Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the High Fat Diet-Induced Obese Rabbit Model
2.2. Total RNA Extraction and RNA-Sequencing
2.3. DNA Extraction and Whole-Genome Bisulfite Sequencing (WGBS)
2.4. Processing and Comparison of the Bisulfite-Sequenced Libraries
2.5. Analysis of Mean DNA Methylation Levels
2.6. Screening for Differentially Methylated Regions (DMRs)
2.7. Differential Alternative Splicing Analysis
2.8. Enrichment Analysis
2.9. Network Analysis
3. Results
3.1. Differential Methylation of the Skeletal Muscle Tissue between the Two Groups
3.2. Distribution Ratios of Methylated C Bases between the Two Groups
3.3. Analysis of DNA Methylation Levels and Differentially Methylated Regions (DMRs) between the Two Groups
3.4. Methylation of Genes Analysis between the Two Groups
3.5. Analysis of Alternative Splicing between the Two Groups
3.6. Functional Enrichment Analysis of Genes with Related to ES Alternative Splicing
3.7. Combined Network Analysis of Exon-Skipping Alternative Splicing and Methylated Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lee-Young, R.S.; Ayala, J.E.; Fueger, P.T.; Mayes, W.H.; Kang, L.; Wasserman, D.H. Obesity impairs skeletal muscle AMPK signaling during exercise: Role of AMPKα2 in the regulation of exercise capacity in vivo. Int. J. Obes. 2010, 35, 982–989. [Google Scholar] [CrossRef] [Green Version]
- Clough, G.F.; Turzyniecka, M.; Walter, L.; Krentz, A.J.; Wild, S.H.; Chipperfield, A.J.; Gamble, J.; Byrne, C.D. Muscle micro-vascular dysfunction in central obesity is related to muscle insulin insensitivity but is not reversed by high-dose statin treat-ment. Diabetes 2009, 58, 1185–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrinelli, V.; Rouault, C.; Rodriguez-Cuenca, S.; Albert, V.; Edom-Vovard, F.; Vidal-Puig, A.; Clément, K.; Butler-Browne, G.; Lacasa, D. Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes 2015, 64, 3121–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra-Tomás, N.; Babio, N.; Martinez-Gonzalez, M.A.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Serra-Majem, L.; Salaverria, I.; Lamuela-Raventós, R.M.; et al. Replacing red meat and processed red meat for white meat, fish, legumes or eggs is associated with lower risk of incidence of metabolic syndrome. Clin. Nutr. 2016, 35, 1442–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef]
- Chen, Z.; Chu, S.; Xu, X.; Jiang, J.; Wang, W.; Shen, H.; Li, M.; Zhangping, Y.; Mao, Y.; Yang, Z. Analysis of longissimus muscle quality characteristics and associations with DNA methylation status in cattle. Genes Genom. 2019, 41, 1147–1163. [Google Scholar] [CrossRef]
- Begue, G.; Raue, U.; Jemiolo, B.; Trappe, S. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers. J. Appl. Physiol. 2017, 122, 952–967. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Park, H.; Seo, K.-S.; Seo, S. Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine. Asian-Australas. J. Anim. Sci. 2018, 31, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Liang, Y.; Deng, K.; Zhang, Z.; Zhang, G.; Zhang, Y.; Wang, F. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genom. 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Yan, J.; Chen, M.; Zhu, M.; Tang, Y.; Liu, S.; Tang, Z. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Res. 2021, 49, 1313–1329. [Google Scholar] [CrossRef]
