Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review
Abstract
1. Introduction
2. Methods
3. Antioxidant Intake and Asthma in Relation to Smoking Status
4. Biomarkers of OS and Inflammation in Relation to Smoking Status
4.1. Biomarkers of OS
Case-Control Studies
4.2. Biomarkers of Inflammation
4.2.1. Case-Control Studies
4.2.2. Cross-Sectional Studies
4.2.3. Cohort Studies
5. Potential Effects of Antioxidant on CS-Induced Asthma Biomarkers
5.1. Antioxidant Vitamins
5.1.1. Vitamin A
5.1.2. Carotenoids
5.1.3. Vitamin C and E
5.1.4. Vitamin D
5.2. Antioxidant Minerals
5.2.1. Iron
5.2.2. Zinc, Selenium, and Copper
6. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHR | Airway hyperresponsiveness |
Akt | Serine-threonine kinase |
AP-1 | Activator protein-1 |
ASM | Airway smooth muscle |
ATRA | All-trans RA |
AZU-1 | Azurocidin 1 |
BALF | Bronchoalveolar Lavavge Fluid |
BaP | Benzo[a]pyrene |
BCX | β-cryptoxanthin |
COPD | Chronic obstructive pulmonary disease |
CS | Cigarette smoke |
CSE | Cigarette smoke extract |
Cu | Copper |
CuONPs | Copper oxide nanoparticles |
CuZnSOD | Zinc-superoxide dismutase |
CXCL | C-X-C motif chemokine ligand |
EBC | Exhaled breathe condensate |
ECP | Eosinophilic cationic protein |
ERK | Extracellular signal-regulated kinases |
ETS | Environmental tobacco smoke |
Fe | Iron |
FeNO | Fractional exhaled nitric oxide |
FEV1 | Forced expiratory volume in 1 s |
FRAP | Ferric reducing ability of plasma |
FVC | Forced vital capacity |
GPx | Glutathione peroxidase |
GSH | Reduced glutathione |
H2O2 | Hydrogen peroxide |
HBECs | Human bronchial epithelial cells |
HDAC | Histone deacetylase |
HGFR | Hepatocyte growth factor receptor |
HIF-1α | Hypoxia-inducible factor 1 alpha |
HMGB1 | Mobility group box 1 protein |
HO-1 | Heme-oxygenase-1 |
hs-CRP | High-sensitivity C-reactive protein |
ICS | Inhalation corticosteroid |
IgE | Immunoglobulin E |
IL | Interleukin |
ILC | Innate lymphoid cell |
IL-18R1 | Interleukin 18 receptor 1 |
IL-1RL1 | Interleukin 1 receptor-like 1 |
8-iso-PGF2α | Isoprostane-8-iso prostaglandin F2α |
JNK | c-Jun N-terminal kinase |
LABA | Long-acting β2 adrenergic |
LC | Lung cancer |
LDH | Lactate dehydrogenase |
LP | Lipid peroxidation |
LPS | Lipopolysaccharide |
MAPKs | Mitogen-activated protein kinases |
MCP-1 | Monocyte chemoattractant protein-1 |
MDA | Malondialdehyde |
MMP | Matrix metallopeptidases |
MPO | Myeloperoxidase |
α7nAChR | α7 nicotinic acetylcholine receptor |
NF-κB | Nuclear transcription factor-kappaB |
NLRP | NLR Family CARD Domain Containing |
NNK | Nitrosamine 4(methylnitrosamino)-1-(3–pyridyl)-1-butanone |
NO2− | Nitrite |
NOS | Nitric oxide synthase |
Notch1 | Neurogenic locus notch homolog protein 1 |
NOX2 | NADPH oxidase 2 |
Nrf2 | Nuclear factor-E2 related factor 2 |
OS | Oxidative stress |
OVA | Ovalbumin |
OXSR1 | Oxidative stress responsive kinase 1 |
P53 | Protein 53 |
PARP-1 | Poly[ADP-ribose] polymerase 1 |
PDGF | Platelet-derived growth factor |
PEFR | Peak expiratory flow rate |
PGF2 | Prostaglandin F2 |
PI3K | Phosphatidylinositol-3 kinase |
PPBP | Pro-platelet basic protein |
QoL | Quality of life |
RA | Retinoic acid |
RARs | Retinoic acid receptors |
RDBPC | Randomized double blind placebo control |
RXRs | Retinoid X receptors |
RCTs | Randomised controlled trials |
ROS | Reactive oxygen species |
Se | Selenium |
SHS | Secondhand smoke |
SIRT1 | Sirtuin1 |
SLC-39 | Solute carrier family 39 |
SOD | Superoxide dismutase |
TBARS | Thiobarbituric acid reactive substances |
TGF-β1 | Transforming growth factor beta 1 |
Th | T-helper |
TLR | Toll-like receptors |
TNF-α | Tumor necrosis factor α |
TNFRSF11A | TNF receptor superfamily member 11a |
VA | Vitamin A |
VC | Vitamin C |
VD | Vitamin D |
VE | Vitamin E |
Zn | Zinc |
References
- Gan, H.; Hou, X.; Zhu, Z.; Xue, M.; Zhang, T.; Huang, Z.; Cheng, Z.J.; Sun, B. Smoking: A leading factor for the death of chronic respiratory diseases derived from Global Burden of Disease Study 2019. BMC Pulm. Med. 2022, 22, 149. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation. Global Burden of Disease 2017. 2017. Available online: http://vizhub.healthdata.org/gbd-compare/# (accessed on 6 March 2023).
