ERβ Isoforms Have Differential Clinical Significance in Breast Cancer Subtypes and Subgroups
Abstract
:Simple Summary
Abstract
1. Introduction
Two Estrogen Receptors
2. Materials and Methods
2.1. Patients
2.2. Breast Cancer Cell Lines
2.3. Tissue Microarray (TMA) Preparation
2.4. RNA Isolation and Quantitative Reverse Transcription (qRT)-PCR of ERα and ERβ Isoforms
2.5. Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. Differential mRNA and Protein Expression of ERα and ERβ Isoforms in Benign Breast Tissues and BCa Subtypes
3.2. ERβ Isoform mRNA and Protein Expression Is Differentially Associated with Clinical Characteristics and Molecular Types in BCa
3.3. ERβ Isoform mRNA and Protein Expression Is Associated with High Ki-67 Positivity
3.4. ERβ Isoform Protein and mRNA Expression and Overall Survival in the BCa Subtypes and Subgroups
3.5. ERβ 2 and 5 Isoform Expression Is Predictive of Poor OS in ERα-Negative BCa and TNBC
3.6. ERα and ERβ Isoform mRNA and Protein Expression in BCC Mirrored That in BCa
4. Discussion
4.1. ERβ1, 2, and 5 Isoforms Are Differentially Associated with Clinical Outcomes in BCa
4.2. ERβ mRNA or Protein Expression Is Differentially Associated with Clinical Outcomes in BCa
4.3. ERβ as a Potential Therapeutic Target in BCa
4.4. ERβ Studies in Breast Cancer Cell Lines (BCCs)
4.5. Variation in ERβ mRNA and ERβ Protein Testing Protocols
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, E.; Shanle, E.; Brinkman, A.; Keles, S.; Wisinski, K.; Huang, W.; Xu, W. Identification of estrogen receptor dimer selective ligands reveals growth-inhibitory effects on cells that co-express ERα and ERβ. PLoS ONE 2012, 7, e30993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.M.; McDonnell, D.P. The estrogen receptor β isoform (ERβ) of the human estrogen receptor modulates ERα transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 1999, 140, 5566–5578. [Google Scholar] [CrossRef] [PubMed]
- Borgquist, S.; Zholm, C.; Stendahl, M.; Anagnostaki, L.; Landberg, G.; Jirstrom, K. Oestrogen receptors α and β show different associations to clinicopathological parameters and their co-expression might predict a better response to endocrine treatment in breast cancer. J. Clin. Pathol. 2008, 61, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.; Mak, P.; Hassan, S.; Ho, S. Estrogen receptor (ER)-β isoforms: A key to understanding ER-β signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 13162–13167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Inoue, S.; Watanabe, T.; Orimo, A.; Hosoi, T.; Ouchi, Y.; Muramatsu, M. Molecular cloning and characterization of human estrogen receptor βcx: A potential inhibitor of estrogen action in human. Nucleic Acids Res. 1998, 26, 3505–3512. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Matthews, J.; Tujague, M.; Wan, J.; Strom, A.; Toresson, G.; Dahlman-Wright, K. Estrogen receptor β2 negatively regulates the transactivation of estrogen receptor alpha in human breast cancer cells. Cancer Res. 2007, 67, 3955–3962. [Google Scholar] [CrossRef] [Green Version]
- Poola, I.; Abraham, J.; Baldwin, K.; Saunders, A.; Bhatnagar, R. Estrogen receptor beta4 and beta5 are full length functionally distinct ER beta isoforms-Cloning from human ovary and functionally characterization. Endocrine 2005, 27, 227–238. [Google Scholar] [CrossRef]
- Sørlie, T.; Peroua, C.; Tibshiranie, R.; Aas, T.; Geisler, S.; Johnson, H.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [Green Version]
- Clarke, R.; Skaar, T.; Bouker, K.; Davis, N.; Lee, R.; Welch, J.; Leonessa, F. Molecular and pharmacological aspects of antiestrogen resistance. J. Steroid Biochem. Mol. Biol. 2001, 76, 71–84. [Google Scholar] [CrossRef]
- Foulkes, W.; Smith, I.; Reis-Filho, J. Triple-Negative Breast Cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [Green Version]
- Mosselman, S.; Polman, J.; Dijkema, R. ERβ: Identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996, 392, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Fox, E.M.; Davis, R.J.; Shupnik, M.A. ERβ in breast cancer-on looker, passive player, or active protector? Steroids 2008, 73, 1039–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haldosen, L.; Zhao, C.; Dahlman-Wright, K. Estrogen receptor β in breast cancer. Mol. Cell Endocrinol. 2014, 382, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.; Leygue, E. The role of estrogen receptor-β in breast cancer. Semin. Reprod. Med. 2012, 30, 5–13. [Google Scholar] [CrossRef]
- Tan, W.; Li, Q.; Chen, K.; Su, F.; Song, E.; Gong, C. Estrogen receptor β as a prognostic factor in breast cancer patients: A systematic review and meta-analysis. Oncotarget 2016, 7, 10373–10385. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liu, X. The role of estrogen receptor beta in breast cancer. Biomark. Res. 2010, 8, 39. [Google Scholar] [CrossRef]