- Jacobsen, S.C.; Brøns, C.; Bork-Jensen, J.; Ribel-Madsen, R.; Yang, B.; Lara, E.; Hall, E.; Calvanese, V.; Nilsson, E.H.; Jørgensen, S.W.; et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 2012, 55, 3341–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, S.C.; Gillberg, L.; Bork-Jensen, J.; Ribel-Madsen, R.; Lara, E.; Calvanese, V.; Ling, C.; Fernandez, A.F.; Fraga, M.; Poulsen, P.; et al. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia 2014, 57, 1154–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlett, K.F.; McGee, S.L. Epigenetic regulation of skeletal muscle metabolism. Clin. Sci. 2016, 130, 1051–1063. [Google Scholar] [CrossRef]
- Hellman, A.; Chess, A. Gene Body-Specific Methylation on the Active X Chromosome. Science 2007, 315, 1141–1143. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.; Lee, H.M.; Qin, H.; Li, J.W.; Gao, Z.; Liu, X.; Chan, L.L.; Lam, V.K.; So, W.Y.; Wang, Y.; et al. Whole-genome bisulfite sequencing of multiple individuals reveals complemen-tary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014, 15, 408. [Google Scholar] [CrossRef] [PubMed]
- Sailani, M.R.; Halling, J.F.; Møller, H.D.; Lee, H.; Plomgaard, P.; Pilegaard, H.; Snyder, M.P.; Regenberg, B. Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Sci. Rep. 2019, 9, 3272. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Jiang, Z.; Xia, Y.; Lou, P.; Chen, L.; Wang, H.; Bai, L.; Xie, Y.; Liu, Y.; Li, W.; et al. Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs. BMC Genom. 2014, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Grade, C.V.C.; Mantovani, C.S.; Alvares, L.E. Myostatin gene promoter: Structure, conservation and importance as a target for muscle modulation. J. Anim. Sci. Biotechnol. 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Calvo, J.; González-Calvo, L.; Dervishi, E.; Blanco, M.; Iguácel, L.; Sarto, P.; Perez-Campo, F.; Serrano, M.; Bolado-Carrancio, A.; Rodríguez-Rey, J.C.; et al. A functional variant in the stearoyl-CoA desaturase (SCD) gene promoter affects gene expression in ovine muscle. Livest. Sci. 2019, 219, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Espes, D.; Carlson, P.O.; Benedict, C.; Cedernaes, J. 0118 Increased Circulating Levels and Peripheral Tissue Promoter DNA Methylation of the Hormone FGF-21 Following Acute Sleep Loss in Humans. Sleep 2019, 42, A48–A49. [Google Scholar] [CrossRef]
- Rodriguez, J.M.; Pozo, F.; Domenico, T.; Vazquez, J.; Tress, M.L. An analysis of tissue-specific alternative splicing at the pro-tein level. PLoS Comput. Biol. 2020, 16, e1008287. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alterna-tive isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, D.; Pinello, N.; Nguyen, T.V.; Thoeng, A.; Nagarajah, R.; Holst, J.; Rasko, J.E.; Wong, J.J. DNA methyla-tion/hydroxymethylation regulate gene expression and alternative splicing during terminal granulopoiesis. Epigenomics 2019, 11, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Maor, G.L.; Yearim, A.; Ast, G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015, 31, 274–280. