Investigation of Antidepressant Properties of Yohimbine by Employing Structure-Based Computational Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. ADMET Profile of Yohimbine
2.2. Protein Selection of MDD and Sequence Analysis
2.2.1. Physicochemical Characterizations and Function Prediction
2.2.2. 3D Structure Generation and Refinement
2.3. Identification of Binding Pocket and Protein-Molecular Docking Studies
2.4. Comparative Analysis of 5HT1A Structure
2.5. In Silico Mutant Preparation
2.6. Molecular Dynamics Simulation Study
3. Results and Discussion
3.1. ADMET Estimations
3.2. Sequence Analysis of Target Protein
3.3. Structure Prediction and Quality Assessment
3.4. Comparative Analysis of 5HT1A Structures
3.5. Docking and Interaction Studies
3.6. In Silico Mutation Studies
3.7. Molecular Dynamic Studies
3.8. Intra-Molecular Interactions during Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Hastings, J.; Schulz, S. Ontologies for human behavior analysis and their application to clinical data. Int. Rev. Neurobiol. 2012, 103, 89–107. [Google Scholar] [PubMed]
- Bains, N.; Abdijadid, S.; Miller, J.L. Major Depressive Disorder (Nursing); StatPearls: Treasure Island, Finland, 2021. [Google Scholar]
- Sagar, R.; Dandona, R.; Gururaj, G.; Dhaliwal, R.S.; Singh, A.; Ferrari, A.; Dua, T.; Ganguli, A.; Varghese, M.; Chakma, J.K.; et al. The burden of mental disorders across the states of India: The global burden of disease study 1990–2017. Lancet Psychiatry 2020, 7, 148–161. [Google Scholar] [CrossRef] [Green Version]
- Smith, K. Mental health: A world of depression. Nature 2014, 515, 181. [Google Scholar] [CrossRef] [PubMed]
- Vahia, V.N. Diagnostic and statistical manual of mental disorders 5: A quick glance. Indian J. Psychiatry 2013, 55, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Samuels, B.A.; Leonardo, E.D.; Gadient, R.; Williams, A.; Zhou, J.; David, D.J.; Gardier, A.M.; Wong, E.H.; Hen, R. Modeling treatment-resistant depression. Neuropharmacology 2011, 61, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain. 2017, 10, 28. [Google Scholar] [CrossRef]
- Ruhe, H.G.; Mason, N.S.; Schene, A.H. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Mol. Psychiatry 2007, 12, 331–359. [Google Scholar] [CrossRef] [Green Version]
- Fekadu, N.; Basha, H.; Meresa, A.; Degu, S.; Girma, B.; Geleta, B. Diuretic activity of the aqueous crude extract and hot tea infusion of Moringa stenopetala (Baker f.) Cufod. leaves in rats. J. Exp. Pharmacol. 2017, 9, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Duval, F.; Lebowitz, B.D.; Macher, J.P. Treatments in depression. Dialogues Clin. Neurosci. 2006, 8, 191–206. [Google Scholar]
- Wilson, K.C.; Mottram, P.G.; Vassilas, C.A. Psychotherapeutic treatments for older depressed people. Cochrane Database Syst. Rev. 2008, 1, CD004853. [Google Scholar] [CrossRef]
- Cuijpers, P.; van Straten, A.; Smit, F. Psychological treatment of late-life depression: A meta-analysis of randomized controlled trials. Int. J. Geriatr. Psychiatry 2006, 21, 1139–1149. [Google Scholar] [CrossRef]
- Montgomery, J.H.; Vasu, D. The use of electroconvulsive therapy in atypical psychotic presentations: A case review. Psychiatry 2007, 4, 30–39. [Google Scholar]
- Horvath, J.C.; Mathews, J.; Demitrack, M.A.; Pascual-Leone, A. The NeuroStar TMS device: Conducting the FDA approved protocol for treatment of depression. J. Vis. Exp. 2010, 45, 2345. [Google Scholar] [CrossRef] [Green Version]
- Gangadhar, B.N.; Varambally, S. Yoga as therapy in psychiatric disorders: Past, present, and future. Biofeedback 2011, 39, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Kemp, D.E. Managing the side effects associated with commonly used treatments for bipolar depression. J. Affect. Disord. 2014, 169 (Suppl. 1), S34–S44. [Google Scholar] [CrossRef] [Green Version]