- Aoshiba, K.; Nagai, A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin. Rev. Allergy Immunol. 2004, 27, 35–43. [Google Scholar] [CrossRef]
- Doeing, D.C.; Solway, J. Airway smooth muscle in the pathophysiology and treatment of asthma. J. Appl. Physiol. 2013, 114, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Kume, H. Role of airway smooth muscle in inflammation related to asthma and COPD. Adv. Exp. Med. Biol. 2021, 1303, 139–172. [Google Scholar] [PubMed]
- Shimoda, T.; Obase, Y.; Kishikawa, R.; Iwanaga, T. Influence of cigarette smoking on airway inflammation and inhaled corticosteroid treatment in patients with asthma. Allergy Asthma Proc. 2016, 37, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Tommola, M.; Ilmarinen, P.; Tuomisto, L.E.; Haanpää, J.; Kankaanranta, T.; Niemelä, O.; Kankaanranta, H. The effect of smoking on lung function: A clinical study of adult-onset asthma. Eur. Respir. J. 2016, 48, 1298–1306. [Google Scholar] [CrossRef]
- Korsbæk, N.; Landt, E.M.; Dahl, M. Second-hand smoke exposure associated with risk of respiratory symptoms, asthma, and COPD in 20,421 adults from the General Population. J. Asthma Allergy 2021, 14, 1277–1284. [Google Scholar] [CrossRef]
- Keogan, S.; Alonso, T.; Sunday, S.; Tigova, O.; Fernández, E.; López, M.J.; Gallus, S.; Semple, S.; Tzortzi, A.; Boffi, R.; et al. Lung function changes in patients with chronic obstructive pulmonary disease (COPD) and asthma exposed to secondhand smoke in outdoor areas. J. Asthma 2021, 58, 1169–1175. [Google Scholar] [CrossRef]
- Coogan, P.F.; Castro-Webb, N.; Yu, J.; O’Connor, G.T.; Palmer, J.R.; Rosenberg, L. Active and passive smoking and the incidence of asthma in the Black Women’s Health Study. Am. J. Respir. Crit. Care Med. 2015, 191, 168–176. [Google Scholar] [CrossRef]
- Van der Toorn, M.; Rezayat, D.; Kauffman, H.F.; Bakker, S.J.L.; Gans, R.O.B.; Koëter, G.H.; Choi, A.M.K.; Van Oosterhout, A.J.M.; Slebos, D.-J. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am. J. Physiol. Lung. Cell Mol. Physiol. 2009, 297, L109–L114. [Google Scholar] [CrossRef]
- Zhou, G.; Xiao, W.; Xu, C.; Hu, Y.; Wu, X.; Huang, F.; Lu, X.; Shi, C.; Wu, X. Chemical constituents of tobacco smoke induce the production of interleukin-8 in human bronchial epithelium, 16HBE cells. Tob. Induc. Dis. 2016, 14, 24. [Google Scholar] [CrossRef]
- Ong, J.; van den Berg, A.; Faiz, A.; Boudewijn, I.M.; Timens, W.; Vermeulen, C.J.; Oliver, B.G.; Kok, K.; Terpstra, M.M.; van den Berge, M.; et al. Current smoking is associated with decreased expression of miR-335–5p in parenchymal lung fibroblasts. Int. J. Mol. Sci. 2019, 20, 5176. [Google Scholar] [CrossRef] [PubMed]
- Mirra, D.; Cione, E.; Spaziano, G.; Esposito, R.; Sorgenti, M.; Granato, E.; Cerqua, I.; Muraca, L.; Iovino, P.; Gallelli, L.; et al. Circulating microRNAs expression profile in lung inflammation: A preliminary study. J. Clin. Med. 2022, 11, 5446. [Google Scholar] [CrossRef] [PubMed]
- Cipollina, C.; Bruno, A.; Fasola, S.; Cristaldi, M.; Patella, B.; Inguanta, R.; Vilasi, A.; Aiello, G.; La Grutta, S.; Torino, C.; et al. Cellular and molecular signatures of oxidative stress in bronchial epithelial cell models injured by cigarette smoke extract. Int. J. Mol. Sci. 2022, 23, 1770. [Google Scholar] [CrossRef] [PubMed]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. Scutellaria baicalensis and their natural flavone compounds as potential medicinal drugs for the treatment of nicotine-induced non-small-cell lung cancer and asthma. Int. J. Environ. Res. Public Health 2021, 18, 5243. [Google Scholar] [CrossRef] [PubMed]
- Vonk, J.M.; Scholtens, S.; Postma, D.S.; Moffatt, M.F.; Jarvis, D.; Ramasamy, A.; Wjst, M.; Omenaas, E.R.; Bouzigon, E.; Demenais, F.; et al. Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium. PLoS ONE 2017, 12, e0172716. [Google Scholar] [CrossRef] [PubMed]
- Uh, S.-T.; Park, J.-S.; Koo, S.-M.; Kim, Y.-K.; Kim, K.U.; Kim, M.-A.; Shin, S.-W.; Son, J.-H.; Park, H.-W.; Shin, H.D.; et al. Association of genetic variants of NLRP4 with exacerbation of asthma: The effect of smoking. DNA Cell. Biol 2019, 38, 76–84. [Google Scholar] [CrossRef]
- Losol, P.; Kim, S.H.; Ahn, S.; Lee, S.; Choi, J.-P.; Kim, Y.-H.; Hong, S.-J.; Kim, B.-S.; Chang, Y.-S. Genetic variants in the TLR-related pathway and smoking exposure alter the upper airway microbiota in adult asthmatic patients. Allergy 2021, 76, 3217–3220. [Google Scholar] [CrossRef]
- Kim, M.-H.; Chang, H.S.; Lee, J.-U.; Shim, J.-S.; Park, J.-S.; Cho, Y.-J.; Park, C.-S. Association of genetic variants of oxidative stress responsive kinase 1 (OXSR1) with asthma exacerbations in non-smoking asthmatics. BMC Pulm. Med. 2022, 22, 3. [Google Scholar] [CrossRef]
- Belcaro, G.; Luzzi, R.; Cesinaro Di Rocco, P.; Cesarone, M.R.; Dugall, M.; Feragalli, B.; Errichi, B.M.; Ippolito, E.; Grossi, M.G.; Hosoi, M.; et al. Pycnogenol® improvements in asthma management. Panminerva. Med. 2011, 53, 57–64. [Google Scholar] [PubMed]
- Thomson, N.C.; Spears, M. The influence of smoking on the treatment response in patients with asthma. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Thomson, N.C.; Shepherd, M.; Spears, M.; Chaudhuri, R. Corticosteroid insensitivity in smokers with asthma: Clinicalevidence, mechanisms, and management. Treat Respir. Med. 2006, 5, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Chatkin, J.M.; Dullius, C.R. The management of asthmatic smokers. Asthma Res. Pract. 2016, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Duman, B.; Borekci, S.; Akdeniz, N.; Gazioglu, S.B.; Deniz, G.; Gemicioglu, B. Inhaled corticosteroids’ effects on biomarkers in exhaled breath condensate and blood in patients newly diagnosed with asthma who smoke. J. Asthma 2022, 59, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. The effects of dietary supplements on asthma and lung cancer risk in smokers and non-smokers: A review of the literature. Nutrients 2019, 11, 725. [Google Scholar] [CrossRef]