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, J.; Li, J.; Arif, W.; Kalsotra, A.; Irudayaraj, J. Effect of PFOA on DNA Methylation and Alternative Splicing in Mouse Liver. Toxicol. Lett. 2020, 329, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenome—Biological and translational implications. Nat. Rev. Cancer 2011, 11, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Amit, M.; Donyo, M.; Hollander, D.; Goren, A.; Kim, E.; Gelfman, S.; Lev-Maor, G.; Burstein, D.; Schwartz, S.; Postolsky, B.; et al. Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition. Cell Rep. 2012, 1, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Yearim, A.; Gelfman, S.; Shayevitch, R.; Melcer, S.; Glaich, O.; Mallm, J.-P.; Nissim-Rafinia, M.; Cohen, A.-H.S.; Rippe, K.; Meshorer, E.; et al. HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing. Cell Rep. 2015, 10, 1122–1134. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fang, C.; Fu, Y.; Hu, A.; Li, C.; Zou, C.; Li, X.; Zhao, S.; Zhang, C.; Li, C. A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Res. 2018, 25, 421–437. [Google Scholar] [CrossRef]
- Niyikiza, D.; Piya, S.; Routray, P.; Miao, L.; Kim, W.; Burch-Smith, T.; Gill, T.; Sams, C.; Arelli, P.R.; Pantalone, V.; et al. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity. Plant J. 2020, 103, 1744–1766. [Google Scholar] [CrossRef]
- Domingos, J.A.; Budd, A.M.; Banh, Q.Q.; Goldsbury, J.A.; Zenger, K.R.; Jerry, D.R. Sex-specific dmrt1 and cyp19a1 methyla-tion and alternative splicing in gonads of the protandrous hermaphrodite barramundi. PLoS ONE 2018, 13, e0204182. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Elzo, M.A.; Jia, X.; Chen, S.; Lai, S. Comparison of Carcass and Meat Quality Traits among Three Rabbit Breeds. Food Sci. Anim. Resour. 2016, 36, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Wang, J.; Li, Y.; Elzo, M.A.; Tang, T.; Lai, T.; Ma, Y.; Gan, M.; Wang, L.; Jia, X.; et al. Growth, behavioural, serum biochemical and morphological changes in female rabbits fed high-fat diet. J. Anim. Physiol. Anim. Nutr. 2021, 105, 345–353. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Luu, P.-L.; Qu, W.; Maddugoda, M.; Huschtscha, L.; Reddel, R.; Chenevix-Trench, G.; Toso, M.; Kench, J.G.; Horvath, L.G.; et al. Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten. Epigenetics Chromatin 2018, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Cui, H.M. The method of estimating bisulfite conversion rate in DNA methylation analysis. Hereditas 2015, 37, 939–944. [Google Scholar] [PubMed]
- Shen, S.; Park, J.W.; Lu, Z.X.; Lin, L.; Henry, M.D.; Wu, Y.N.; Zhou, Q.; Xing, Y. rMATS: Robust and flexible detection of dif-ferential alternative splicing from replicate RNA-Seq data. Proc. Nat. Acad. Sci. USA 2014, 111, E5593–E5601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, A.; Park, I.H.; Wen, B.; Murakami, P.; Aryee, M.J.; Irizarry, R.; Herb, B.; Ladd-Acosta, C.; Rho, J.; Loewer, S.; et al. Differential methylation of tissue- and cancer-specific CpG island shores distin-guishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 2009, 41, 1350–1353. [Google Scholar] [CrossRef] [Green Version]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.