- Culpepper, L.; Davidson, J.R.; Dietrich, A.J.; Goodman, W.K.; Kroenke, K.; Schwenk, T.L. Suicidality as a possible side effect of antidepressant treatment. Prim. Care Companion J. Clin. Psychiatry 2004, 6, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Beaubrun, G.; Gray, G.E. A review of herbal medicines for psychiatric disorders. Psychiatr. Serv. 2000, 51, 1130–1134. [Google Scholar] [CrossRef]
- Wong, A.H.; Smith, M.; Boon, H.S. Herbal remedies in psychiatric practice. Arch. Gen. Psychiatry 1998, 55, 1033–1044. [Google Scholar] [CrossRef]
- Morales, A. Yohimbine in erectile dysfunction: The facts. Int. J. Impot. Res. 2000, 12, S70–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Zaher, A.O.; Ahmed, I.T.; El-Koussi, A.D. The potential antidiabetic activity of some alpha-2 adrenoceptor antagonists. Pharmacol. Res. 2001, 44, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Steers, W.D. Pharmacologic treatment of erectile dysfunction. Rev. Urol. 2002, 4 (Suppl. 3), S17–S25. [Google Scholar] [PubMed]
- Wingenfeld, K.; Kuffel, A.; Uhlmann, C.; Terfehr, K.; Schreiner, J.; Kuehl, L.K.; Otte, C.; Löwe, B.; Spitzer, C. Effects of noradrenergic stimulation on memory in patients with major depressive disorder. Stress 2013, 16, 191–201. [Google Scholar] [CrossRef]
- Mohamadzadeh, M. Microbial toxins: Current research and future trends. Expert Rev. Anti-Infect. Ther. 2009, 7, 695–696. [Google Scholar] [CrossRef] [Green Version]
- Silverstone, T.; Romans-Clarkson, S. Bipolar affective disorder: Causes and prevention of relapse. Br. J. Psychiatry 1989, 154, 321–335. [Google Scholar] [CrossRef]
- Bremner, J.D.; Narayan, M.; Staib, L.H.; Southwick, S.M.; McGlashan, T.; Charney, D.S. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am. J. Psychiatry 1999, 156, 1787–1795. [Google Scholar]
- Onrot, J.; Goldberg, M.R.; Biaggioni, I.; Wiley, R.G.; Hollister, A.S.; Robertson, D. Oral yohimbine in human autonomic failure. Neurology 1987, 37, 215–220. [Google Scholar] [CrossRef]
- Drug Bank Yohimbine. Updated on 8 July 2018. 2018. Available online: https://www.drugbank.ca/drugs/DB01392 (accessed on 8 July 2021).
- Szafran, K.; Faron-Górecka, A.; Kolasa, M.; Kuśmider, M.; Solich, J.; Zurawek, D.; Dziedzicka-Wasylewska, M. Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: A focus on depression. Pharmacol. Rep. 2013, 65, 1498–1505. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014, 344, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Covington, H.E., 3rd; Vialou, V.; Nestler, E.J. From synapse to nucleus: Novel targets for treating depression. Neuropharmacology 2010, 58, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with Alpha Fold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Millan, M.J.; Newman-Tancredi, A.; Audinot, V.; Cussac, D.; Lejeune, F.; Nicolas, J.P.; Cogé, F.; Galizzi, J.P.; Boutin, J.A.; Rivet, J.M.; et al. Agonist and antagonist actions of yohimbine as compared to fluparoxan at ±2-adrenergic receptors (AR)s, serotonin (5-HT)1A, 5-HT1B, 5-HT1D and dopamine D2 and D3 receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 2000, 35, 79–95. [Google Scholar]
- Celada, P.; Bortolozzi, A.; Artigas, F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: Rationale and current status of research. CNS Drugs 2013, 27, 703–716. [Google Scholar] [CrossRef]
- Celada, P.; Puig, M.; Amargós-Bosch, M.; Adell, A.; Artigas, F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J. Psychiatry Neurosci. 2004, 29, 252–265. [Google Scholar]
- PubChem Compound Summary for CID 8969, Yohimbine. National Center for Biotechnology Information. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 30 August 2021).
