SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Garza, C.; Platas, A.; Miaja, M.; Fonseca, A.; Mesa-Chavez, F.; Garcia-Garcia, M.; Chapman, J.A.; Lopez-Martinez, E.A.; Pineda, C.; Mohar, A.; et al. Young women with breast cancer in Mexico: Results of the pilot phase of the joven & fuerte prospective cohort. JCO Glob. Oncol. 2020, 6, 395–406. [Google Scholar]
- Gallegos-Arreola, M.P.; Zúñiga-González, G.M.; Figuera, L.E.; Puebla-Pérez, A.M.; Márquez-Rosales, M.G.; Gómez-Meda, B.C.; Rosales-Reynoso, M.A. ESR2 gene variants (rs1256049, rs4986938, and rs1256030) and their association with breast cancer risk. PeerJ 2022, 10, e13379. [Google Scholar] [CrossRef] [PubMed]
- Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol. 2016, 37, 4281–4291. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Arreola, M.P.; Ramírez-Hernández, M.A.; Figuera, L.E.; Zúñiga-González, G.M.; Puebla-Pérez, A.M. The rs2234694 and 50 bp Insertion/Deletion polymorphisms of the SOD1 gene are associated with breast cancer risk in a Mexican population. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8017–8027. [Google Scholar]
- Rendic, S.; Guengerich, F.P. Summary of information on the effects of ionizing and non-ionizing radiation on cytochrome P450 and other drug metabolizing enzymes and transporters. Curr. Drug Metab. 2012, 13, 787–814. [Google Scholar] [CrossRef][Green Version]
- Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 2010, 38, 96–109. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z. Increased oxidative stress as a selective anticancer therapy. Oxid. Med. Cell. Longev. 2015, 2015, 294303. [Google Scholar] [CrossRef]
- Alateyah, N.; Gupta, I.; Rusyniak, R.S.; Ouhtit, A. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression. Molecules 2022, 27, 811. [Google Scholar] [CrossRef]
- Soerensen, M.; Christensen, K.; Stevnsner, T.; Christiansen, L. The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mech. Ageing Dev. 2009, 130, 308–314. [Google Scholar] [CrossRef]
- Yari, A.; Saleh-Gohari, N.; Mirzaee, M.; Hashemi, F.; Saeidi, K. A Study of associations between rs9349379 (PHACTR1), rs2891168 (CDKN2B-AS), rs11838776 (COL4A2) and rs4880 (SOD2) polymorphic variants and coronary artery disease in iranian population. Biochem. Genet. 2022, 60, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Ascencio-Montiel, I.; Parra, E.J.; Valladares-Salgado, A.; Gómez-Zamudio, J.H.; Kumate-Rodriguez, J.; Escobedo-de-la-Peña, J.; Cruz, M. SOD2 gene Val16Ala polymorphism is associated with macroalbuminuria in Mexican type 2 diabetes patients: A comparative study and meta-analysis. BMC Med. Genet. 2013, 14, 110. [Google Scholar] [CrossRef]
- Romero-Cordoba, S.L.; Salido-Guadarrama, I.; Rebollar-Vega, R.; Bautista-Piña, V.; Dominguez-Reyes, C.; Tenorio-Torres, A.; Villegas-Carlos, F.; Fernández-López, J.C.; Uribe-Figueroa, L.; Alfaro-Ruiz, L.; et al. Comprehensive omic characterization of breast cancer in Mexican-Hispanic women. Nat. Commun. 2021, 12, 2245. [Google Scholar] [CrossRef]
- Lemus-Varela, M.L.; García-Valdez, L.M.; Ramírez-Patiño, R.; Zúñiga-González, G.M.; Gallegos-Arreola, M.P. Association of the SOD2 rs5746136 C>T polymorphisms with the risk of persistent pulmonary hypertension of the Newborn. J. Pediatr. Neonatal. 2021, 3, 1–5. [Google Scholar]