-M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhu, J.; Tian, G.; Li, N.; Li, Q.; Ye, M.; Zheng, H.; Yu, J.; Wu, H.; Sun, J.; et al. The DNA methylome of human pe-ripheral blood mononuclear cells. PLoS Biol. 2010, 8, e1000533. [Google Scholar] [CrossRef]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; de Cássia Freitas, K.; de Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, P.A.; Kovacs, C.; Moreira, P.; Magnoni, D.; Saleh, M.H.; Faintuch, J. Unsaturated Fatty Acids Improve Atherosclerosis Markers in Obese and Overweight Non-diabetic Elderly Patients. Obes. Surg. 2017, 27, 2663–2671. [Google Scholar] [CrossRef]
- Li, W.; Tang, R.; Ma, F.; Ouyang, S.; Liu, Z.; Wu, J. Folic acid supplementation alters the DNA methylation profile and im-proves insulin resistance in high-fat-diet-fed mice. J. Nutr. Biochem. 2018, 59, 76–83. [Google Scholar] [CrossRef]
- Sonne, S.B.; Yadav, R.; Yin, G.; Dalgaard, M.D.; Myrmel, L.S.; Gupta, R.; Wang, J.; Madsen, L.; Kajimura, S.; Kristiansen, K. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte 2017, 6, 124–133. [Google Scholar] [CrossRef]
- Galan-Davila, A.K.; Ryu, J.; Dong, K.; Xiao, Y.; Dai, Z.; Zhang, D.; Li, Z.; Dick, A.M.; Liu, K.D.; Kamat, A.; et al. Alternative splicing variant of the scaffold protein APPL1 suppresses hepatic adiponectin signaling and function. J. Biol. Chem. 2018, 293, 6064–6074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecil, C.A.M.; Walton, E.; Jaffee, S.R.; O’Connor, T.; Maughan, B.; Relton, C.; Smith, R.; McArdle, W.; Gaunt, T.; Ouellet-Morin, I.; et al. Neonatal DNA methylation and early-onset conduct problems: A genome-wide, prospective study. Dev. Psychopathol. 2017, 30, 383–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, T.; Trump, S.; Ishaque, N.; Thürmann, L.; Gu, L.; Bauer, M.; Bieg, M.; Gu, Z.; Weichenhan, D.; Mallm, J.; et al. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol. Syst. Biol. 2016, 12, 861. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.; Miyata, T.; Nakabayashi, K.; Okamura, K.; Naito, M.; Kawai, T.; Takada, S.; Kato, K.; Miyamoto, S.; Hata, K.; et al. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: De novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation. Hum. Mol. Genet. 2014, 24, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.J.; Chiang, T.W. Impacts of pretranscriptional DNA methylation, transcriptional transcription factor, and post-transcriptional microRNA regulations on protein evolutionary rate. Genome Biol. Evol. 2014, 6, 1530–1541. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-F.; Zhu, J.-J.; Tian, X.Y.; Liu, H.; Zhang, T.; Zhang, Y.-P.; Xie, S.-A.; Zheng, M.; Kong, W.; Yao, W.-J.; et al. Hypermethylation of mitochondrial DNA in vascular smooth muscle cells impairs cell contractility. Cell Death Dis. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsumagari, K.; Baribault, C.; Terragni, J.; Chandra, S.; Renshaw, C.; Sun, Z.; Song, L.; Crawford, G.E.; Pradhan, S.; Lacey, M.; et al. DNA methylation and differentiation: HOX genes in muscle cells. Epigenetics Chromatin 2013, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Ringel, A.E.; Drijvers, J.M.; Baker, G.J.; Catozzi, A.; García-Cañaveras, J.C.; Gassaway, B.M.; Miller, B.C.; Juneja, V.R.; Nguyen, T.H.; Joshi, S.; et al. Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell 2020, 183, 1848–1866.e26. [Google Scholar] [CrossRef]