- Lagorce, D.R.; Camproux, A.; Miteva, M.A.; Sperandio, O.; Villoutreix, B.O. In silico adme/tox Predictions. In ADMET for Medicinal Chemists: A Practical Guide; Katya Tsaioun, S.A.K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 29–124. [Google Scholar]
- Egan, W.J.; Merz, K.M., Jr.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Shukla, A.; Sharma, P.; Prakash, O.; Singh, M.; Kalani, K.; Khan, F.; Bawankule, D.U.; Luqman, S.; Srivastava, S.K. QSAR and docking studies on capsazepine derivatives for immunomodulatory and anti-inflammatory activity. PLoS ONE 2014, 9, e100797. [Google Scholar] [CrossRef] [Green Version]
- El-banna, A.A.; Pitt, J.I.; Leistner, L. Production of mycotoxins by Penicillium Species. Syst. Appl. Microbiol. 1987, 10, 42–46. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [Green Version]
- Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; et al. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39, D225–D229. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Apweiler, R.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; DeWeese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef]
- Hubbard, T.; Barker, D.; Birney, E.; Cameron, G.; Chen, Y.; Clark, L.; Cox, T.; Cuff, J.; Curwen, V.; Down, T.; et al. The Ensembl genome database project. Nucleic Acids Res. 2002, 30, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Sahraeian, S.M.; Luo, K.R.; Brenner, S.E. SIFTER search: A web server for accurate phylogeny-based protein function prediction. Nucleic Acids Res. 2015, 43, W141–W147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, E.; Sigrist, C.J.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, W362–W365. [Google Scholar] [CrossRef]
- Knudsen, M.; Wiuf, C. The CATH database. Hum. Genom. 2010, 4, 207–212. [Google Scholar] [CrossRef]
- Huang, H.; Arighi, C.N.; Ross, K.E.; Ren, J.; Li, G.; Chen, S.C.; Wang, Q.; Cowart, J.; Vijay-Shanker, K.; Wu, C.H. iPTMnet: An integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 2018, 46, D542–D550. [Google Scholar] [CrossRef]
- Tasleem, M.; Isharat, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Structural characterization, homology modeling and docking studies of ARG674 mutation in MyH8 gene associated with trismus-pseudocamptodactyly syndrome. Lett. Drug Des. Discov. 2014, 11, 1177–1187. [Google Scholar] [CrossRef]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1–5.6.37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M. SWISS-MODEL: An. automated protein homology-modeling server. Nucleic Acids Res. 2003, 31, 3381–3385. [Google Scholar] [CrossRef] [Green Version]
- Pieper, U.; Webb, B.M.; Barkan, D.T.; Schneidman-Duhovny, D.; Schlessinger, A.; Braberg, H.; Yang, Z.; Meng, E.C.; Pettersen, E.F.; Huang, C.C.; et al. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 2011, 39, D465–D474. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Wallner, B.; Elofsson, A. Can correct protein models be identified? Protein Sci. 2003, 12, 1073–1086. [Google Scholar] [CrossRef] [Green Version]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [Green Version]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Lovell, S.C.; Davis, I.W.; Arendall, W.B., 3rd; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 2003, 50, 437–450. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Schuler, L.D.; Daura, X.; Gunsteren, F.W. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 2001, 22, 1205–1218. [Google Scholar] [CrossRef]