- Alsharairi, N.A. Supplements for smoking-related lung diseases. Encyclopedia 2021, 1, 76–86. [Google Scholar] [CrossRef]
- Alsharairi, N.A. Dietary antioxidants and lung cancer risk in smokers and non-smokers. Healthcare 2022, 10, 2501. [Google Scholar] [CrossRef]
- Santillan, A.A.; Camargo, C.A., Jr.; Colditz, G.A. A meta-analysis of asthma and risk of lung cancer (United States). Cancer Causes Control. 2003, 14, 327–334. [Google Scholar] [CrossRef]
- Rosenberger, A.; Bickeböller, H.; McCormack, V.; Brenner, D.R.; Duell, E.J.; Tjønneland, A.; Friis, S.; Muscat, J.E.; Yang, P.; Wichmann, H.E.; et al. Asthma and lung cancer risk: A systematic investigation by the International Lung Cancer Consortium. Carcinogenesis 2012, 33, 587–597. [Google Scholar] [CrossRef]
- Burns, J.S.; Dockery, D.W.; Neas, L.M.; Schwartz, J.; Coull, B.A.; Raizenne, M.; Speizer, F.E. Low dietary nutrient intakes and respiratory health in adolescents. Chest 2007, 132, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, W.; Du, J. Association between dietary carotenoid intakes and the risk of asthma in adults: A cross-sectional study of NHANES, 2007–2012. BMJ Open 2022, 12, e052320. [Google Scholar] [CrossRef] [PubMed]
- Pearson, P.J.K.; Lewis, S.A.; Britton, J.; Fogarty, A. Vitamin E supplements in asthma: A parallel group randomised placebo controlled trial. Thorax 2004, 59, 652–656. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Newson, R.B.; Rayman, M.P.; Wong, A.P.-L.; Tumilty, M.K.; Phillips, J.M.; Potts, J.F.; Kelly, F.J.; White, P.T.; Burney, P.G.J. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax 2007, 62, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Van der Vaart, H.; Postma, D.S.; Timens, W.; Ten Hacken, N.H.T. Acute effects of cigarette smoke on inflammation and oxidative stress: A review. Thorax 2004, 59, 713–721. [Google Scholar] [CrossRef]
- Yadav, A.S.; Saini, M. Evaluation of systemic antioxidant level and oxidative stress in relation to lifestyle and disease progression in asthmatic patients. J. Med. Biochem. 2016, 35, 55–62. [Google Scholar] [CrossRef]
- Bartoli, M.L.; Novelli, F.; Costa, F.; Malagrinò, L.; Melosini, L.; Bacci, E.; Cianchetti, S.; Dente, F.L.; Di Franco, A.; Vagaggini, B.; et al. Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm. 2011, 2011, 891752. [Google Scholar] [CrossRef] [PubMed]
- Anes, A.B.; Nasr, H.B.; Fetoui, H.; Bchir, S.; Chahdoura, H.; Yacoub, S.; Garrouch, A.; Benzarti, M.; Tabka, Z.; Chahed, K. Alteration in systemic markers of oxidative and antioxidative status in Tunisian patients with asthma: Relationships with clinical severity and airflow limitation. J. Asthma 2016, 53, 227–237. [Google Scholar] [CrossRef]
- Mak, J.C.W.; Leung, H.C.M.; Ho, S.P.; Law, B.K.W.; Lam, W.K.; Tsang, K.W.T.; Ip, M.C.M.; Chan-Yeung, M. Systemic oxidative and antioxidative status in Chinese patients with asthma. J. Allergy Clin. Immunol. 2004, 114, 260–264. [Google Scholar] [CrossRef]
- Nadeem, A.; Chhabra, S.K.; Masood, A.; Raj, H.G. Increased oxidative stress and altered levels of antioxidants in asthma. J. Allergy Clin. Immunol. 2003, 111, 72–78. [Google Scholar] [CrossRef]
- Deveci, F.; Ilhan, N.; Turgut, T.; Akpolat, N.; Kirkil, G.; Muz, M.H. Glutathione and nitrite in induced sputum from patients with stable and acute asthma compared with controls. Ann. Allergy Asthma Immunol. 2004, 93, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Hillas, G.; Kostikas, K.; Mantzouranis, K.; Bessa, V.; Kontogianni, K.; Papadaki, G.; Papiris, S.; Alchanatis, M.; Loukides, S.; Bakakos, P. Exhaled nitric oxide and exhaled breath condensate pH as predictors of sputum cell counts in optimally treated asthmatic smokers. Respirology 2011, 16, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Michils, A.; Louis, R.; Peché, R.; Baldassarre, S.; Van Muylem, A. Exhaled nitric oxide as a marker of asthma control in smoking patients. Eur. Respir. J. 2009, 33, 1295–1301. [Google Scholar] [CrossRef]
- Pavlidis, S.; Takahashi, K.; Kwong, F.N.K.; Xie, J.; Hoda, U.; Sun, K.; Elyasigomari, V.; Agapow, P.; Loza, M.; Baribaud, F.; et al. “T2-high” in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur. Respir. J. 2019, 53, 1800938. [Google Scholar] [CrossRef]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Pasini, A.M.F.; et al. Biomarkers of oxidative stress and inflammation in chronic airway diseases. Int. J. Mol. Sci. 2020, 21, 4339. [Google Scholar] [CrossRef] [PubMed]
- Malinovschi, A.; Backer, V.; Harving, H.; Porsbjerg, C. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms. Respir. Med. 2012, 106, 794–801. [Google Scholar] [CrossRef]
- Zietkowski, Z.; Tomasiak-Lozowska, M.M.; Skiepko, R.; Zietkowska, E.; Bodzenta-Lukaszyk, A. Eotaxin-1 in exhaled breath condensate of stable and unstable asthma patients. Respir. Res. 2010, 11, 110. [Google Scholar] [CrossRef][Green Version]
- Krisiukeniene, A.; Babusyte, A.; Stravinskaite, K.; Lotvall, J.; Sakalauskas, R.; Sitkauskiene, B. Smoking affects eotaxin levels in asthma patients. J. Asthma 2009, 46, 470–476. [Google Scholar] [CrossRef]
- Rossios, C.; Pavlidis, S.; Hoda, U.; Kuo, C.-H.; Wiegman, C.; Russell, K.; Sun, K.; Loza, M.J.; Baribaud, F.; Durham, A.L.; et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J. Allergy Clin. Immunol. 2018, 141, 560–570. [Google Scholar] [CrossRef]
- Chalmers, G.W.; MacLeod, K.J.; Thomson, L.; Little, S.A.; McSharry, C.; Thomson, N.C. Smoking and airway inflammation in patients with mild asthma. Chest 2001, 120, 1917–1922. [Google Scholar] [CrossRef]
- Thomson, N.C.; Chaudhuri, R.; Spears, M.; Haughney, J.; McSharry, C. Serum periostin in smokers and never smokers with asthma. Respir. Med. 2015, 109, 708–7015. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yildiz, H.; Alp, H.H.; Sünnetçioğlu, A.; Ekin, S.; Çilingir, B.M. Evaluation serum levels of YKL-40, Periostin, and some inflammatory cytokines together with IL-37, a new anti-inflammatory cytokine, in patients with stable and exacerbated asthma. Heart Lung 2021, 50, 177–183. [Google Scholar] [CrossRef]