- Wright, C.; Simone, N.L. Obesity and tumor growth: Inflammation, immunity, and the role of a ketogenic diet. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 294–309. [Google Scholar] [CrossRef]
- Yang, H.W.; Kim, T.M.; Song, S.S.; Menon, L.; Jiang, X.; Huang, W.; Black, P.M.; Park, P.J.; Carroll, R.S.; Johnson, M.D. A small subunit processome protein promotes cancer by altering translation. Oncogene 2015, 34, 4471–4481. [Google Scholar] [CrossRef]
- Chen, H.L.; D’Mello, S.R. Induction of neuronal cell death by paraneoplastic Ma1 antigen. J. Neurosci. Res. 2010, 88, 3508–3519. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chen, B.; Gu, Y.; Liu, Q. PNMA1, regulated by miR-33a-5p, promotes proliferation and EMT in hepatocellular carcinoma by activating the Wnt/β-catenin pathway. Biomed. Pharmacother. 2018, 108, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Ilha, J.; do Espírito-Santo, C.C.; de Freitas, G.R. mTOR Signaling Pathway and Protein Synthesis: From Training to Aging and Muscle Autophagy. Adv. Exp. Med. Biol. 2018, 1088, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Nada, S.; Mori, S.; Takahashi, Y.; Okada, M. p18/LAMTOR1: A late endosome/lysosome-specific anchor protein for the mTORC1/MAPK signaling pathway. Methods Enzymol. 2014, 535, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, F.; Wang, Z.; Di, J.; Yang, J.; Gao, P.; Jiang, B.; Su, X. CENPH Inhibits Rapamycin Sensitivity by Regulating GOLPH3-dependent mTOR Signaling Pathway in Colorectal Cancer. J. Cancer 2017, 8, 2163–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docquier, A.; Pavlin, L.; Raibon, A.; Bertrand-Gaday, C.; Sar, C.; Leibovitch, S.; Candau, R.; Bernardi, H. eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse. J. Physiol. 2019, 597, 3107–3131. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, M.; Minato, S.; Kitaoka, K.; Tsuboi, A.; Kurata, M.; Kazumi, T.; Fukuo, K. Higher Fasting and Postprandial Free Fatty Acid Levels Are Associated with Higher Muscle Insulin Resistance and Lower Insulin Secretion in Young Non-Obese Women. J. Clin. Med. Res. 2018, 10, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Jang, M.; Kim, H.; Kwak, W.; Park, W.; Hwang, J.Y.; Lee, C.K.; Jang, G.W.; Park, M.N.; Kim, H.C.; et al. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interac-tion Is Involved in the Depot-Specific Adipogenesis in Cattle. PLoS ONE 2013, 8, e66267. [Google Scholar]
- Wolff, G.; Taranko, A.E.; Meln, I.; Weinmann, J.; Sijmonsma, T.; Lerch, S.; Heide, D.; Billeter, A.T.; Tews, D.; Krunic, D.; et al. Diet-dependent function of the extracellular matrix proteoglycan Lumican in obesity and glucose homeostasis. Mol. Metab. 2019, 19, 97–106. [Google Scholar] [CrossRef]
- DeWane, G.; Salvi, A.M.; DeMali, K.A. Fueling the cytoskeleton—Links between cell metabolism and actin remodeling. J. Cell Sci. 2021, 134, jcs248385. [Google Scholar] [CrossRef]
- Sharonov, G.V.; Balatskaya, M.; Tkachuk, V. Glycosylphosphatidylinositol-anchored proteins as regulators of cortical cytoskeleton. Biochemistry 2016, 81, 636–650. [Google Scholar] [CrossRef]
- Grau-Bové, X.; Ruiz-Trillo, I.; Irimia, M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol. 2018, 19, 135. [Google Scholar] [CrossRef]