- Sajadi, F.; Rowley, C.N. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models. PeerJ 2018, 6, e5472. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Parrinello, M.R. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Van Gunsteren, W.F.; Berendsen, H.J.C. A leap-frog algorithm for stochastic dynamics. Molec. Simul. 1988, 1, 173–185. [Google Scholar] [CrossRef]
- Wan, H. What ADME tests should be conducted for preclinical studies? Admet. Dmpk. 2013, 1, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.; Gupta, P.; Sharma, S.; Sharma, A.; Agarwal, S.M. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med. Chem. 2020, 12, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Huang, S.; Zhang, H.; Mao, C.; Zhou, X.E.; Cheng, X.; Simon, I.A.; Shen, D.D.; Yen, H.Y.; Robinson, C.V. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 2021, 592, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Rayment, I. Protein Structure. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press, Ramtech, Inc.: Tarzana, CA, USA, 2003; pp. 191–218. ISBN 9780122274107. [Google Scholar] [CrossRef]
Property | Predicted Value |
---|---|
Physicochemical properties | |
LogS (Solubility) | 50.647 μg/mL |
LogD7.4 (Distribution Coefficient D) | 1.066 |
LogP (Distribution Coefficient P) | 2.165 |
Absorption | |
Papp (Caco-2 Permeability) | −4.783 cm/s |
Pgp-inhibitor | + |
Pgp-substrate | + |
HIA (Human Intestinal Absorption) | + (0) |
F (20% Bioavailability) | + |
F (30% Bioavailability) | + |
Distribution | |
PPB (Plasma Protein Binding | 76.312 % |
VD (Volume Distribution) | 1.219 L/kg |
BBB (Blood–Brain Barrier) | +++ (2) |
Metabolism | |
P450 CYP1A2 inhibitor | −−− |
P450 CYP1A2 Substrate | − |
P450 CYP3A4 inhibitor | −−− |
P450 CYP3A4 substrate | ++ |
P450 CYP2C9 inhibitor | −−− |
P450 CYP2C9 substrate | −−− |
P450 CYP2C19 inhibitor | −−− |
P450 CYP2C19 substrate | − |
P450 CYP2D6 inhibitor | ++ |
P450 CYP2D6 substrate | ++ |
Elimination | |
T1/2 (Half Life Time) | 1.615 h |
CL (Clearance Rate) | 2.321 mL/min/kg |
Compounds | Rotatable Bonds | MW (<500) | ALog P (≤5) | H-Bond Donor (≤5) | H-Bond Acceptor (≤10) | Rule of 5 Violations |
---|---|---|---|---|---|---|
Yohimbine | 2 | 354.443 | 2.82 | 2 | 5 | 0 |
Parameters | Unit | Yohimbine |
---|---|---|
Rat inhalation LC50 | mg/m3/h | 3590.05 |
Rate of oral LD50 | g/kg body weight | 0.311154 |
Rat chronic LOEAL | g/kg body weight | 0.00473724 |
Daphnia EC50 | mg/mL | 4.13671 |
Fathead minnow LC50 | g/L | 0.0106882 |
hERG (hERG Blockers) | + | |
H-HT (Human Hepatotoxicity) | − | |
DILI (Drug Induced Liver Injury) | − | |
Carcinogenic potency TD50 | ||
Rat | mg/kg body weight/day | 0.00302322 |
Mouse | mg/kg body weight/day | 27.5687 |
Rat maximum tolerated dose | g/kg body weight | 0.0664294 |
Developmental toxicity potential | Toxic | |
Aerobic biodegradability | Non-degradable | |