- Rovina, N.; Dima, E.; Gerassimou, C.; Kollintza, A.; Gratziou, C.; Roussos, C. IL-18 in induced sputum and airway hyperresponsiveness in mild asthmatics: Effect of smoking. Respir. Med. 2009, 103, 1919–1925. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ham, J.; Kim, J.; Sohn, K.-H.; Park, I.-W.; Choi, B.-W.; Chung, D.H.; Cho, S.-H.; Kang, H.R.; Jung, J.-W.; Kim, H.Y. Cigarette smoke aggravates asthma by inducing memory-like type 3 innate lymphoid cells. Nat. Commun. 2022, 13, 3852. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, J.; Zhao, J.; Wang, J.; Zhang, Y.; Liu, L.; Cao, L.; Liu, Y.; Dong, L. Type 2 innate lymphoid cells: A novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 2015, 109, 1391–1396. [Google Scholar] [CrossRef]
- Shimoda, T.; Obase, Y.; Kishikawa, R.; Iwanaga, T. Serum high-sensitivity C-reactive protein can be an airway inflammation predictor in bronchial asthma. Allergy Asthma Proc. 2015, 36, e23–e28. [Google Scholar] [CrossRef]
- Halvani, A.; Tahghighi, F.; Nadooshan, H.H. Evaluation of correlation between airway and serum inflammatory markers in asthmatic patients. Lung. India 2012, 29, 143–146. [Google Scholar] [CrossRef]
- Mikus, M.S.; Kolmert, J.; Andersson, L.I.; Östling, J.; Knowles, R.G.; Gómez, C.; Ericsson, M.; Thörngren, J.-O.; Khoonsari, P.E.; Dahlén, B.; et al. Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. Eur. Respir. J. 2022, 59, 2100142. [Google Scholar] [CrossRef]
- Takahashi, K.; Pavlidis, S.; Kwong, F.N.K.; Hoda, U.; Rossios, C.; Sun, K.; Loza, M.; Baribaud, F.; Chanez, P.; Fowler, S.J.; et al. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: An exploratory analysis. Eur. Respir. J. 2018, 51, 1702173. [Google Scholar] [CrossRef]
- Emma, R.; Bansal, A.T.; Kolmert, J.; Wheelock, C.E.; Dahlen, S.-E.; Loza, M.J.; De Meulder, B.; Lefaudeux, D.; Auffray, C.; Dahlen, B.; et al. Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort. PLoS ONE 2018, 13, e0203874. [Google Scholar] [CrossRef]
- Thomson, N.C.; Chaudhuri, R.; Heaney, L.G.; Bucknall, C.; Niven, R.M.; Brightling, C.E.; Menzies-Gow, A.N.; Mansur, A.H.; McSharry, C. Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. J. Allergy Clin. Immunol. 2013, 131, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, J.; Chérot-Kornobis, N.; Hulo, S.; Ciuchete, A.; Clément, G.; Amouyel, P.; Matran, R.; Dauchet, L. Both exhaled nitric oxide and blood eosinophil count were associated with mild allergic asthma only in non-smokers. Clin. Exp. Allergy 2016, 46, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Kostikas, K.; Papaioannou, A.I.; Tanou, K.; Giouleka, P.; Koutsokera, A.; Minas, M.; Papiris, S.; Gourgoulianis, K.I.; Taylor, D.R.; Loukides, S. Exhaled NO and exhaled breath condensate pH in the evaluation of asthma control. Respir. Med. 2011, 105, e526–e532. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Ma, L.; Wei, J.; Wang, J.; Xu, Q.; Chen, M.; Jiang, M.; Luo, M.; Wu, J.; Mai, L.; et al. Smoking status modifies the relationship between Th2 biomarkers and small airway obstruction in asthma. Can. Respir. J. 2021, 2021, 1918518. [Google Scholar] [CrossRef]
- Nerpin, E.; Ferreira, D.S.; Weyler, J.; Schlunnsen, V.; Jogi, R.; Semjen, C.R.; Gislasson, T.; Demoly, P.; Heinrich, J.; Nowak, D.; et al. Bronchodilator response and lung function decline: Associations with exhaled nitric oxide with regard to sex and smoking status. World Allergy Organ. J. 2021, 14, 100544. [Google Scholar] [CrossRef]
- Cianchetti, S.; Cardini, C.; Puxeddu, I.; Latorre, M.; Bartoli, M.L.; Bradicich, M.; Dente, F.; Bacci, E.; Celi, A.; Paggiaro, P. Distinct profile of inflammatory and remodelling biomarkers in sputum of severe asthmatic patients with or without persistent airway obstruction. World Allergy Organ. J. 2019, 12, 100078. [Google Scholar] [CrossRef]
- Timoneda, J.; Rodríguez-Fernández, L.; Zaragozá, R.; Marín, M.P.; Cabezuelo, M.T.; Torres, L.; Viña, J.R.; Barber, T. Vitamin A deficiency and the lung. Nutrients 2018, 10, 1132. [Google Scholar] [CrossRef]
- Defnet, A.E.; Shah, S.D.; Huang, W.; Shapiro, P.; Deshpande, D.A.; Kane, M.A. Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J. 2021, 35, e22016. [Google Scholar] [CrossRef]
- Druilhe, A.; Zahm, J.-M.; Benayoun, L.; El Mehdi, D.; Grandsaigne, M.; Dombret, M.-C.; Mosnier, I.; Feger, B.; Depondt, J.; Aubier, M.; et al. Epithelium expression and function of retinoid receptors in asthma. Am. J. Respir. Cell. Mol. Biol. 2008, 38, 276–282. [Google Scholar] [CrossRef]
- Day, R.M.; Lee, Y.H.; Park, A.-M.; Suzuki, Y.J. Retinoic acid inhibits airway smooth muscle cell migration. Am. J. Respir. Cell. Mol. Biol. 2006, 34, 695–703. [Google Scholar] [CrossRef]
- Callaghan, P.J.; Rybakovsky, E.; Ferrick, B.; Thomas, S.; Mullin, J.M. Retinoic acid improves baseline barrier function and attenuates TNF-α-induced barrier leak in human bronchial epithelial cell culture model, 16HBE 14o. PLoS ONE 2020, 15, e0242536. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Liu, Q.; Zhong, W.; Xia, Z. All-trans retinoic acid attenuates airway inflammation by inhibiting Th2 and Th17 response in experimental allergic asthma. BMC Immunol. 2013, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Takamura, K.; Nasuhara, Y.; Kobayashi, M.; Betsuyaku, T.; Tanino, Y.; Kinoshita, I.; Yamaguchi, E.; Matsukura, S.; Schleimer, R.P.; Nishimura, M. Retinoic acid inhibits interleukin-4-induced eotaxin production in a human bronchial epithelial cell line. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2004, 286, L777–L785. [Google Scholar] [CrossRef] [PubMed]