- Głogowska-Ligus, J.; Dąbek, J. Expression profile of integrin family genes in patients with myocardial infarction and in healthy subjects: An oligonucleotide microarray and QRT-PCR assessment. Preliminary results. Minerva Med. 2019, 110, 224–231. [Google Scholar] [CrossRef]
- Adorno-Cruz, V.; Liu, H. Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis. 2018, 6, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Shi, H.; Ding, M. Comparative analysis of gene expression profiles in children with type 1 diabetes mellitus. Mol. Med. Rep. 2019, 19, 3989–4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, F.; Murakami, C.; Sakai, H.; Satoh, M.; Sakane, F. Creatine kinase muscle type specifically interacts with saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids. Biochem. Biophys. Res. Commun. 2019, 513, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, Y.; Matsuo, K.; Kitamura, Y.; Ono, K.; Ueyama, T.; Matoba, S.; Yamada, H.; Wu, T.; Chen, J.; Emoto, N.; et al. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle. PLoS ONE 2015, 10, e0138624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishita, Y.; Pajak, A.; Bolar, N.A.; Marobbio, C.M.; Maffezzini, C.; Miniero, D.V.; Monné, M.; Kohda, M.; Stranneheim, H.; Murayama, K.; et al. Intra-mitochondrial Methylation Deficiency Due to Mutations in SLC25A26. Am. J. Hum. Genet. 2015, 97, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, J.P.; Nobbs, M.; McGettigan, P.; Lynch, S.; Ennis, S. Recessive mutations inMCM4/PRKDCcause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair. J. Med. Genet. 2012, 49, 242–245. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Y.; Xu, M.; Jiang, T. Crystal structures of the UBX domain of human UBXD7 and its complex with p97 ATPase. Biochem. Biophys. Res. Commun. 2017, 486, 94–100. [Google Scholar] [CrossRef]
- Cilenti, L.; Di Gregorio, J.; Ambivero, C.T.; Andl, T.; Liao, R.; Zervos, A.S. Mitochondrial MUL1 E3 ubiquitin ligase regulates Hypoxia Inducible Factor (HIF-1α) and metabolic reprogramming by modulating the UBXN7 cofactor protein. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Box, J.M.; Kaur, J.; Stuart, R.A. MrpL35, a mitospecific component of mitoribosomes, plays a key role in cytochrome c oxidase assembly. Mol. Biol. Cell 2017, 28, 3489–3499. [Google Scholar] [CrossRef]
- Sotgia, F.; Whitaker-Menezes, D.; Martinez-Outschoorn, U.E.; Salem, A.F.; Tsirigos, A.; Lamb, R.; Sneddon, S.; Hulit, J.; Howell, A.; Lisanti, M.P. Mitochondria “fuel” breast cancer metabolism: Fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 2012, 11, 4390–4401. [Google Scholar] [CrossRef] [Green Version]
- Savarese, M.; Jonson, P.H.; Huovinen, S.; Paulin, L.; Auvinen, P.; Udd, B.; Hackman, P. The complexity of titin splicing pattern in human adult skeletal muscles. Skelet. Muscle 2018, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Udd, B. Genetics and Pathogenesis of Distal Muscular Dystrophies. In Inherited Neuromuscular Diseases; Springer: Dordrecht, The Netherlands, 2009; Volume 652, pp. 23–38. [Google Scholar] [CrossRef]
- Yamashita, Y.; Matsuura, T.; Kurosaki, T.; Amakusa, Y.; Kinoshita, M.; Ibi, T.; Sahashi, K.; Ohno, K. LDB3 splicing abnormalities are specific to skeletal muscles of patients with myotonic dystrophy type 1 and alter its PKC binding affinity. Neurobiol. Dis. 2014, 69, 200–205. [Google Scholar] [CrossRef]