- Boroumand, F.; Mahmoudinasab, H.; Saadat, M. Association of the SOD2 (rs2758339 and rs5746136) polymorphisms with the risk of heroin dependency and the SOD2 expression levels. Gene 2018, 649, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gu, J.; Jin, Y.; Yuan, Q.; Ma, G.; Du, M.; Ge, Y.; Qin, C.; Lv, Q.; Fu, G.; et al. Genetic variants in N6-methyladenosine are associated with bladder cancer risk in the Chinese population. Arch. Toxicol. 2021, 95, 299–309. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Liu, Y.; Zha, L.; Li, B.; Zhang, L.; Yu, T.; Li, L. Correlation between superoxide dismutase 1 and 2 polymorphisms and susceptibility to oral squamous cell carcinoma. Exp. Ther. Med. 2014, 7, 171–178. [Google Scholar] [CrossRef]
- Sanguinetti, C.J.; Días, E.; Simpson, A.J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 1994, 17, 914–921. [Google Scholar]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef]
- Soto-Perez-de-Celis, E.; Chavarri-Guerra, Y. National and regional breast cancer incidence and mortality trends in Mexico 2001-2011: Analysis of a population-based database. Cancer Epidemiol. 2016, 41, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hydes, T.J.; Burton, R.; Inskip, H.; Bellis, M.A.; Sheron, N. A comparison of gender-linked population cancer risks between alcohol and tobacco: How many cigarettes are there in a bottle of wine? BMC Public Health 2019, 19, 316. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S. Epidemiology of Breast Cancer in Women. Adv. Exp. Med. Biol. 2019, 1152, 9–29. [Google Scholar]
- Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar] [CrossRef]
- Jabir, F.A.; Hoidy, W.H. Pharmacogenetics as personalized medicine: Association investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 polymorphisms in a breast cancer population in Iraqi women. Clin. Breast Cancer 2018, 18, e863–e868. [Google Scholar] [CrossRef] [PubMed]
- Glynn, S.A.; Boersma, B.J.; Howe, T.M.; Edvardsen, H.; Geisler, S.B.; Goodman, J.E.; Ridnour, L.A.; Lønning, P.E.; Børresen-Dale, A.L.; Naume, B.; et al. A mitochondrial target sequence polymorphism in manganese superoxide dismutase predicts inferior survival in breast cancer patients treated with cyclophosphamide. Clin. Cancer Res. 2009, 15, 4165–4173. [Google Scholar] [CrossRef] [PubMed]
- Giuliano-Bica, C.; Mânica-da Cruz, I.B.; de Moura-da Silva, L.L.; Vieira-Toscani, N.; Galleano, C.; Silveira-Graudenz, M. Association of manganese superoxide dismutase gene polymorphism (Ala-9Val) and breast cancer in males and females. J. Bras. Patol. Med. Lab. 2007, 43, 219–225. [Google Scholar] [CrossRef]
- Cox, D.G.; Tamimi, R.M.; Hunter, D.J. Gene × Gene interaction between MnSOD and GPX-1 and breast cancer risk: A nested case-control study. BMC Cancer 2006, 6, 217. [Google Scholar] [CrossRef]
- Tengström, M.; Mannermaa, A.; Kosma, V.M.; Soini, Y.; Hirvonen, A.; Kataja, V. MnSOD rs4880 and XPD rs13181 polymorphisms predict the survival of breast cancer patients treated with adjuvant tamoxifen. Acta Oncol. 2014, 53, 769–775. [Google Scholar] [CrossRef]