- Kurie, J.M.; Lotan, R.; Lee, J.J.; Lee, J.S.; Morice, R.C.; Liu, D.D.; Xu, X.-C.; Khuri, F.R.; Ro, J.Y.; Hittelman, W.N.; et al. Treatment of former smokers with 9-cis-retinoic acid reverses loss of retinoic acid receptorbeta expression in the bronchial epithelium: Results from a randomized placebo-controlled trial. J. Natl. Cancer. Inst. 2003, 95, 206–214. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Frankenberger, M.; Heimbeck, I.; Möller, W.; Mamidi, S.; Kaßner, G.; Pukelsheim, K.; Wjst, M.; Neiswirth, M.; Kroneberg, P.; Lomas, D.; et al. Inhaled all-trans retinoic acid in an individual with severe emphysema. Eur. Respir. J. 2009, 34, 1487–1489. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits-A review of recent advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.R.; Kim, J.O.; Lee, Y.C. The roles of phytochemicals in bronchial asthma. Molecules 2010, 15, 6810–6834. [Google Scholar] [CrossRef]
- Arora, A.; Willhite, C.A.; Liebler, D.C. Interactions of beta-carotene and cigarette smoke in human bronchial epithelial cells. Carcinogenesis 2001, 22, 1173–1178. [Google Scholar] [CrossRef]
- Prakash, P.; Liu, C.; Hu, K.-Q.; Krinsky, N.I.; Russell, R.M.; Wang, X.-D. Beta-carotene and beta-apo-14′-carotenoic acid prevent the reduction of retinoic acid receptor beta in benzo[a]pyrene-treated normal human bronchial epithelial cells. J. Nutr. 2004, 134, 667–673. [Google Scholar] [CrossRef]
- Hazlewood, L.C.; Wood, L.G.; Hansbro, P.M.; Foster, P.S. Dietary lycopene supplementation suppresses Th2 responses and lung eosinophilia in a mouse model of allergic asthma. J. Nutr. Biochem. 2011, 22, 95–100. [Google Scholar] [CrossRef]
- Lian, F.; Wang, X.-D. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int. J. Cancer 2008, 123, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Chiaverelli, R.A.; Hu, K.-Q.; Liu, C.; Lim, J.Y.; Daniels, M.S.; Xia, H.; Mein, J.; von Lintig, J.; Wang, X.-D. β-Cryptoxanthin attenuates cigarette-smoke-induced lung lesions in the absence of carotenoid cleavage enzymes (BCO1/BCO2) in mice. Molecules 2023, 28, 1383. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bronson, R.T.; Russell, R.M.; Wang, X.-D. β-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets. Cancer Prev. Res. 2011, 4, 1255–1266. [Google Scholar] [CrossRef]
- Allen, S.; Britton, J.R.; Leonardi-Bee, J.A. Association between antioxidant vitamins and asthma outcome measures: Systematic review and meta-analysis. Thorax 2009, 64, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Tecklenburg, S.L.; Mickleborough, T.D.; Fly, A.D.; Bai, Y.; Stager, J.M. Ascorbic acid supplementation attenuates exercise-induced bronchoconstriction in patients with asthma. Respir. Med. 2007, 101, 1770–1778. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. High dose vitamin C supplementation increases the Th1/Th2 cytokine secretion ratio, but decreases eosinophilic infiltration in bronchoalveolar lavage fluid of ovalbumin-sensitized and challenged mice. J. Agric. Food Chem. 2009, 57, 10471–10476. [Google Scholar] [CrossRef]
- Zhu, W.; Cromie, M.M.; Cai, Q.; Lv, T.; Singh, K.; Gao, W. Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS ONE 2014, 9, e92992. [Google Scholar] [CrossRef]
- Hoskins, A.; Roberts, J.L.; Milne, G.; Choi, L.; Dworski, R. Natural-source d-α-tocopheryl acetate inhibits oxidant stress and modulates atopic asthma in humans In Vivo. Allergy 2012, 67, 676–682. [Google Scholar] [CrossRef]
- Wiser, J.; Alexis, N.E.; Jiang, Q.; Wu, W.; Robinette, C.; Roubey, R.; Peden, D.B. In vivo gamma-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects. Free Radic. Biol. Med. 2008, 45, 40–49. [Google Scholar] [CrossRef]
- Hernandez, M.L.; Wagner, J.G.; Kala, A.; Mills, K.; Wells, H.B.; Alexis, N.E.; Lay, J.C.; Jiang, Q.; Zhang, H.; Zhou, H.; et al. Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic. Biol. Med. 2013, 60, 56–62. [Google Scholar] [CrossRef]
- Burbank, A.J.; Duran, C.G.; Pan, Y.; Burns, P.; Jones, S.; Jiang, Q.; Yang, C.; Jenkins, S.; Wells, H.; Alexis, N.; et al. Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma. J. Allergy Clin. Immunol. 2018, 141, 1231–1238.e1. [Google Scholar] [CrossRef] [PubMed]
- Talati, M.; Meyrick, B.; Peebles Jr, R.S.; Davies, S.S.; Dworski, R.; Mernaugh, R.; Mitchell, D.; Boothby, M.; Roberts, L.J.; Sheller, J.R. Oxidant stress modulates murine allergic airway responses. Free Radic. Biol. Med. 2006, 40, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Quoc, Q.L.; Bich, T.C.T.; Kim, S.-H.; Park, H.-S.; Shin, Y.S. Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma. J. Cell Mol. Med. 2021, 25, 6721–6732. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Chen, H.; Chang, Q.; Liu, X.; Wu, Y.; Wei, C.; Li, R.; Kwan, J.K.C.; Yeung, K.L.; et al. Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma. Sci. Rep. 2014, 4, 4275. [Google Scholar] [CrossRef]
- Mabalirajan, U.; Aich, J.; Leishangthem, G.D.; Sharma, S.K.; Dinda, A.K.; Ghosh, B. Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model. J. Appl. Physiol. 2009, 107, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- McCary, C.A.; Abdala-Valencia, H.; Berdnikovs, S.; Cook-Mills, J.M. Supplemental and highly elevated tocopherol doses differentially regulate allergic inflammation: Reversibility of α-tocopherol and γ-tocopherol’s effects. J. Immunol. 2011, 186, 3674–3685. [Google Scholar] [CrossRef]
- Hall, S.C.; Agrawal, D.K. Vitamin D and bronchial asthma: An overview of data from the past 5 years. Clin. Ther. 2017, 39, 917–929. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Lu, H.; Mann, E.H.; Chen, Y.-H.; Ho, T.-R.; Cousins, D.J.; Corrigan, C.; Kelly, F.J.; Mudway, I.S.; Hawrylowicz, C.M. Effects of vitamin D on inflammatory and oxidative stress responses of human bronchial epithelial cells exposed to particulate matter. PLoS ONE 2018, 13, e0200040. [Google Scholar] [CrossRef]
- Ramos-Martínez, E.; López-Vancell, M.R.; Fernández de Córdova-Aguirre, J.C.; Rojas-Serrano, J.; Chavarría, A.; Velasco-Medina, A.; Velázquez-Sámano, G. Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. Cytokine 2018, 108, 239–246. [Google Scholar] [CrossRef]