- Masuda, A.; Andersen, H.S.; Doktor, T.K.; Okamoto, T.; Ito, M.; Andresen, B.S.; Ohno, K. CUGBP1 and MBNL1 preferen-tially bind to 3′ UTRs and facilitate mRNA decay. Sci. Rep. 2012, 2, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juo, L.Y.; Liao, W.C.; Shih, Y.L.; Yang, B.Y.; Liu, A.B.; Yan, Y.T. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J. Cell Sci. 2016, 129, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Tong, B.; Xing, Y.P.; Muramatsu, Y.; Ohta, T.; Kose, H.; Zhou, H.M.; Yamada, T. Association of expression levels in skeletal muscle and a SNP in the MYBPC1 gene with growth-related trait in Japanese Black beef cattle. J. Genet. 2015, 94, 135–137. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.Y.; Lei, M.G.; Li, F.E.; Deng, C.Y.; Xiong, Y.Z.; Zuo, B. Association of 3 polymorphisms in porcine troponin I genes (TNNI1 andTNNI2) with meat quality traits. J. Appl. Genet. 2010, 51, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Gu, J.; Qiu, H.; Li, H.; Zhang, Z.; Yin, S.; Mao, Y.; Kong, L.; Liang, B.; Jiang, H.; et al. Whole-exome sequencing identifies a donor splice-site variant in SMPX that causes rare X-linked congenital deafness. Mol. Genet. Genom. Med. 2019, 7, e967. [Google Scholar] [CrossRef]
- Li, B.; Liu, K.; Weng, Q.; Li, P.; Wei, W.; Li, Q.; Chen, J.; Huang, R.; Wu, W.; Liu, H. RNA-seq analysis reveals new candidate genes for drip loss in a Pietrain × Duroc × Landrace × Yorkshire population. Anim. Genet. 2016, 47, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Ronca, F.; Raggi, A. Role of the HPRG Component of Striated Muscle AMP Deaminase in the Stability and Cellular Behav-iour of the Enzyme. Biomolecules 2018, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Clean Reads | Clean Bases (bp) | Mapped Reads | Mapping Rate (%) | Unique Mapped Reads | Unique Mapping Rate (%) | Bisulfite Conversion Rate (%) |
---|---|---|---|---|---|---|---|
CON−G | 606,327,246 | 90,949,086,900 | 515,160,587 | 84.96 | 486,303,133 | 80.2 | 99.44 |
HFD−G | 604,790,856 | 90,718,628,400 | 514,847,548 | 85.13 | 485,505,500 | 80.28 | 99.52 |
CON−G | HFD−G | HFD−G VS CON−G | |||
---|---|---|---|---|---|
mC Number | Proportion (%) | mC Number | Proportion (%) | ΔmC/All ΔmC Proportion (%) | |
mCG | 51,298,929 | 93.756 | 50,997,492 | 94.018 | 0.637 |
mCHG | 903,726 | 1.652 | 859,466 | 1.584 | 0.094 |
mCHH | 2,512,479 | 4.592 | 2,385,160 | 4.397 | 0.269 |
chr1 | chr2 | chr3 | chr4 | chr5 | chr6 | chr7 | chr8 | chr9 | chr10 | |
DMR number | 1331 | 1401 | 1051 | 776 | 335 | 496 | 617 | 742 | 1149 | 419 |
DMR length | 396,041 | 421,303 | 305,229 | 218,887 | 96,186 | 132,605 | 187,769 | 219,937 | 331,992 | 125,477 |
chr11 | chr12 | chr13 | chr14 | chr15 | chr16 | chr17 | chr18 | chr19 | chr20 | |
DMR number | 509 | 892 | 1538 | 735 | 585 | 736 | 688 | 683 | 697 | 269 |
DMR length | 154,160 | 265,709 | 426,667 | 221,132 | 178,538 | 214,250 | 194,860 | 196,669 | 194,099 | 74,580 |
chr21 | chrX | Total | ||||||||
DMR number | 264 | 476 | 5390 | |||||||
DMR length | 71,604 | 156,157 | 1,570,251 |