- Jablonska, E.; Gromadzinska, J.; Peplonska, B.; Fendler, W.; Reszka, E.; Krol, M.B.; Wieczorek, E.; Bukowska, A.; Gresner, P.; Galicki, M.; et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer 2015, 15, 657. [Google Scholar] [CrossRef]
- Ambrosone, C.B.; Freudenheim, J.L.; Thompson, P.A.; Bowman, E.; Vena, J.E.; Marshall, J.R.; Graham, S.; Laughlin, R.; Nemoto, T.; Shields, P.G. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res. 1999, 59, 602–606. [Google Scholar] [PubMed]
- Kakkoura, M.G.; Demetriou, C.A.; Loizidou, M.A.; Loucaides, G.; Neophytou, I.; Malas, S.; Kyriacou, K.; Hadjisavvas, A. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women. Eur. J. Nutr. 2016, 55, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pei, J. Possible risk modifications in the association between MnSOD Ala-9Val polymorphism and breast cancer risk: Subgroup analysis and evidence-based sample size calculation for a future trial. Breast Cancer Res. Treat. 2011, 125, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Peivand, Z.; Saadat, I.; Saadat, M. Association between genetic polymorphisms in superoxide dismutase Gene family and risk of gastric cancer. Pathol. Oncol. Res. 2020, 26, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Şimşek, Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic. Res. 2020, 54, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. Alterations in concentration/activity of superoxide dismutases in context of obesity and selected single nucleotide polymorphisms in genes: SOD1, SOD2, SOD3. Int. J. Mol. Sci. 2020, 21, 5069. [Google Scholar] [CrossRef]
- Ahlgren, M.; Melbye, M.; Wohlfahrt, J.; Sørensen, T.I. Growth patterns and the risk of breast cancer in women. N. Engl. J. Med. 2004, 351, 1619–1626. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Gu, D.; Lee, N.P.; Sun, S.; Gong, W.; Tan, Y.; Luk, J.M.; Chen, J. SOD2 rs4880 CT/CC genotype predicts poor survival for Chinese gastric cancer patients received platinum and fluorouracil based adjuvant chemotherapy. Am. J. Transl. Res. 2015, 7, 401–410. [Google Scholar] [CrossRef]
- Aslam, S.; Ameer, S.; Shabana, N.A.; Ahmed, M. Pharmacogenetics of induction therapy-related toxicities in childhood acute lymphoblastic leukemia patients treated with UKALL 2003 protocol. Sci. Rep. 2021, 11, 23757. [Google Scholar] [CrossRef]

| BC Patients (n = 818) | Controls (n = 356) | p-Value | |||
|---|---|---|---|---|---|
| Age at diagnosis (years) | |||||
| Mean (SD) | 54.06 | (11.51) | 43.92 | (14.07) | 0.0001 * |
| <45 years [(n), %] | (188) | 23.0 | (192) | 54.0 | 0.0001 |
| ≥46 years [(n), %] | (630) | 77.0 | (164) | 46.0 | |
| Age at menarche | |||||
| 8–10 years [(n), %] | (57) | 7.0 | (14) | 4.0 | 0.0611 |
| 11–13 years [(n), %] | (532) | 65.0 | (335) | 94.0 | 0.0001 |
| 14–18 years [(n), %] | (229) | 28.0 | (7) | 2.0 | 0.0001 |
| Menopause status | |||||
| Postmenopausal [(n), %] | (564) | 69.0 | (132) | 37.0 | 0.0001 |
| Premenopausal [(n), %] | (254) | 31.0 | (224) | 63.0 | |
| Hormonal consumption | |||||
| Yes [(n), %] | (360) | 44.0 | (100) | 28.0 | 0.0001 |
| No [(n), %] | (458) | 57.0 | (256) | 72.0 | |
| Tobacco consumption | |||||
