reported high ferritin concentration in sera of SCM animals as compared to healthy animals.
Thus, the determination of ferritin in sera of animals can serve as a useful indicator for
the detection and prognostic forecast of intramammary infections in dairy cows [35]. Our
study found that the sensitivity and specificity of ferritin in milk and sera of dairy animals
were comparatively good.

In this study, a significant increase in milk CRP concentration was seen in SCM dairy
cows as compared to the healthy group. Our findings are in agreement with the findings
of [36]. During inflammatory conditions, minimal changes occur in the concentration
of serum CRP in cattle. However, few studies have reported it as a potential marker of
mastitic milk, but the availability of limited data on CRP in healthy versus mastitic milk
and also its correlation with other biomarkers of mastitis, particularly SCC and other
APPs of milk, hinder its use in diagnosis [37,38]. Based on the ROC curve analysis, CRP
showed a sensitivity and specificity of 93% and 96% in milk, and 98% and 100% in serum,
which suggests that CRP can be used as a reliable biomarker for both milk and serum for
identifying SCM in dairy cows.

Further, a significant difference in concentration of Malb in milk and serum was found
in mastitis-infected dairy cows when compared with the healthy animal group. The reports
of previous studies suggest that Malb can be considered a biomarker of oxidative stress [39].
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However, in the case of dairy cows, no studies of Malb in milk and serum were found and
the same is the case with bovine SCM. More studies on Malb as an APP in dairy cattle are
required to validate its role in SCM.

Bovine mastitis is a multifactorial disease with bacteria being the most common
causative agent; henceforth, antimicrobials are routinely given to infected cows with
mastitis (clinical or subclinical) for the treatment process. A great hurdle in the control
of mastitis is the development of resistant bacteria mostly due to the non-judicious use
of antibiotics, which poses a great threat to humans. In such a scenario, natural products
are the only alternative to these drugs as they are structurally optimized by nature to
perform specific functions. The potential of computational methods as versatile tools in the
development and discovery of drugs has been recognized and known for decades.

In the drug discovery process, ADMET studies are particularly significant [40,41]. A
compound must follow Lipinski’s rule of five parameters before it can be developed as a
drug moiety and if a substance fails in more than two parameters, it cannot be developed
as a drug [42]. A good drug molecule should be absorbed when necessary and distributed
evenly throughout the body for effective metabolism and action. Drugs that fail in clinical
trials do so because of toxicologically-induced adverse properties. Since they are linked to
intestinal permeability and dissolution, bioactive molecules’ drug-like characteristics are
especially crucial [43].

In the present study, Chaetoglobosin U was the most effective compound that showed
the highest binding affinity against bovine ferritin and albumin. Various research stud-
ies have reported a wide array of biological properties for chaetoglobosins that include
anti-inflammatory, antibacterial, antifungal, phytotoxic, antitumor, anti-HIV, and nematici-
dal [44–50].

To estimate ligand-binding sites in the current study, CASTp identified voids and
pockets on the surface of proteins [51]. The functional regions and surface characteristics of
proteins can be studied using this tool. Several research studies on immune disorders, can-
cer therapeutics, and studying signaling receptors (figuring out how drugs work, analyzing
protein interactions, and developing computational tools) have been conducted [52–56].
In the current study, the protein structure’s stability and motion were assessed using the
iMODS tool. The normal mode analysis provides a simple explanation for the dynamic
simulations of the macromolecular complexes. The lower eigenvalues show how the molec-
ular motion in the binding side of the interaction is stable and adaptable. It is evident from
the molecular dynamic analysis that the structure exhibited a good deal of deformability.

7. Conclusions

In conclusion, CMT, electrical conductivity, pH, and SCC of milk can be reliable
indicators of SCM. APPs (ferritin, CRP) in milk and serum have the potential to be used as
markers of mastitis. However, more studies on Malb as a marker need to be conducted to
validate its role in SCM. The estimation of APPs can prove a rapid and sensitive diagnostic
tool to identify SCM and monitor herd health. ROC curve analysis depicted that SCC and
acute phase proteins in milk and serum have strong predictive properties and could be
used to develop a biomarker model for identifying SCM-infected animals from healthy
animals. The drug-like and physiochemical properties of the bioactives were revealed by
ADMET analysis. Molecular docking revealed Chaetoglobosin U was the most effective
compound. The topographic properties of the proteins were determined by the CASTp
server. The molecular dynamic approach depicted the dynamic behavior of the protein
molecules. The present study demonstrated that Chaetoglobosin U could serve as an
alternate molecule and can be repurposed to treat inflammatory diseases. However, further
studies are required to validate its role in combating inflammatory states.
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