- Adam-Bonci, T.-I.; Bonci, E.-A.; Pârvu, A.-E.; Herdean, A.-I.; Moț, A.; Taulescu, M.; Ungur, A.; Pop, R.-M.; Bocșan, C.; Irimie, A. Vitamin D supplementation: Oxidative stress modulation in a mouse model of ovalbumin-induced acute asthmatic airway inflammation. Int. J. Mol. Sci. 2021, 22, 7089. [Google Scholar] [CrossRef]
- Huang, C.; Peng, M.; Tong, J.; Zhong, X.; Xian, J.; Zhong, L.; Deng, J.; Huang, Y. Vitamin D ameliorates asthma-induced lung injury by regulating HIF-1α/Notch1 signaling during autophagy. Food Sci. Nutr. 2022, 10, 2773–2785. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.D.; Hall, S.C.; Agrawal, D.K. Vitamin D supplementation reduces induction of epithelial-mesenchymal transition in allergen sensitized and challenged mice. PLoS ONE 2016, 11, e0149180. [Google Scholar] [CrossRef] [PubMed]
- Gorman, S.; Weeden, C.E.; Tan, D.H.W.; Scott, N.M.; Hart, J.; Foong, R.E.; Mok, D.; Stephens, N.; Zosky, G.; Hart, P.H. Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: An ovalbumin-induced model of allergic airway disease. PLoS ONE 2013, 8, e67823. [Google Scholar] [CrossRef]
- Taher, Y.A.; van Esch, B.C.A.M.; Hofman, G.A.; Henricks, P.A.J.; van Oosterhout, A.J.M. 1alpha,25-dihydroxyvitamin D3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma: Role for IL-10 and TGF-beta. J. Immunol. 2008, 180, 5211–5221. [Google Scholar] [CrossRef]
- Agrawal, T.; Gupta, G.K.; Agrawal, D.K. Vitamin D supplementation reduces airway hyperresponsiveness and allergic airway inflammation in a murine model. Clin. Exp. Allergy 2013, 43, 672–683. [Google Scholar] [PubMed]
- Zhang, H.; Yang, N.; Wang, T.; Dai, B.; Shang, Y. Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-κB signaling pathway. Mol. Med. Rep. 2018, 17, 2915–2920. [Google Scholar]
- Ekmekci, O.P.; Donma, O.; Sardoğan, E.; Yildirim, N.; Uysal, O.; Demirel, H.; Demir, T. Iron, nitric oxide, and myeloperoxidase in asthmatic patients. Biochemistry 2004, 69, 462–467. [Google Scholar] [CrossRef]
- Narula, M.K.; Ahuja, G.K.; Whig, J.; Narang, A.P.S.; Soni, R.K. Status of lipid peroxidation and plasma iron level in bronchial asthmatic patients. Indian J. Physiol. Pharmacol. 2007, 51, 289–292. [Google Scholar]
- Han, F.; Li, S.; Yang, Y.; Bai, Z. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis. Bioengineered 2021, 12, 5279–5288. [Google Scholar] [CrossRef]
- Kuribayashi, K.; Iida, S.-I.; Nakajima, Y.; Funaguchi, N.; Tabata, C.; Fukuoka, K.; Fujimori, Y.; Ihaku, D.; Nakano, T. Suppression of heme oxygenase-1 activity reduces airway hyperresponsiveness and inflammation in a mouse model of asthma. J. Asthma 2015, 52, 662–668. [Google Scholar] [CrossRef]
- Ghio, A.J.; Hilborn, E.D. Indices of iron homeostasis correlate with airway obstruction in an NHANES III cohort. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Hilborn, E.D.; Stonehuerner, J.G.; Dailey, L.A.; Carter, J.D.; Richards, J.H.; Crissman, K.M.; Foronjy, R.F.; Uyeminami, D.L.; Pinkerton, K.E. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am. J. Respir. Crit. Care. Med. 2008, 178, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Zajac, D. Mineral micronutrients in asthma. Nutrients 2021, 13, 4001. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, B.; Cormier, S.A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. Vitr. 2009, 23, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Lee, I.-C.; Shin, N.-R.; Jeon, C.-M.; Kwon, O.-K.; Ko, J.-W.; Kim, J.-C.; Oh, S.-R.; Shin, I.-S.; Ahn, K.-S. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 2016, 10, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, A.; Sener, O.; Bulucu, F.; Karadurmus, N.; Özel, H.E.; Yamanel, L.; Tasci, C.; Naharci, I.; Ocal, R. Aydin Oxidative stress status and plasma trace elements in patients with asthma or allergic rhinitis. Allergol. Immunopathol. 2011, 39, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.-H.; Liu, P.-J.; Hsia, S.; Chuang, C.-J.; Chen, P.-C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef]
- Mao, S.; Wu, L.; Shi, W. Association between trace elements levels and asthma susceptibility. Respir. Med. 2018, 145, 110–119. [Google Scholar] [CrossRef]
- Richter, M.; Cantin, A.M.; Beaulieu, C.; Cloutier, A.; Larivée, P. Zinc chelators inhibit eotaxin, RANTES, and MCP-1 production in stimulated human airway epithelium and fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 2003, 285, L719–L729. [Google Scholar] [CrossRef]
- Lang, C.; Murgia, C.; Leong, M.; Tan, L.-W.; Perozzi, G.; Knight, D.; Ruffin, R.; Zalewski, P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2007, 292, L577–L584. [Google Scholar] [CrossRef]
- Lu, H.; Xin, Y.; Tang, Y.; Shao, G. Zinc suppressed the airway inflammation in asthmatic rats: Effects of zinc on generation of eotaxin, MCP-1, IL-8, IL-4, and IFN-γ. Biol. Trace. Elem. Res. 2012, 150, 314–321. [Google Scholar] [CrossRef] [PubMed]
Design | Study Population | Antioxidants | Main Findings | Ref. |
---|---|---|---|---|
Cross-sectional | Total subjects = 2112 12th grade US students | VC, VE (diet) | Low dietary VC intake (<110 mg/day) was associated with FEV1 decline and respiratory symptoms in smokers with asthma | [32] |
Smokers = 515 | VE intake was not associated with asthma | |||
Cross-sectional | Total subjects = 13,039 US adults (20–80 yrs) | Total carotenoids (diet and supplement) | High intake of carotenoids (≥165.59 μg/kg/day) was associated with reduced asthma risk in nonsmokers (OR = 0.63, 95% CI = 0.42 to 0.93), current smokers (OR = 0.54, 95% CI = 0.36 to 0.83), and ex-smokers (OR = 0.64, 95% CI = 0.42 to 0.97) | [33] |
Current asthma = 1784; non-current asthma = 11,255 | ||||
Nonsmokers= 7106; current smokers= 3304; ex-smokers= 2624 | ||||
RDBPC | Total subjects = 72 UK nonsmoking asthmatics (18–60 yrs) | VE (supplement) | VE had no beneficial effects on asthma | [34] |