- Sellitto, A.; D’Agostino, Y.; Alexandrova, E.; Lamberti, J.; Pecoraro, G.; Memoli, D.; Rizzo, F. Insights into the role of estrogen receptor β in triple negative breast cancer. Cancers 2020, 12, 1477. [Google Scholar] [CrossRef]
- Skliris, G.; Leygue, E.; Watson, P.; Murphy, L. Estrogen receptor alpha negative breast cancer patients: Estrogen receptor beta as a therapeutic target. J. Steroid Biochem. Mol. Biol. 2008, 109, 1–10. [Google Scholar] [CrossRef]
- Monaco, A.; Licitra, F.; Di Gisi, M.; Galasso, G.; Di Donato, M.; Giovannelli, P.; Castoria, G. ERβ in Triple-negative breast cancer: Emerging concepts and therapeutic possibilities. Endocrines 2021, 2, 356–365. [Google Scholar] [CrossRef]
- Choi, Y.; Pinto, M. Estrogen receptor β in breast cancer: Associations between ERβ hormonal receptors, and other prognostic biomarkers. Appl. Immunohistochem. Mol. Morphol. 2005, 13, 19–25. [Google Scholar] [CrossRef]
- Lacroix, M.; Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 2004, 83, 249–289. [Google Scholar] [CrossRef]
- Poola, I.; Yue, Q. Estrogen receptor alpha (ERα) mRNA copy numbers in immunohistochemically ERα-positive- and negative- breast cancer tissues. BMC Cancer 2007, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.; Sundberg, M.; Pristovsek, N.; Ibrahim, A.; Johnson, P.; Ktona, B.; Asplund, A. Insufficient antibody validation challenges oestrogen receptor beta research. Nat. Commun. 2017, 8, 15840. [Google Scholar] [CrossRef]
- Wu, X.; Subramaniam, M.; Negron, V.; Cicek, M.; Reynolds, C.; Lingle, W.; Hawse, J.R. Development, characterization, and applications of a novel estrogen receptor beta monoclonal antibody. J. Cell. Biochem. 2012, 113, 711–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skliris, G.; Parkes, A.; Burdall, S.; Carder, P.; Speirs, V. Evaluation of seven oestrogen receptor β antibodies for immunohistochemistry, western blotting, and flow cytometry in human breast tissue. J. Pathol. 2002, 197, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Wolff, A.C. Estrogen and Progesterone receptor testing in breast cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef] [PubMed]
- Allred, D.; Harvey, J.; Berardo, M.; Clark, G. Prognostic and predictive factors in breast cancers by immunohistochemical analysis. Mod. Pathol. 1998, 11, 155–168. [Google Scholar] [PubMed]
- Carder, P.; Murphy, C.; Dervan, P.; Kennedy, M.; McCann, A.; Saunders, P. A multi-center investigation towards reaching a consensus on the immunohistochemical detection of ER β in archival formalin-fixed paraffin embedded human breast tissue. Breast Cancer Res. Treat. 2005, 92, 287–293. [Google Scholar] [CrossRef]
- Shaaban, A.; O’neill, P.; Davies, M.; Sibson, R.; West, R.; Smith, P.; Foster, C. Declining estrogen-receptor β expression defines malignant progression in human breast neoplasia. Am. J. Surg. Pathol. 2003, 27, 1502–1512. [Google Scholar] [CrossRef]
- Qureshi, A.; Pervez, S. Allred scoring for ER reporting and its impact in clearly distinguishing ER negative from ER positive breast cancers. J. Pak. Med. Assoc. 2010, 60, 350–353. Available online: http://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/212 (accessed on 12 January 2021).
- Sugiura, H.; Toyama, T.; Hara, Y.; Zhang, Z.; Kobayashi, S.; Fujii, Y.; Iwase, H.; Yamashita, H. Expression of estrogen receptor β wild-type and its variant ERβcx/β2 is correlated with better prognosis in breast cancer. Jpn. J. Clin. Oncol. 2007, 37, 820–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakopoulou, L.; Lazaris, L.; Panayotopoulou, E.; Giannopoulou, I.; Givalos, N.; Markaki, S.; Keramopoulos, A. The favorable prognostic value of oestrogen receptor beta immunohistochemical expression in breast cancer. J. Clin. Pathol. 2004, 57, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, E.; Fleming, F.; Crotty, T.; Kelly, G.; McDermott, W.; O’Higgins, N.J.; Hill, A.D.; Young, L.S. Inverse relationship between ER-beta and SRC-1 predicts outcome in endocrine-resistant breast cancer. Br. J. Cancer 2004, 91, 1687–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, Z.; Xuan, L.; Zheng, S.; Guo, L.; Zhan, Q.; Song, Y. Evaluation of ER-α, ER-β1 and ER-β2 expression and correlation with clinicopathologic factors in invasive luminal subtype breast cancers. Clin. Transl. Oncol. 2012, 14, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Marotti, J.; Collins, L.; Hu, R.; Tamimi, R.M. Estrogen receptor-β expression in invasive breast cancer in relation to molecular phenotype: Results from the Nurses’ Health Study. Mod. Pathol. 2010, 23, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Novelli, F.; Milella, M.; Melucci, E.; Di Benedetto, A.; Sperduti, I.; Perrone-Donnorso, R.; Perracchio, L.; Venturo, I.; Nistico, C.; Fabi, A.; et al. A divergent role for estrogen receptor-β in node-positive and node-negative breast cancer classified according to molecular subtypes: An observational prospective study. Breast Cancer Res. 2008, 10, R7. [Google Scholar] [CrossRef] [Green Version]