Ames mutagenicity | Non-mutagen | |
Skin irritancy | Mild | |
Ocular irritancy | Severe |
Target Protein | UniProt ID | Residues | Molecular Weight | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity (GRAVY) |
---|---|---|---|---|---|---|---|
5HT1A | P08908 | 422 | 46106.88 | 9.13 | 36.52 | 100.81 | 0.195 |
Target Protein | Residue | Post-Translational Modification |
---|---|---|
5HT1A | T196 | Phosphorylation |
S199 | Phosphorylation | |
Y205 | Phosphorylation | |
Y215 | Phosphorylation | |
T240 | Phosphorylation | |
K324 | Acetylation | |
K334 | Ubiquitination | |
T60 | Phosphorylation |
Target Protein | Tool | ProQ | ProSA ZScore | ERRAT | PROCHECK (in %) | |||
---|---|---|---|---|---|---|---|---|
LGscore | MaxSub | F | A | G | ||||
5HT1A | Swiss Model | 2.238 | 0.139 | −5.29 | 88.740 | 94.5 | 4.4 | 1.0 |
MODELLER | 11.480 | 1.071 | 0.64 | n.a. | 96.4 | 3.09 | 0.47 | |
Psi-Pred | 1.770 | 0.068 | n.a. | 71.498 | 70 | 19.1 | 10.8 | |
Phyre 2 | 2.035 | 0.129 | −1.18 | 80.323 | 93.6 | 3.4 | 2.9 |
Mutation | Mutation Energy | Effect of Mutation |
---|---|---|
A:ASN404>ALA | 0.28 | neutral |
A:ASN404>ARG | −1.69 | stabilizing |
A:ASN404>ASN | −0.7 | stabilizing |
A:ASN404>ASP | 0.28 | neutral |
A:ASN404>CYS | −0.67 | stabilizing |
A:ASN404>GLN | −0.47 | neutral |
A:ASN404>GLU | 0.38 | neutral |
A:ASN404>GLY | 1.32 | destabilizing |
A:ASN404>HIS | 0 | neutral |
A:ASN404>ILE | −1.77 | stabilizing |
A:ASN404>LEU | −2.79 | stabilizing |
A:ASN404>LYS | −0.02 | neutral |
A:ASN404>MET | −0.83 | stabilizing |
A:ASN404>PHE | −2.15 | stabilizing |
A:ASN404>PRO | 5.38 | destabilizing |
A:ASN404>SER | 0.74 | destabilizing |
A:ASN404>THR | 0.16 | neutral |
A:ASN404>TRP | −1.67 | stabilizing |
A:ASN404>TYR | −1.71 | stabilizing |
A:ASN404>VAL | −1.54 | stabilizing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasleem, M.; Alrehaily, A.; Almeleebia, T.M.; Alshahrani, M.Y.; Ahmad, I.; Asiri, M.; Alabdallah, N.M.; Saeed, M. Investigation of Antidepressant Properties of Yohimbine by Employing Structure-Based Computational Assessments. Curr. Issues Mol. Biol. 2021, 43, 1805-1827. https://doi.org/10.3390/cimb43030127
Tasleem M, Alrehaily A, Almeleebia TM, Alshahrani MY, Ahmad I, Asiri M, Alabdallah NM, Saeed M. Investigation of Antidepressant Properties of Yohimbine by Employing Structure-Based Computational Assessments. Current Issues in Molecular Biology. 2021; 43(3):1805-1827. https://doi.org/10.3390/cimb43030127
Chicago/Turabian StyleTasleem, Munazzah, Abdulwahed Alrehaily, Tahani M. Almeleebia, Mohammad Y. Alshahrani, Irfan Ahmad, Mohammed Asiri, Nadiyah M. Alabdallah, and Mohd Saeed. 2021. "Investigation of Antidepressant Properties of Yohimbine by Employing Structure-Based Computational Assessments" Current Issues in Molecular Biology 43, no. 3: 1805-1827. https://doi.org/10.3390/cimb43030127
APA StyleTasleem, M., Alrehaily, A., Almeleebia, T. M., Alshahrani, M. Y., Ahmad, I., Asiri, M., Alabdallah, N. M., & Saeed, M. (2021). Investigation of Antidepressant Properties of Yohimbine by Employing Structure-Based Computational Assessments. Current Issues in Molecular Biology, 43(3), 1805-1827. https://doi.org/10.3390/cimb43030127