500 mg VE capsules (D-α-tocopherol) in soya bean oil or matched placebo (capsules, gelatine base) for 6 weeks | ||||
RDBPC | Total subjects = 197 UK smoking and nonsmoking asthmatics (18–54 yrs) | Se (supplement) | Plasma Se was increased by 48% in the Se group. However, no significant improvement in QoL score was observed in the Se group compared with placebo | [35] |
100 μg/day high-Se yeast preparation or matched placebo (yeast only) for 24 weeks |
Design | Study Population | OS Biomarkers | Ref. |
---|---|---|---|
Case-control study | Total subjects = 210 Indian (13–80 yrs) Smokers/nonsmokers (asthmatics = 19/101; healthy controls = 29/61) | Asthmatic smokers = MDA ↑, FRAP ↓ | [37] |
Case-control study | Total subjects = 194 Italian patients with different pulmonary diseases (average 45.8 yrs) | Asthmatic current smokers = MDA ↑ | [38] |
Asthmatics (current and ex-smokers) = 64; healthy controls (nonsmokers) = 14 | |||
Case-control study | Total subjects = 329 Tunisian adults (average 43.6 yrs) | Asthmatic current smokers = Protein carbonyls, peroxynitrite ↑ | [39] |
Asthmatic current smokers/healthy controls = 14/73; Asthmatic ex- smokers/healthy controls = 17/13 | |||
Asthmatic nonsmokers/healthy controls = 120/92 | |||
Case-control study | Total subjects = 266 Chinese adults (39–47 yrs) | Asthmatic smokers and nonsmokers = SOD, GSH ↑ | [40] |
Asthmatic smokers/nonsmokers = 25/106; healthy controls (nonsmokers) = 135 | |||
Case-control study | Total subjects = 61 Indian (15–40 yrs) Asthmatic nonsmokers/healthy controls= 38/23 | Asthmatic nonsmokers = SOD, NO2−, protein carbonyls, lipid peroxide ↑ | [41] |
GPx, protein sulfhydrils ↓ | |||
Case-control study | Total subjects = 32 Turkish adults (average 41 yrs) | Asthmatic nonsmokers = GSH, NO2− ↑ | [42] |
Stable asthmatic nonsmokers = 11; Severe asthmatic nonsmokers = 10; Healthy nonsmokers = 11 |
Design | Study Population | Inflammation Biomarkers | Ref. |
---|---|---|---|
Case-control study | Total subjects = 143 Greek adults (average 48.7 yrs) | Asthmatic smokers = FeNo ↓, eosinophils ↑ | [43] |
Asthmatic smokers/nonsmokers = 40/43 | |||
Healthy smokers/nonsmokers = 30/30 | |||
Case-control study | Total subjects = 470 Belgium adults (average 41 yrs) | Asthmatic smokers = FeNo ↓ | [44] |
Asthmatic smokers/nonsmokers = 59/411 | |||
Case-control study | Total subjects = 147 European adults (average 46.8 yrs) | Asthmatic smokers = FeNo ↓ | [45] |
Asthmatic smokers = 18; Severe Asthmatic nonsmokers = 49; Mild-moderate asthmatic nonsmokers = 36; healthy nonsmoker = 44 | Asthmatic nonsmokers = FeNo, eosinophil ↑ | ||
Case-control study | Total subjects = 1230 Italian adults (20–65 yrs) | Asthmatic nonsmokers = FeNo, eosinophils, neutrophils ↑ | [46] |
Current/past asthmatic nonsmokers = 404/185; Current and past chronic bronchitis smokers = 92; healthy controls = 549 | |||
Case-control study | Total subjects = 282 Danish (14–44 yrs) | Asthmatic nonsmokers = FeNo, ↑ | [47] |
Asthmatic current/ex-smokers = 112/62; Asthmatic nonsmokers = 108 | |||
Case-control study | Total subjects = 58 Polish adults (25–45 yrs) | Asthmatic nonsmokers = FeNo, eotaxin, eosinophil ↑ | [48] |
Asthmatic nonsmokers/Healthy controls = 46/12 | |||
Case-control study | Total subjects = 68 Lithuanian adults (average 55.2 yrs) | Asthmatic smokers = Eotaxin, neutrophils, eosinophils ↑ | [49] |
Asthmatic smokers/nonsmokers = 19/26; Healthy smokers and non-smokers = 23 | Asthmatic nonsmokers = Eotaxin, neutrophils, eosinophils, IL-5 ↑ | ||
Case-control study | Total subjects = 86 UK adults (average 50 yrs) | Asthmatic smokers = IL-1β, IL-5, IL-18R1 ↑ | [50] |
Severe asthmatic smokers/nonsmokers = 21/37; mild-moderate asthmatics = 15; healthy controls = 13 | Asthmatic nonsmokers = Eotaxin, IL-4, IL-5, IL-1β, IL-1RL1, IL-1R1, NLRP3 ↑ | ||
Case-control study | Total subjects = 97 UK adults (average 37 yrs) | Asthmatic smokers = eosinophils, ECP, neutrophils, IL-8 ↑ | [51] |
Asthmatic smokers/nonsmokers = 31/36; Nonasthmatic smokers/nonsmokers = 15/15 | Asthmatic nonsmokers = eosinophils, ECP ↑ | ||
Case-control study | Total subjects = 152 UK adults (18–75 yrs) | Asthmatic smokers = Periostin ↓ | [52] |
Asthmatic smokers/nonsmokers = 56/51; Healthy smokers/nonsmokers = 20/25 | Asthmatic nonsmokers = Periostin ↑ | ||
Case-control study | Total subjects = 89 Turkish adults (25–65 yrs) | Asthmatic nonsmokers = Periostin, TNFα, IL-4, IL-5, YKL-40 ↑, IL-37 ↓ | [53] |
Asthmatic nonsmokers/healthy controls = 59/30 | |||
Case-control study | Total subjects = 79 Greek adults (average 46 yrs) | Asthmatic smokers = eosinophils, neutrophils ↑, IL-18 ↓ | [54] |
Asthmatic smokers/nonsmokers = 24/22; Healthy smokers/nonsmokers = 16/17 | Asthmatic nonsmokers = eosinophils, neutrophils, IL-18 ↑ | ||
Case-control study | Total subjects = 115 Korean adults (average 55 yrs) | Asthmatic smokers = ILC3, eosinophils, neutrophils ↑ | [55] |
Asthmatic smokers/nonsmokers = 58/33; Healthy smokers/nonsmokers = 11/13 | |||
Case-control study | Total subjects = 168 Chinese adults (average 36 yrs) | Eosinophilic asthmatic nonsmokers = ILC2, IgE, eosinophils, FeNO ↑ | [56] |
Eosinophilic asthmatic/non asthmatic nonsmokers = 62/64; Healthy controls = 42 | |||
Case-control study | Total subjects = 85 Japanese adults (20–60 yrs) | Asthmatic nonsmokers = hs-CRP, eosinophils, neutrophils ↑ | [57] |
Asthmatic nonsmokers/healthy controls = 45/40 | |||
Case-control study | Total subjects = 98 Iranian adults (average 35 yrs) | Asthmatic nonsmokers = hs-CRP, eosinophils ↑ | [58] |
Asthmatic nonsmokers receiving/not receiving inhaled fluticasone (500 µg/day) = 31/30; Healthy controls = 37 | |||
Case-control study | Total subjects = 525 European adults (36–55 yrs) | Asthmatic smokers and nonsmokers = hs-CRP, eosinophils, neutrophils, IgE ↑ | [59] |
Smokers or ex-smokers with severe asthma = 95; Nonsmokers with severe asthma = 263; Nonsmokers with mild-moderate asthma = 76; healthy nonsmoker = 91 | |||