| Yes [(n), %] | (229) | 28.0 | (85) | 24.0 | 0.1631 |
| No [(n), %] | (589) | 72.0 | (271) | 76.0 | |
| Alcohol consumption | |||||
| Yes [(n), %] | (139) | 17.0 | (75) | 21.0 | 0.1141 |
| No [(n), %] | (679) | 83.0 | (281) | 79.0 | |
| BC Patients (n = 818) | |||||
|---|---|---|---|---|---|
| (n) | % | (n) | % | ||
| Family history of breast cancer | Tumor stage | ||||
| Yes [(n), %] | (139) | 17.0 | I [(n), %] | (55) | 7.0 |
| No [(n), %] | (679) | 83.0 | II [(n), %] | (240) | 29.0 |
| Body mass index (BMI) * | III [(n), %] | (285) | 35.0 | ||
| 18–24.9 (normal weight) [(n), %] | (196) | 24.0 | IV [(n), %] | (238) | 29.0 |
| 25–29.9 (overweight) [(n), %] | (286) | 35.0 | Node status | ||
| ≥30 (obesity) [(n), %] | (336) | 41.0 | Positive [(n), %] | (597) | 73.0 |
| Pregnancies status | Negative [(n), %] | (221) | 27.0 | ||
| ≤4 [(n), %] | (589) | 72.0 | Molecular type | ||
| ≥5 [(n), %] | (229) | 28.0 | Luminal A [(n), %] | (377) | 46.0 |
| Miscarriage | Luminal B [(n), %] | (174) | 21.0 | ||
| Yes [(n), %] | (254) | 31 | Her-2 [(n), %] | (115) | 14.0 |
| No [(n), %] | (564) | 69 | Triple negative [(n), %] | (152) | 19.0 |
| Breastfeeding | |||||
| ≤6 month [(n), %] | (180) | 22.0 | Ki-67 [(n), ≥20 %] | (295) | 36.0 |
| >6 month [(n), %] | (458) | 56.0 | Ki-67 [(n), <20 %] | (523) | 64.0 |
| No [(n), %] | (179) | 22.0 | Metastatic status | ||
| Localization | Yes [(n), %] | (237) | 29.0 | ||
| Left [(n), %] | (360) | 44.0 | No [(n), %] | (581) | 71.0 |
| Right [(n), %] | (417) | 51.0 | Chemotherapy status | ||
| Bilateral [(n), %] | (41) | 5.0 | Response [(n), %] | (517) | 63.0 |
| Histology (adenocarcinoma) | No response [(n), %] | (301) | 37.0 | ||
| Ductal [(n), %] | (733) | 90.0 | Personal medical history | ||
| Lobular [(n), %] | (73) | 9.0 | benign breast disease- uterine fibroids ** | (228) | 28.0 |
| Mixed [(n), %] | (12) | 1.0 | DM2-Hypertension ** | (220) | 27.0 |
| Variant | BC | Controls * | OR | 95%(CI) | p-Value | ||||
|---|---|---|---|---|---|---|---|---|---|
| rs4880 | Genotype | (n = 818) | % | (n = 211) | % | ||||
| CC | (330) | 40 | (119) | 56 | 0.52 | (0.38–0.07) | 0.0001 | ||
| CT | (386) | 47 | (78) | 37 | 1.5 | (1.11–2.08) | 0.009 | ||
| TT | (102) | 13 | (14) | 7 | 2.0 | (1.12–3.58) | 0.023 | ||
| Dominant | CC | (330) | 40 | (119) | 56 | ||||
| CT + TT | (488) | 60 | (92) | 44 | 1.91 | (1.41–2.59) | 0.0001 | ||
| Recessive | TT | (102) | 13 | (14) | 7 | 2.0 | (1.12–3.58) | 0.023 | |
| CC + CT | (716) | 87 | (197) | 93 | |||||
| Codominant | CT | (386) | 47 | (78) | 37 | 1.5 | (1.11–2.08) | 0.009 | |
| CC + TT | (432) | 53 | (386) | 63 | |||||
| Allele (2n = 1636) | (2n = 422) | ||||||||
| C | (1046) | 0.639 | (316) | 0.748 | 0.6 | (0.46–0.75) | 0.0001 | ||
| T | (590) | 0.361 | (106) | 0.252 | 1.7 | (1.32–2.14) | 0.0001 | ||
| rs5746136 | Genotype | (n = 481) | % | (n = 356) | % | ||||
| CC | (248) | 52 | (223) | 63 | 0.63 | (0.48–0.83) | 0.001 | ||
| CT | (193) | 40 | (118) | 33 | 1.35 | (1.01–1.80) | 0.046 | ||
| TT | (40) | 8 | (15) | 4 | 2.0 | (1.12–3.79) | 0.025 | ||
| Dominant | CC | (248) | 52 | (223) | 63 | ||||
| CT + TT | (233) | 48 | (133) | 37 | 1.6 | (1.25–2.20) | 0.0004 | ||