- Iwase, H.; Zhang, Z.; Omoto, Y.; Sugiura, H.; Yamashita, H.; Toyama, T.; Iwata, H.; Kobayashi, S. Clinical significance of the expression of estrogen receptors a and b for endocrine therapy of breast cancer. Cancer Chemother. Pharm. 2003, 52, 34–38. [Google Scholar] [CrossRef]
- Dhimolea, E.; Tiniakos, D.; Chantizi, N.; Goutas, N.; Vassilaros, S.; Mitsiou, D.; Alexis, M. Estrogen receptors β1 and β2 are associated estrogen receptor α-positive breast carcinoma to adjunct endocrine therapy. Cancer Lett. 2015, 358, 37–42. [Google Scholar] [CrossRef]
- Speirs, V.; Viale, G.; Mousa, K.; Palmieri, C.; Reed, S.; Nicholas, H.; Lonning, P. Prognostic and predictive value of ERβ1 and ERβ2 in the intergroup exemestane study (IES)—first results from PathIES. Ann. Oncol. 2015, 26, 1890–1897. [Google Scholar] [CrossRef]
- Elebro, K.; Borgquist, S.; Rosendahl, A.; Matkkula, A.; Simonsson, M.; Jirstrom, K.; Jernström, H. High estrogen receptor β expression is prognostic among adjacent chemotherapy-treated patients-results from a population-based breast cancer cohort. Clin. Cancer Res. 2017, 23, 766–777. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, A.; Green, A.; Karthik, S.; Alizadeh, Y.; Hughes, T.A.; Harkin, L.; Ellis, I.O.; Robertson, J.F.; Paish, E.C.; Saunders, P.T.K.; et al. Nuclear and cytoplasmic expression of ER β1, ER β2, and ER β5 identifies distinct prognostic outcome for breast cancer patients. Clin. Cancer Res. 2008, 14, 5228–5235. [Google Scholar] [CrossRef] [Green Version]
- Wurster, M.; Ruoff, A.; Meisner, C.; Seeger, H.; Vogel, U.; Juhasz-Boss, I.; Neubauer, H. Evaluation of ERα, PR and ERβ isoforms in neoadjuvant treated breast cancer. Oncol. Rep. 2010, 24, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Sibson, D.; Holcombe, C.; Aachi, V.; Davies, M. Association of estrogen receptor β2 (ER-β2/ER-βcx) with outcome of adjuvant endocrine treatment for primary breast cancer—A retrospective study. BMC Cancer 2007, 7, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, C.; Lam, E.W.F.; Mansi, J.; MacDonald, C.; Shousha, S.; Madden, P.; Coombes, R.C. The expression of ERβcx in human breast cancer and the relationship to endocrine therapy and survival. Clin. Cancer Res. 2004, 10, 2421–2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.; O’Neill, P.; Innes, H.; Sibson, D.; Prime, W.; Holcombe, C.; Foster, C. Correlation of mRNA for oestrogen receptor β splice variants ERβ1, ERβ2/ERβcx and ERβ5 with outcome in endocrine-treated breast cancer. J. Mol. Endocrinol. 2004, 33, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandusic, V.; Dimitrijevic, B.; Nikolic-vukosavijevic, D.; Neskovic-Konstantinovic, Z.; Kanjer, K.; Hamann, U. Different associations of estrogen receptor β isoforms, ERβ1 and ERβ2 expression levels with tumor size and survival in early- and late-onset breast cancer. Cancer Lett. 2012, 321, 73–79. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, P.; Davies, M.; Shabaan, A.; Innes, H.; Torevell, A.; Sibson, D.R.; Foster, C.S. Wild-type oestrogen receptor β (ERβ1) mRNA and protein expression in tamoxifen-treated post-menopausal breast cancers. Brit. J. Cancer 2004, 91, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Markey, G.; Cullen, R.; Diggin, P.; Hill, A.; Dermott, E.; O’Higgins, N.; Duffy, M. Estrogen receptor-mRNA is associated with adverse outcome in patients with breast cancer. Tumor Biol. 2009, 30, 171–175. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zhang, W.; Yilamu, D. Correlation between estrogen receptor β expression and the curative effect of endocrine therapy in breast cancer patients. Exp. Ther. Med. 2014, 7, 1568–1572. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Liu, J.; Li, H.; Li, J.; Mu, Y.; Feng, B. Expression of ERβ gene in breast carcinoma and the relevance in neoadjuvant therapy. Oncol. Lett. 2017, 13, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhang, Y.; Yilamu, D.; Liu, S.; Guo, C. ERβ overexpression results in endocrine therapy resistance and poor prognosis in postmenopausal ERα-positive breast cancer patients. Oncol. Lett. 2016, 11, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Speirs, V.; Malone, C.; Walton, D.; Kerin, M.J.; Atkin, S.L. Increased expression of estrogen receptor β RNA in tamoxifen-resistant Breast Cancer Patients. Cancer Res. 1999, 59, 5421–5424. [Google Scholar] [PubMed]
- Chang, H.G.; Kim, S.J.; Chung, K.W.; Noh, D.; Kwon, Y.; Lee, E.; Kang, H. Tamoxifen-resistant breast cancers show less frequent methylation the estrogen receptor β but not the estrogen receptor α gene. J. Mol. Med. 2005, 83, 132–139. [Google Scholar] [CrossRef]