Case-control study | Total subjects = 88 European adults (39–50 yrs) | Asthmatic ex-smokers = MMP-12, CXCL8, neutrophil elastase, AZU-1, PPBP ↑ | [60] |
Asthmatic current smokers = 11; Asthmatic ex-smokers = 22; Asthmatic nonsmoker s = 37; Healthy nonsmoker = 18 | Asthmatic nonsmokers = eosinophil ↑ | ||
Cross-sectional study | Total subjects = 324 European adults with severe asthma (average 52.5 yrs) | Asthmatic current smokers = FeNo ↓, NOS2, NOx2 ↑ | [61] |
Current smokers = 42; Ex-smokers = 112; Nonsmokers = 260 | Asthmatic ex-smokers = FeNo, NOX2 ↑ | ||
Asthmatic nonsmokers = FeNo ↑ | |||
Cross-sectional study | Total subjects = 740 UK patients with severe asthma (6–43 yrs) | Asthmatic current smokers = FeNO, blood eosinophils, sputum eosinophils | [62] |
Current smokers = 69; Ex-smokers = 210; Nonsmokers = 461 | sputum neutrophils, IgE ↓ | ||
Asthmatic ex-smokers = FeNO, sputum neutrophils, blood eosinophils ↑, IgE ↓ | |||
Asthmatic nonsmokers = FeNO, IgE, sputum neutrophils, sputum eosinophils, blood eosinophils ↑ | |||
Cross-sectional study | Total subjects = 1578 French patients with asthma (40–64 yrs) | Asthmatic current and ex- smokers = FeNO ↓, blood eosinophils ↑ | [63] |
Current smokers = 294; Ex-smokers = 473; Nonsmokers = 812 | Asthmatic nonsmokers = FeNO ↑, blood eosinophils ↓ | ||
Cross-sectional study | Total subjects = 274 Greek patients with asthma (average 50 yrs) | Asthmatic smokers and nonsmokers = FeNO ↑ | [64] |
Inhaled corticosteroid (ICS)-treated smokers = 50; ICS-untreated smokers = 32; ICS-treated nonsmokers = 144; ICS-untreated nonsmokers = 48 | |||
Cross-sectional study | Total subjects = 478 Chinese patients with asthma (average 45 yrs) | Asthmatic nonsmokers = IgE ↑ | [65] |
Obstructive group (current smokers = 70; ex-smokers = 44; nonsmokers = 271), Normal group (current smokers = 9; ex-smokers = 6; nonsmokers = 78) | |||
Prospective cohort study | Total subjects = 4257 European and Australian adults (average 54 yrs) | Asthmatic nonsmokers = FeNO ↑ | [66] |
Current asthma (smokers = 97; nonsmokers = 554) | |||
Non-asthma (smokers = 651; nonsmokers = 2955) | |||
Prospective cohort study | Total subjects = 45 Italian adults with severe asthma (average 60 yrs) | Asthmatic nonsmokers = FeNO, periostin, eosinophil, TGF-β1 ↑ | [67] |
Nonsmokers = 42; ex-smokers = 3 |
Study Design | Antioxidant Vitamins/Minerals | Concentration/Supplement Intake | OS Biomarkers | Inflammation Biomarkers | Ref. |
---|---|---|---|---|---|
In vitro | VA (RARγ, ATRA) | 1–1000 μM | - | MMPs (MMP8, MMP9) ↓ | [69] |
In vitro | VA (ATRA, 9-cis RA) | 1 mM in the presence of 0.2 mg/mL neutralizing anti-TGF-β1 | - | MMP9 ↓ | [70] |
In vitro | VA (RA) | 5, 15, 50 μM | - | TNFα, IL-6 ↓ | [72] |
In vivo | VA (ATRA) | 400 μg/mL | - | IL-4, IL-5, IL-17A, neutrophils, eosinophils ↓ | [73] |
In vitro | VA (ATRA, 9-cis RA) | 10−6–10−10 M | - | IL-4, eotaxin ↓ | [74] |
In vivo | Lycopene | 0.16 mg (equivalent to 8 mg/kg per day) plus 0.05 mg VE and 0.006 mg β-carotene | - | IL-4, IL-5, eosinophils ↓ | [81] |
In vitro | Lycopene | 3, 5 10 μM | GSH ↑, ROS, H2O2 ↓ | - | [82] |
In vivo/vivo | BCX | 1–4 μM (in vitro) 30−43 nmol BCX/g liver (in vivo) | - | Neutrophils, TNFα, IL-6, MMPs (MMP2, MMP9) ↓ | [83] |
RCT | VC | 1500 mg/day for 2 weeks, or a placebo | - | FeNO ↓ | [86] |
In vivo | VC | 130 mg VC/kg bw/day | - | Eosinophils ↓ | [87] |
Non-randomized trial in vivo | VE | 1500 IU/day for 16 weeks | - | IL-3, IL-4 ↓ | [89] |
ex-vivo | VE | 1200 mg/day for 8 days | - | TNFα, IL-1β, IL-6 ↓ | [90] |
RDBPC | VE | 1200 mg/day for 14 days, or a placebo | - | Eosinophils, neutrophils ↓ | [92] |
In vivo | VE | 50 mg VE/kg bw/day | H2O2, ROS ↓, GSH, SOD ↑ | IL-5, IL-13, eosinophils, neutrophils ↓, | [94] |
In vivo | VE | 0.2 and 2.0 mg VE/kg bw/day | ROS ↓, GSH ↑ | IL-4, IgE ↓ | [95] |
In vivo | VE | 5, 10, 15, and 20 IU VE/kg bw/day | NO2−, peroxynitrite ↓ | IL-4, IL-5, IL-13, eotaxin, IgE, TGF-β1 ↓ | [96] |
In vivo | VE | 0.2 or 2 mg VE/kg bw/day | - | IL-5, IL-12, IL-13 ↓ | [97] |
In vitro | VD | 100 μM | - | IL-6, CXCL8 ↓ | [99] |
RCT | VD | 0.25 μg/day calcitriol for 6 months, or a placebo | - | IL-5, IL-9, IL-13, IgE, eosinophils ↓, IL-10 ↑ | [100] |
In vivo | VD | 50 μg/kg VD/kg bw/day | NO2− ↓ | IL-4 ↓ | [101] |
In vivo | VD | 100, 500, or 1000 IU VD/kg bw/day | - | IL-6, IL-17 ↓ | [102] |
In vivo | VD | 10,000 IU VD/kg bw/day | - | IgE ↓ | [103] |
In vivo | VD | 2280 IU VD/kg bw/day | - | IL-5, IL-13, eosinophils, neutrophils ↓ | [104] |
In vivo | VD | 1 mg VD/kg bw/day | - | IgE ↓, IL-10 ↑ | [105] |
In vivo | VD | 10,000 IU VD/kg bw/day | - | IL-6, IL-17, TNFα, eosinophils ↓, IL-10 ↑ | [106] |
In vivo | VD | 1 μg/mL/20 g VD/kg bw/day | - | IL-6, IL-1β, TNFα, ↓, IL-10 ↑ | [107] |
In vitro | Fe | 3.3 M plus ferroptosis inhibitor Fer-1 (0.1 μM) | MDA, ROS ↑, GSH ↓ | IL-6 ↑ | [110] |
In vitro | Zn | 2 μM | - | TNFα, eotaxin ↓ | [120] |
In vivo | Zn | 0, 54, or 100 μg Zn/kg bw/day | - | Eosinophils ↓ | [121] |
In vivo | Zn | 95 mg Zn/kg bw/day | - | Eosinophils, neutrophils, eotaxin ↓ | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharairi, N.A. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review. Curr. Issues Mol. Biol. 2023, 45, 5099-5117. https://doi.org/10.3390/cimb45060324
Alsharairi NA. Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review. Current Issues in Molecular Biology. 2023; 45(6):5099-5117. https://doi.org/10.3390/cimb45060324
Chicago/Turabian StyleAlsharairi, Naser A. 2023. "Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review" Current Issues in Molecular Biology 45, no. 6: 5099-5117. https://doi.org/10.3390/cimb45060324
APA StyleAlsharairi, N. A. (2023). Antioxidant Intake and Biomarkers of Asthma in Relation to Smoking Status—A Review. Current Issues in Molecular Biology, 45(6), 5099-5117. https://doi.org/10.3390/cimb45060324