| Recessive | TT | (40) | 8 | (15) | 4 | 2.0 | (1.12–3.79) | 0.025 | |
| CC + CT | (441) | 92 | (341) | 96 | |||||
| Codominant | CT | (193) | 40 | (118) | 33 | 1.3 | (1.01–1.80) | 0.046 | |
| CC + TT | (288) | 60 | (238) | 67 | |||||
| Allele (2n = 962) | (2n = 712) | ||||||||
| C | (694) | 0.717 | (564) | 0.792 | 0.66 | (0.52–0.83) | 0.0004 | ||
| T | (274) | 0.283 | (148) | 0.208 | 1.5 | (1.20–1.89) | 0.0004 | ||
| Variant | Genotype | Variable | OR | 95%(CI) | p-Value |
|---|---|---|---|---|---|
| rs4880 | CT | ≤45 years old | 1.7 | (1.05–2.74) | 0.038 |
| CT | 11–13 years old menarche | 1.5 | (1.13–2.21) | 0.008 | |
| CT | Hormonal consumption | 1.9 | (1.06–3.5) | 0.040 | |
| rs5746136 | CT | 11–13 years old menarche | 1.55 | (1.12–2.13) | 0.008 |
| Variant | Clinical Variable | OR | 95% (CI) | p-Value | |
|---|---|---|---|---|---|
| rs4880 | Obesity (BMI 30–40) | 3.7 | (1.07–12.9) | 0.039 | |
| DM-SAH * | 1.6 | (1.05–1.27) | 0.002 | ||
| Non-chemotherapy response | 1.6 | (1.97–1.27) | 0.002 | ||
| rs5746136 | Ki-67 (≥20%) | 2.9 | (1.16–7.36) | 0.022 | |
| Luminal A | 1.6 | (0.46–0.21) | 0.041 | ||
| CTTT | Chemotherapy partial response | 2.37 | (1.06–5.32) | 0.035 | |
| SOD2 Gene | Patients | Controls | |||||
|---|---|---|---|---|---|---|---|
| rs4880 | rs5746136 | n | % | n | % | OR95%(CI) | p-Value |
| C | C | (474) | 51 | (128) | 57 | 0.779 (0.58–1.04) | 0.095 |
| C | T | (114) | 12 | (37) | 17 | 0.693 (0.46–1.03) | 0.072 |
| T | C | (197) | 21 | (39) | 17 | 1.250 (0.85–1.82) | 0.245 |
| T | T | (149) | 16 | (19) | 9 | 1.986 (1.20–3.26) | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos-Arreola, M.P.; Ramírez-Patiño, R.; Sánchez-López, J.Y.; Zúñiga-González, G.M.; Figuera, L.E.; Delgado-Saucedo, J.I.; Gómez-Meda, B.C.; Rosales-Reynoso, M.A.; Puebla-Pérez, A.M.; Lemus-Varela, M.L.; et al. SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Curr. Issues Mol. Biol. 2022, 44, 5221-5233. https://doi.org/10.3390/cimb44110355
Gallegos-Arreola MP, Ramírez-Patiño R, Sánchez-López JY, Zúñiga-González GM, Figuera LE, Delgado-Saucedo JI, Gómez-Meda BC, Rosales-Reynoso MA, Puebla-Pérez AM, Lemus-Varela ML, et al. SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Current Issues in Molecular Biology. 2022; 44(11):5221-5233. https://doi.org/10.3390/cimb44110355
Chicago/Turabian StyleGallegos-Arreola, Martha P., Ramiro Ramírez-Patiño, Josefina Y. Sánchez-López, Guillermo M. Zúñiga-González, Luis E. Figuera, Jorge I. Delgado-Saucedo, Belinda C. Gómez-Meda, Mónica A. Rosales-Reynoso, Ana M. Puebla-Pérez, María L. Lemus-Varela, and et al. 2022. "SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk" Current Issues in Molecular Biology 44, no. 11: 5221-5233. https://doi.org/10.3390/cimb44110355
APA StyleGallegos-Arreola, M. P., Ramírez-Patiño, R., Sánchez-López, J. Y., Zúñiga-González, G. M., Figuera, L. E., Delgado-Saucedo, J. I., Gómez-Meda, B. C., Rosales-Reynoso, M. A., Puebla-Pérez, A. M., Lemus-Varela, M. L., Garibaldi-Ríos, A. F., Marín-Domínguez, N. A., Pacheco-Verduzco, D. P., & Mohamed-Flores, E. A. (2022). SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Current Issues in Molecular Biology, 44(11), 5221-5233. https://doi.org/10.3390/cimb44110355