- Knowlden, J.; Gee, J.; Robertson, J.; Ellis, J.; Nicholson, R. A possible divergent role for the oestrogen receptor alpha and beta subtypes in clinical breast cancer. Int. J. Cancer 2000, 89, 209–212. [Google Scholar] [CrossRef]
- Jensen, E.; Cheng, G.; Palmieri, C.; Saji, S.; Makela, S.; Van Noorden, S.; Wahlstrom, T.; Warner, M.; Coombes, R.C.; Gustafsson, J.A. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 15197–15202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oueslati, M.; Bittaieb, I.; Sassi, N.; Jemaa, A.B.; Gamoudi, A.; Rahal, K.; Oueslati, R. ERα and ERβ co-expression: An indicator of aggressive tumors and hormonal sensitivity. Oncol. Lett. 2017, 14, 1675–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, M.; Rayoo, M.; Takano, E.; Fox, S. Nuclear and cytoplasmic expressions of ERβ1 and ERβ2 are predictive of response to therapy and alters prognosis in familial breast cancers. Breast Cancer Res. Treat. 2011, 126, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Chae, B.; Song, B.; Jung, S. The potential role of estrogen receptor β2 in breast cancer. Int. J. Surg. 2015, 14, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Saji, S.; Omoto, Y.; Shimizu, C.; Warner, M.; Hayashi, Y.; Horiguch, S.; Toi, M. Expression of estrogen receptor (ER)βcx protein in ERα (alpha)-positive breast cancer: Specific correlation with progesterone receptor. Cancer Res. 2002, 62, 4849–4853. [Google Scholar] [PubMed]
- Leygue, E.; Dotzlaw, H.; Watson, P.; Murphy, L. Expression of estrogen receptor β1, β2, and β5 messenger RNAs in human breast cancer. Cancer Res. 1999, 59, 1175–1179. [Google Scholar]
- Esslimani-Sahla, M.; Kramar, A.; Simony-Lafontaine, J.; Kramar, A.; Lavaill, R.; Mollevi, C.; Warner, M.; Gustafsson, J.A.; Rochefort, H. Increased estrogen receptor βcx expression during mammary carcinogenesis. Clin. Cancer Res. 2005, 11, 3170–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozkurt, K.K.; Kapucuoglu, N. Investigation of immunohistochemical ERα, ERβ and ERβcx expressions in normal and neoplastic breast tissues. Pathol.-Res. Pract. 2012, 208, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Omoto, Y.; Kobayashi, S.; Inoue, S.; Ogawa, S.; Toyama, T.; Yamashita, H.; Iwase, H. Evaluation of oestrogen receptor β wild-type and variant protein expression, and relationship with clinicopathological factors in breast cancers. Eur. J. Cancer 2002, 38, 380–386. [Google Scholar] [CrossRef]
- Poola, I.; Abraham, J.; Liu, A. Estrogen receptor β splice variant mRNAs are differentially altered during breast carcinogenesis. J. Steroid Biochem. Mol. Biol. 2002, 82, 169–179. [Google Scholar] [CrossRef]
- Chi, A.; Chen, X.; Chirala, M.; Younes, M. Differential expression of estrogen receptor β isoforms in human breast cancer tissue. Anticancer Res. 2002, 23, 211–216. [Google Scholar]
- Honma, N.; Horii, R.; Iwase, T.; Saji, S.; Younes, M.; Takubo, K.; Matsuura, M.; Ito, Y.; Akiyama, F.; Sakamoto, G. Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 2008, 26, 3727–3734. [Google Scholar] [CrossRef]
- Gruvberger-Saal, S.; Bendahl, P.; Saal, L.; Laakso, M.; Hegardt, C.; Eden, P.; Peterson, C.; Malmstrom, P.; Isola, J.; Borg, A.; et al. Estrogen receptor β expression is associated with tamoxifen response in ER alpha-negative breast carcinoma. Clin. Cancer Res. 2007, 3, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, C.; Chen, K.; Tang, H.; Tang, J.; Song, C.; Xie, X. ERβ1 inversely correlates with PTEN/PI3K/AKT pathway and predicts a favorable prognosis in triple-negative breast cancer. Breast Cancer Res. Treat. 2015, 152, 255–269. [Google Scholar] [CrossRef]
- Skliris, G.; Leygue, E.; Curtis-Snell, L.; Watson, P.H.; Murphy, L.C. Expression of estrogen receptor-β in estrogen receptor-α negative human breast tumours. Br. J. Cancer 2006, 95, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Shanle, E.; Onitiloz, A.; Huangs, W.; Kim, K.; Zang, C.; Engel, J. Prognostic significance of full-length estrogen receptor β expression in stage I–III triple negative breast cancer. Am. J. Transl. Res. 2015, 7, 1246–1259. [Google Scholar]
- Choi, Y. Estrogen negative breast cancer: Biology and phenotypic characteristics. Modern Pathol. 2006, 19, 23A. [Google Scholar]
- Austin, D.; Hamilton, N.; Elshimali, Y.; Pietras, R.; Wuc, Y.; Vadgama, J. Estrogen receptor-beta is a potential target for triple negative breast cancer treatment. Oncotarget 2018, 9, 33912–33930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, N.; Marquez-Garban, D.; Mah, V.; Fernanado, G.; Elshimali, Y.; Garbán, H.; Pietras, R. Biological roles of estrogen receptor-β and insulin-like growth factor-2 in triple—negative breast cancer. BioMed. Res. Int. 2015, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Zhu, Q.; Aiaimutuola, M.; Yilamu, D.; Liu, S.; Jakulin, A. Expression and prognostic value of estrogen receptor β in patients with triple-negative and triple-positive breast cancer. Exp. Ther. Med. 2015, 9, 2147–2150. [Google Scholar] [CrossRef]
- Iwao, K.; Miyoshi, Y.; Egawa, C.; Ikeda, N.; Tsukamoto, F.; Noguchi, S. Quantitative analysis of estrogen receptor-α and–β messenger RNA expression in breast carcinoma by real-time polymerase chain reaction. Cancer 2000, 89, 1732–1738. [Google Scholar] [CrossRef]
- Poola, I.; Fuqua, S.; DeWitty, R.; Abraham, J.; Marshallack, M.; Liu, A. Estrogen Receptor α-negative breast cancer tissues express significant levels of estrogen-independent transcription factors, ERβ1 and ER β5: Potential molecular Targets for chemoprevention. Clin. Cancer Res. 2005, 11, 7579–7585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantzi, Ν.Ι.; Tiniakos, D.G.; Palaiologou, M.; Goutas, N.; Filippidis, T.; Vassilaros, S.D.; Alexis, Μ.N. Estrogen receptor beta 2 is associated with poor prognosis in estrogen receptor alpha-negative breast carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1489–1498. [Google Scholar] [CrossRef]
- Wimberly, H.; Han, G.; Pinnaduwage, D.; Murphy, L.C.; Yang, X.R.; Andrulis, I.L.; Sherman, M.; Figueroa, J.; Rimm, D.L. ERβ splice variant expression in four large cohorts of human breast cancer patient tumors. Breast Cancer Res. Treat. 2014, 146, 657–667. [Google Scholar] [CrossRef]
- Leung, Y.; Lam, H.M.; Wu, S.; Song, D.; Levin, L.; Cheng, L.; Wu, C.; Ho, S.M. Estrogen receptor β2 and β5 are associated with poor prognosis in prostate cancer and promote cancer cell migration and invasion. Endocr.-Relat. Cancer 2010, 17, 675–689. [Google Scholar] [CrossRef]
- Kim, T.; Lee, A.; Choi, Y.; Song, B.; Yim, H.; Kang, C. Prognostic significance of high expression of ER-beta in surgically treated ER-positive breast cancer following endocrine therapy. J. Breast Cancer 2012, 15, 79–86. [Google Scholar] [CrossRef]
- Murphy, L.; Leygue, E.; Snell, L.; Ho, S.; Watson, P. Relationship of coagulator and estrogen receptor isoform expression to de novo tamoxifen resistance in human breast cancer. Brit. J. Cancer. 2002, 87, 1411–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Dey, P.; Ziefler, Y.; Jiao, X.; Kim, S.H.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Contrasting activities of estrogen receptor beta isoforms in triple negative breast cancer. Breast Cancer Res. Treat. 2021, 85, 281–292. [Google Scholar] [CrossRef]
- Leygue, E.; Murphy, L. A bi-faceted role of estrogen receptor β in breast cancer. Endocr.-Relat. Cancer 2013, 20, R127–R139. [Google Scholar] [CrossRef] [PubMed]
- Reese, J.M.; Bruinsma, E.S.; Nelson, A.W.; Chernukhin, I.; Carroll, J.S.; Li, Y.; Hawse, J.R. ERβ-mediated induction of cystatins results in suppression of TGFβ signaling and inhibition of triple-negative breast cancer metastasis. Proc. Natl. Acad. Sci. USA 2018, 115, E9580–E9589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Yuan, S.; Li, H.; Wu, J.; Lu, J.; Liu, G.; Shao, Z.M. ERβ exerts multiple stimulative effects on human breast carcinoma cells. Oncogene 2004, 23, 5799–5806. [Google Scholar] [CrossRef] [Green Version]
- Tonnetti, D.; Rubenstein, R.; DeLeon, M.; Walters, K.; Szafran, A.; Coon, J.S. Stable transfection of an estrogen receptor β cDNA isoform into MDA-MB-231 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2003, 87, 47–55. [Google Scholar] [CrossRef]
- Nelson, A.; Groen, A.; Miller, J.; Warren, A.; Holmes, K.; Tarulli, G.; Carroll, J.S. Comprehensive assessment of estrogen receptor β antibodies in cancer cell line models and tissue reveals critical limitations in reagent specificity. Mol. Cell. Endocrinol. 2017, 440, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Chae, B.; Bae, J.; Yim, H.; Lee, A.; Song, B.; Jeon, H.; Chun, M.; Jung, S. Measurement of ER and PR status in breast cancer using QuantiGene2.0 assay. Pathology 2011, 43, 248–253. [Google Scholar] [CrossRef]
- Torlakovic, E.; Cheung, C.; D’Arrigo, C.; Dietel, M.; Glenn, F.; Hall, J.; Hornick, J.; Ibrahim, M.; Marchetti, A.; Miller, K.; et al. Evolution of quality assurance for clinical immunohistochemistry in the ERα of precision medicine: Part 3: Technical validation of immunohistochemistry (IHC) assays in clinical IHC laboratories. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 151–159. [Google Scholar] [CrossRef]
- Thomsen, C.; Nielsen, S.; Nielsen, B.; Pedersen, S.; Vyberg, M. Estrogen receptor-α quantification in breast cancer: Concordance between immunohistochemical assays and mRNA-In Situ hybridization for ESR1 gene. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 347–353. [Google Scholar] [CrossRef]
Antibody | Antibody Clone | Supplier |
---|---|---|
ERβ1 | Ab288/14C8 | Abcam Inc, Cambridge, UK |
ERβ1 | 385P/AR 385-10R | Biogenex, San Ramon, CA, USA |
ERβ1 | MCA1974S/PPG5/10 | DAKO, Carpintena, CA, USA |
ERβ1 | PAI-313 | ThermoFisher Scientific, Rockford, IL, USA |
ERβ2 | MCA2279S/57/3 | Bio-Rads, Hercules, CA, USA |
ERβ5 | MCA4676/5/25 | Bio-Rads, Hercules, CA, USA |
CK5/6 | D5/6 | DAKO, Carpintena, CA, USA |
Ki-67 | MIB-1 | DAKO, Carpintena, CA, USA |
P53 | D07 | DAKO, Carpintena, CA, USA |
EGFR | 3C6 | DAKO, Carpintena, CA, USA |
HER2/neu | HerceptTest | DAKO, Carpintena, CA, USA |
ERα | ID5 | DAKO, Carpintena, CA, USA |
Vimentin | V9 | DAKO, Carpintena, CA, USA |
Cytokeratin | AE1/AE3 | DAKO, Carpintena, CA, USA |
PR | Pg363 | DAKO, Carpintena, CA, USA |
ERβ1 mRNA | ERβ1 Protein | ERβ2 mRNA | ERβ2 Protein | ERβ5 mRNA | ERβ5 Protein | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Pos | Neg | p-Value | Pos | Neg | p-Value | Pos | Neg | p-Value | Pos | neg | p-Value | Pos | Neg | p-Value | Pos | Neg | p-Value | |
ERα status | Pos | 38 | 34 | 0.0548 | 50 | 22 | 0.477 | 34 | 38 | 0.176 | 44 | 27 | 0.39 | 29 | 43 | 0.863 | 57 | 15 | 0.508 |
neg | 46 | 20 | 42 | 24 | 39 | 27 | 35 | 31 | 28 | 38 | 56 | 10 | |||||||
Her-2/neu | Pos | 27 | 16 | 0.851 | 31 | 12 | 0.437 | 27 | 16 | 0.142 | 21 | 22 | 0.198 | 13 | 30 | 0.0954 | 34 | 9 | 0.635 |
Neg | 57 | 38 | 61 | 34 | 46 | 49 | 58 | 37 | 44 | 51 | 79 | 10 | |||||||
PR | Pos | 34 | 30 | 0.159 | 45 | 22 | 1 | 30 | 36 | 0.125 | 39 | 28 | 0.864 | 27 | 39 | 1 | 52 | 15 | 0.269 |
Neg | 47 | 24 | 47 | 24 | 42 | 29 | 40 | 31 | 29 | 42 | 61 | 10 | |||||||
Ki-67 | >15% | 19 | 10 | 0.67 | 23 | 6 | 0.123 | 14 | 15 | 0.779 | 20 | 9 | 0.205 | 16 | 13 | 0.095 | 26 | 3 | 0.285 |
<15% | 65 | 44 | 68 | 40 | 59 | 50 | 59 | 49 | 41 | 68 | 87 | 22 | |||||||
Grade | Grade 2/3 | 74 | 46 | 0.6156 | 83 | 37 | 0.178 | 66 | 54 | 0.217 | 69 | 51 | 1 | 52 | 68 | 0.305 | 99 | 20 | 0.323 |
Grade 1 | 10 | 8 | 9 | 9 | 7 | 11 | 10 | 8 | 5 | 13 | 13 | 5 | |||||||
Tumor size | >2 cm | 31 | 23 | 0.592 | 42 | 12 | 0.0282 | 30 | 24 | 0.727 | 32 | 22 | 0.727 | 23 | 31 | 0.86 | 47 | 7 | 0.26 |
<2 cm | 53 | 31 | 50 | 34 | 43 | 41 | 47 | 37 | 34 | 50 | 66 | 18 | |||||||
Nodal status | Pos | 17 | 14 | 0.531 | 24 | 7 | 0.195 | 21 | 10 | 0.0685 | 23 | 8 | 0.0392 | 11 | 20 | 0.536 | 29 | 2 | 0.0654 |
Neg | 67 | 40 | 68 | 39 | 52 | 55 | 56 | 51 | 46 | 61 | 84 | 23 | |||||||
CK5/6 | Pos | 9 | 7 | 0.787 | 10 | 6 | 0.779 | 9 | 7 | 0.797 | 9 | 7 | 1 | 8 | 8 | 0.59 | 16 | 0 | 0.0764 |
Neg | 75 | 47 | 82 | 40 | 64 | 58 | 70 | 52 | 49 | 73 | 97 | 25 | |||||||
P53 | Pos | 26 | 28 | 0.163 | 27 | 19 | 0.717 | 40 | 25 | 0.231 | 37 | 22 | 0.17 | 45 | 36 | 1 | 17 | 8 | 0.19 |
Neg | 51 | 33 | 50 | 42 | 37 | 36 | 40 | 39 | 32 | 25 | 60 | 53 |
ERβ1 mRNA | ERβ1 Protein | ERβ2 mRNA | Erβ2 Protein | ERβ5 mRNA | ERβ5 Protein | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Types | Pos | Neg | p-Value | Pos | Neg | p-Value | Pos | Neg | p-Value | Pos | Neg | p-Value | Pos | Neg | p-Value | Pos | neg | p-Value |
Luminal A type (50) | 27 | 23 | 0.276 | 33 | 17 | 1 | 20 | 30 | 0.0328 | 34 | 16 | 0.0732 | 21 | 29 | 1 | 40 | 10 | 0.653 |
57 | 31 | 59 | 29 | 53 | 35 | 45 | 43 | 36 | 52 | 73 | 15 | |||||||
Luminal B type (25) | 14 | 12 | 0.505 | 19 | 7 | 0.497 | 17 | 9 | 0.193 | 12 | 14 | 0.271 | 9 | 17 | 0.511 | 18 | 8 | 0.0875 |
70 | 42 | 73 | 39 | 56 | 56 | 67 | 45 | 46 | 64 | 95 | 17 | |||||||
Basal-like type (17) | 10 | 7 | 1 | 11 | 6 | 1 | 10 | 7 | 0.796 | 11 | 6 | 0.605 | 9 | 8 | 0.307 | 17 | 0 | 0.0419 |
74 | 47 | 81 | 40 | 63 | 58 | 68 | 53 | 48 | 73 | 96 | 25 | |||||||
HER2 type (17) | 12 | 5 | 0.109 | 11 | 6 | 1 | 8 | 9 | 0.616 | 8 | 0 | 0.436 | 7 | 10 | 1 | 17 | 0 | 0.0418 |
68 | 44 | 81 | 40 | 71 | 50 | 71 | 50 | 49 | 71 | 95 | 25 | |||||||
TNBC (43) | 31 | 13 | 0.137 | 29 | 17 | 0.439 | 26 | 18 | 0.363 | 24 | 20 | 0.713 | 23 | 21 | 0.0951 | 39 | 5 | 0.235 |
53 | 41 | 65 | 27 | 47 | 47 | 55 | 39 | 34 | 60 | 74 | 20 |
ERβ1 mRNA | ERβ1 Protein | ERβ2 mRNA | ERβ2 Protein | ERβ5 mRNA | ERβ5 Protein | |
---|---|---|---|---|---|---|
Breast Cancer Subgroups (Cases) | rho (p-Value) | rho (p-Value) | rho (p-Value) | rho (p-Value) | rho (p-Value) | rho (p-Value) |
ERα + and ERα- (138) | 0.15 (0.86) | 0.38 (<0.0001) | 0.096 (0.26) | 0.14 (0.088) | 0.18 (0.032) | 0.34 (0.0001) |
ERα + (73) | −0.077 (0.52) | 0.28 (0.017) | 0.011 (0.93) | 0.032 (0.79) | 0.16 (0.21) | 0.272 (0.021) |
ERα- ( 65 ) | 0.107 (0.39) | 0.42 (0.005) | 0.17 (0.18) | 0.31 (0.012) | 0.22 (0.073) | 0.25 (0.041) |
TNBC (43) | 0.03 (0.85) | 0.45 (0.0021) | 0.09 (0.55) | 0.19 (0.23) | 0.104 (0.50) | 0.31 (0.039) |
Luminal A type (50) | −0.13 (0.38) | 0.39 (0.0052) | −0.23 (0.0084) | 0.19 (0.027) | 0.22 (0.13) | 0.21 (0.13) |
Luminal B type (25) | −0.1 (0.65) | 0.11 (0.59) | −0.26 (0.19) | 0.10 (0.62) | 0.06 (0.75) | 0.30 (0.014) |
HER2 type (17) | 0.07 (0.68) | 0.36 (0.16) | 0.52 (0.0060) | 0.250 (0.010) | 0.49 (0.045) | 0.48 (0.048) |
Basal-like type (17) | −0.084 (0.75) | 0.62 (0.0081) | −0.016 (0.99) | 0.39 (0.14) | 0.178 (0.49) | 0.12 (0.65) |
Grade 2/3 tumors (125) | 0.28 (0.023) | 0.38 (<0.0001) | 0.009 (0.92) | 0.17 (0.071) | 0.189 (0.041) | 0.33 (0.0003) |
>2 cm tumor (40) | 0.102 (0.48) | 0.32 (0.017) | 0.07 (0.61) | 0.20 (0.15466) | 0.07 (0.61) | 0.33 (0.014) |
Her2/neu+ (39) | 0.06 (0.68) | 0.255 (0.89) | −0.14 (0.35) | 0.25 (0.10) | 0.33 (0.031) | 0.31 (0.045) |
p53>5% | 0.07 (0.59) | 0.36 (0.0034) | −0.03 (0.81) | −0.01 (0.93) | 0.12 (0.3481) | 0.30 (0.0175) |
ERβ1 mRNA | ERβ1 Protein | ERβ2mRNA | ERβ2 Protein | ERβ5 mRNA | ERβ5 Protein | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Subgroups (case#) | p-Value | HR( CI) | p-Value | HR(CI) | p-Value | HR(CI) | HR(CI) | p-Value | HR(CI) | p-Value | HR(CI) | |
ERα-positive BCa(73) | 0.88 | 1.12 (0.27–4.53) | 0.98 | 1.02 (0.25–4.06) | 0.24 | 2.22 (0.59–8.3) | 0.106 | 0.32 (0.08–1.23) | 0.93 | 1.07 (0.28–4.10) | 0.75 | 0.997 (0.98–1.02) |
ERα-negative BCa(65) | 0.33 | 1.79 (0.56–5.72) | 0.21 | 2.7 (0.59–12.21) | 0.034 | 3.59 (1.10–11.72) | 0.41 | 0.61 (0.19–1.95) | 0.09 | 3.22 (0.8512.2) | 0.072 | 1.03 (0.997–1.06) |
TNBC (43) | 0.12 | 3.03 (0.75–12.22) | 0.36 | 2.1 (0.43–10.2) | 0.056 | 4.005 (0.96–16.63) | 0.25 | 0.98 (0.96–1.01) | 0.069 | 6.98 (0.83–56.45) | 0.26 | 1.02 (0.99–1.05) |
TNBC- (95) | 0.83 | 0.87 (0.23–2.95) | 0.6 | 1.42 (0.38–5.26) | 0.24 | 1.98 (0.63–6.23) | 0.24 | 0.49 (0.16–1.58) | 0.89 | 0.92 (0.28–3.03) | 0.5 | 1.006 (0.98–1.02) |
Her2/neu+ (39) | 0.78 | 1.249 (0.28–5.59) | 0.89 | 1.11 (0.21–5.82) | 0.51 | 1.67 (0.37–7.530 | 0.29 | 0.419 (0.08–2.2) | 0.88 | 1.13 (0.24–5.28) | 0.73 | 0.98 (0.98–1.01) |
Her2/neu- (99) | 0.33 | 1.71 (0.59–4.950 | 0.3 | 1.96 (0.55–7.04) | 0.023 | 3.44 (1.198–9.93) | 0.16 | 0.47 (0.16–1.36) | 0.13 | 2.53 (0.77–8.26) | 0.077 | 1.02 (0.99–1.05) |
PR+ (54) | 0.58 | 0.63 (0.12–3.2) | 0.67 | 1.42 (0.29–7.04) | 0.58 | 1.59 (0.36–6.28) | o.24 | 0.42 (0.10–1.78) | 0.74 | 1.28 (0.31–5.31) | 0.58 | 1.006 (0.99–1.03) |
PR- (84) | 0.12 | 2.43 (0.78–7.48) | 0.41 | 1.79 (0.47–6.35) | 0.01 | 4.59 (1.45–14.55) | 0.18 | 0.46 (0.15–1.43) | 0.12 | 2.6 (0.78–8.6) | 0.25 | 1.012 (0.99–1.03) |
Luminal A type (50) | 0.46 | 0.43 (0.05–4.03) | 0.56 | 1.93 (0.22–17.4) | 0.38 | 2.35 (0.37–13.8) | 0.79 | 0.79 (0.13–4.73) | 0.71 | 0.7 (0.11–4.47) | 0.22 | 1.03 (0.98–1.07) |
Luminal B type (25) | 0.2 | 3.6 (0.51–25.59) | 0.51 | 0.52 (0.07–3.69) | 0.65 | 1.58 (022–11.23) | 0.99 | 0.000 (0.00–1.5) | 0.55 | 1.82 (0.26–12.93) | 0.26 | 0.98 (0.96–1.01) |
HER2 type (17) | 0.63 | 0.99 (0.98–1.011) | 0.209 | 1.03 (0.99–1.07) | 0.967 | 0.99 (0.89–1.11) | 0.078 | 1.061 (0.993–1) | 0.71 | 0.94 (0.583–1.499) | 0.34 | 1.213 (0.818–1.798) |
Basal type (17) | 0.54 | 1.77 (2.89–10.94) | 0.35 | 1.012 (0.99–9.0) | 0.15 | 4.29 (0.59–30.18) | 0.65 | 0.66 (0.11–4.03) | 0.26 | 3.53 (0.39–31.80) | 0.91 | 0.99 (0.930–1.067) |
Grade 2/3 (115) | 0.55 | 1.31 (0.54–3.19) | 0.6 | 1.31 (0.47–3.62) | 0.016 | 1.005 (1.001–1.010) | 0.17 | 0.99 (0.97–1.005) | 0.29 | 1.63 (0.65–4.060 | 0.33 | 1.007 (0.99–1.02) |
Grade 1 (23) | 0.23 | 1.05 (0.97–1.13) | 0.38 | 1.044 (0.95–1.2) | 0.83 | 0.99 (0.962–1.032) | 0.94 | 1.003 (0.93–1.08) | 0.8 | 0.96 (0.71–1.31) | 0.77 | 1.000 (0.96–1.06) |
>2 cm tumor (51) | 0.47 | 1.45 (0.53–3.95) | 0.73 | 0.82 (0.26–2.57) | 0.035 | 2.88 (1.08–7.72) | 0.058 | 0.38 (0.14–1.04) | 0.23 | 1.84 (0.68–6.04) | 0.46 | 1.005 (0.97–1.007) |
<2 cm tumor (87) | 0.37 | 2.29 (0.37–14.06) | 0.39 | 2.64 (0.29–23.8) | 0.2 | 3.2 (0.53–19.20 | 0.5 | 0.54 (0.09–3.26) | 0.18 | 4.62 (0.94–43.11) | 0.45 | 1.01 (0.98–1.04) |
>15% Ki-67 (63) | 0.83 | 1.22 (0.19–7.44) | 0.14 | 1.02 (0.99–1.06) | 0.86 | 0.83 (0.09–7.45) | 0.35 | 0.42 (0.065–2.66) | 0.61 | 0.58 (0.07–4.77) | 0.77 | 1.007 (0.96–1.56) |
<15% KI-67 (70) | 0.032 | 1.65 (0.61–4.42) | 0.49 | 1.44 (0.50–4.16) | 0.014 | 3.56 (1.29–9.82) | 0.094 | 0.41 (014–1.17) | 0.075 | 2.54 (0.91–7.07) | 0.18 | 1.01 (0.99–1.027) |
LN positive (34) | 0.75 | 1.24 (0.33–4.65) | 0.173 | 4.27 (0.53–34.3) | 0.25 | 2.28 (0.55–9.43) | 0.97 | 0.97 (0.24–3.95) | 0.75 | 1.23 (0.33–4.65) | 0.52 | 1.008 (0.98–1.034) |
LN negative (104) | 0.32 | 1.79 (0.57–5.63) | 0.92 | 1.07 (0.32–3.57) | 0.835 | 1.001 (0.993–1.008) | 0.019 | 0.16 (0.904–0.7) | 0.024 | 5.86 (1.26–27.23) | 0.39 | 1.008 (0.99–1.03) |
p53>5% (57) | 0.28 | 2.01 (0.57–7.105) | 0.973 | 1.000 (0.98–1.2) | 0.051 | 3.54 (0.99–12.56) | 0.066 | 0.29 (0.078–1.0) | 0.61 | 0.99 (0.96–1.02) | 0.33 | 1.017 (0.98–1.05) |
p53<5% (81) | 0.69 | 1.27 (0.38–4.19) | 0.38 | 1.80 (0.48–6.8) | 0.19 | 2.18 (0.66–7.16) | 0.32 | 0.54 (0.16–1.85) | 0.47 | 1.55 (0.46–5.19) | 0.48 | 1.006 (0.98–1.023) |
ERα- + and ERα- BCa | 0.335 | 1.53 (0.64–3.65) | 0.32 | 1.007 (0.993–1) | 0.022 | 2.72 (1.15–6.41) | 0.074 | 0.447 (0.19–1.0) | 0.65 | 1.003 (0.992–1.0) | 0.21 | 1.009 (0.99–1.02) |
p-Value | HR (95% CI) | |
---|---|---|
ERβ1 mRNA | 0.48 | 1.001 (0.998–1.006) |
ERβ2 mRNA | 0.12 | 1.006 (0.998–1.016) |
ERβ5 mRNA | 0.063 | 1.015 (0.999–1.031) |
ERβ1 protein | 0.65 | 1.005 (0.986–1.024) |
ERβ2 protein | 0.061 | 0.98 (0.958–1.001) |
ERβ5 protein | 0.097 | 1.019 (0.997–1.042) |
ERα | 0.73 | 1.005 (0.975–1.037) |
TNBC * | 0.67 | 0.424 (0.009–20.35) |
Lum A type * | 0.93 | 0.842 (0.016–42.99) |
Lum B type * | 0.75 | 1.672 (0.072–38.79) |
HER2 type * | 0.72 | 1.530 (0.152–15.38) |
Basal Type * | 0.53 | 0.209 (0.215–20.35) |
HER2/neu * | 0.94 | 1.158 (0.020–68.70) |
Size of tumor ** | 0.02 | 0.207 (0.055–0.778) |
Grade * | 0.89 | 1.080 (0.338–3.451) |
LN * | 0.088 | 0.354 (0.107–1168) |
PR | 0.7 | 1.005 (0.982–1.028) |
Ki-67 | 0.57 | 0.994 (0.972–1.016) |
P53 ** | 0.066 | 1.018 (0.999–1.037) |
ERβ Isoform | High ERβ Expression with Favorable or Beneficial Outcome | # Cases | References | High ERβ Expression with Adverse or Poor Outcomes | # Cases | References |
---|---|---|---|---|---|---|
ERβ1 | Increased DFS and OS, small size, low-grade and node-negative tumor | 150 | Sugiura [31] | Poor RFS, OS, and DFS in postmenopausal TAM-treated ERα+ BCa | 138 | O’ Neill [47] |
Increased DFS, RFS, and OS in Stage I and II BCa, with inverse correlation with HER2/neu | 181 | Nakopoulou [32] | Adverse survival outcome and recurrence with high ERβ mRNA | 121 | Markey [48] | |
Increased DFS, inverse correlation with HER2/neu and SRC-1 expression | 150 | Meyers [33] | Worse prognosis and decreased tumor-free survival in endocrine therapy patients | 589 | Guo [49] | |
Increased DFS in node-positive tumor | 162 | Zhang [34] | Recurrent BCa and node-positive BCa | 120 | Chang [50] | |
Inverse correlation with HER2/neu+, CK56 and EGFR; no association with survival | 2170 | Marotti [35] | Reduced DFS, large tumor in postmenopausal endocrine-treated ERα+ BCa | 195 | Guo [51] | |
Improved DFS in node-positive luminal A type | 936 | Novelli [36] | High-grade tumor, TAM resistance, LN-positive tumor | 60 | Speirs [52] | |
Better TAM response | 489 | Iwase [37] | TAM resistance, and high Ki-67+ tumors with high ERβ1 mRNA expression | 34 | Chang [53] | |
High ERβ1 was associated with low tumor size and 4 year DFS, while ERβ2 was associated with shorter DFS | 1256 | Speirs [39] | High EGFR positivity, TAM resistance | 95 | Knowlden [54] | |
High ERβ1 was associated with better DFS | 81 | Dhimolea [38] | Upregulation of Ki -67 and cyclin A, recurrent BCa | 29 | Jenson [55] | |
Association with favorable prognostic marker in chemotherapy-treated patients | 1026 | Elebro [40] | Poor DFS in luminal B type node-positive tumor | 936 | Novelli [36] | |
High ERβ with worse DFS and poorly differentiated BCa | 95 | Kim [80] | ||||
ERβ2 | Increased OS and DFS with nuclear ERβ2 expression | 850 | Shaaban [41] | Shorter survival | 1256 | Speirs [39] |
Increased DFS and OS with high ERβ2 mRNA | 141 | Sugiura [31] | Worse outcome in tumors with positive ERβ2 cytoplasmic expression/negative nuclear expression | 757 | Shaaban [41] | |
Increased OS; low-grade tumor | 150 | Wurster [42] | Shorter or worse DFS and OS in TAM-treated patients | 101 | Baek [58] | |
Increased DFS and OS in TAM-treated ERα+ BCa (ERβ2 mRNA) | 100 | Vinayagam [43] | Poor response to TAM in ERα+/PR− BCa | 115 | Saji [59] | |
Better TAM response, longer OS | 74 | Palmieri [44] | High-grade tumor and progression of BCa | 53 | Leygue [60] | |
Better RFS and OS in patients with TAM treatment | 105 | Davies [45] | Carcinogenesis and invasive BCa | 151 | Esslimani-Sahla [61] | |
Better outcome in tumors with higher ERβ2 than ERβ1 in late-onset patients | 74 | Mandusic [46] | Associated with lympho-vascular invasion | 44 | Bozkurt [62] | |
High expression during growth and tumor progression of BCa | 57 | Omoto [63] | ||||
ERβ exon5 splice variant mRNA in grade III tumors in postmenopausal women | 40 | Poola [64] | ||||
ERβ5 | Improved survival with nuclear ERβ5 expression | 850 | Shaaban [41] | High ERβ3 and ERβ5 protein expression with large tumor and node-positive BCa | 17 | Chi [65] |
Better RFS with TAM treatment | 105 | Davies [45] | High-grade tumor and progression of BCa | 53 | Leygue [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, H.; Pollack, S. ERβ Isoforms Have Differential Clinical Significance in Breast Cancer Subtypes and Subgroups. Curr. Issues Mol. Biol. 2022, 44, 1564-1586. https://doi.org/10.3390/cimb44040107
Choi Y, Kim H, Pollack S. ERβ Isoforms Have Differential Clinical Significance in Breast Cancer Subtypes and Subgroups. Current Issues in Molecular Biology. 2022; 44(4):1564-1586. https://doi.org/10.3390/cimb44040107
Chicago/Turabian StyleChoi, Young, Hadong Kim, and Simcha Pollack. 2022. "ERβ Isoforms Have Differential Clinical Significance in Breast Cancer Subtypes and Subgroups" Current Issues in Molecular Biology 44, no. 4: 1564-1586. https://doi.org/10.3390/cimb44040107
APA StyleChoi, Y., Kim, H., & Pollack, S. (2022). ERβ Isoforms Have Differential Clinical Significance in Breast Cancer Subtypes and Subgroups. Current Issues in Molecular Biology, 44(4), 1564-1586. https://doi.org/10.3390/cimb44040107