Description and Genes | Log2Ratio (HFD-M/CON-M) | Means-Gene Expression Levels | Log2FC (HFD-M/CON-M) | Up-Down-Regulation (HFD-M/CON-M) | ||
---|---|---|---|---|---|---|
P-DMR | G-DMR | CON-M | HFD-M | |||
Solute carrier family 25 member 47 (SLC25A47) | 3.036 | 1.807 | 40.74781 | 41.64461 | 0.031407 | Up |
Homeobox B5 (HOXB5) | −2.907 | 1.034 | 7.40671 | 10.85412 | 0.551339 | Up |
Late endosomal/lysosomal adaptor, MAPK, and MTOR activator 3 (LAMTOR3) | −2.722 | −1.068 | 207.7547 | 228.8373 | 0.139441 | Up |
Tetratricopeptide repeat domain 29 (TTC29) | −2.03 | −1.512 | 0.50368 | 0.511492 | 0.022204 | Up |
Centromere protein H (CENPH) | −1.914 | −1.256 | 325.2772 | 354.271 | 0.123183 | Up |
UTP18 small subunit processome component (UTP18) | 2.773 | 1.068 | 202.6769 | 175.4434 | −0.20818 | Down |
PNMA family member 1 (PNMA1) | 2.1 | 1 | 7.949022 | 7.626103 | −0.05983 | Down |
Serpin family E member 1 (SERPINE1) | −2.138 | 1.034 | 313.767 | 182.1212 | −0.78479 | Down |
Eukaryotic translation initiation factor 3 (EIF3J) | −3.524 | 4.524 | 426.54 | 424.0606 | −0.00841 | Down |
Intraflagellar transport 46 (IFT46) | −2 | −0.979 | 172.7577 | 170.0518 | −0.02278 | Down |
KEGG Pathway Terms | Fold Enrichment | Bonferroni | Benjamini | p Value | FDR |
---|---|---|---|---|---|
ocu05410: Hypertrophic cardiomyopathy (HCM) | 4.3911 | 0.1647 | 0.1798 | 0.0009 | 0.1798 |
ocu05414: Dilated cardiomyopathy | 3.6541 | 0.6843 | 0.5071 | 0.0059 | 0.5071 |
ocu04510: Focal adhesion | 2.5133 | 0.7829 | 0.5071 | 0.0078 | 0.5071 |
ocu04810: Regulation of the actin cytoskeleton | 2.2706 | 0.9872 | 1 | 0.0223 | 1 |
ocu00563: Glycosylphosphatidylinositol (GPI)-anchor biosynthesis | 5.9221 | 0.9963 | 1 | 0.0286 | 1 |
ocu03015: mRNA surveillance pathway | 2.9955 | 0.999935 | 1 | 0.0487 | 1 |
ocu03040: Spliceosome | 2.3853 | 0.9999 | 1 | 0.0493 | 1 |
Description and Genes | Means-Gene Expression Levels | Log2FC (HFD-M/CON-M) | Up-Down-Regulation (HFD-M/CON-M) | Degree | Type | |
---|---|---|---|---|---|---|
CON-M | HFD-M | |||||
UBX domain protein 7 (UBXN7) | 395.9702 | 357.9715 | −0.14555 | Down | 28 | Hub |
Titin (TTN) | 6,762,662 | 6,303,461 | −0.10145 | Down | 22 | Hub |
LIM domain binding 3 (LDB3) | 28,568.54 | 26,594.22 | −0.10331 | Down | 20 | Hub |
Filamin C (FLNC) | 35,904.61 | 39,938.6 | 0.153615 | Up | 15 | Hub |
Triadin (TRDN) | 9918.111 | 9663.512 | −0.03752 | Down | 15 | Hub |
Adenosine monophosphate deaminase 1 (AMPD1) | 17,171.82 | 14,074.44 | −0.28697 | Down | 13 | Hub |
Protein kinase, DNA-activated, catalytic subunit (PRKDC) | 531.1487 | 669.5437 | 0.334062 | Up | 13 | Hub |
Muscleblind like splicing regulator 1 (MBNL1) | 13,307.22 | 12,417.02 | −0.09989 | Down | 11 | Hub |
Mitochondrial ribosomal protein S7 (MRPS7) | 2238.874 | 2278.568 | 0.025354 | Up | 11 | Hub |
Tropomyosin 2 (TPM2) | 33,609.41 | 60,754.3 | 0.854121 | Up | 11 | Hub |
Troponin I1, slow skeletal type (TNNI1) | 6160.928 | 9336.202 | 0.599688 | Up | 10 | Hub |
Myosin binding protein C1 (MYBPC1) | 15,887.01 | 36,243.89 | 1.189891 | Up | 9 | Hub |
Small muscle protein X-linked (SMPX) | 1575.926 | 3478.111 | 1.142104 | Up | 9 | Hub |
Nebulin (NEB) | 472,893.1 | 393,039.4 | −0.26684 | Down | 9 | Hub |
Creatine kinase, M-type (CKM) | 211,998.7 | 169,559.2 | −0.32227 | Down | 8 | Hub |
TNF receptor-associated factor 3 (TRAF3) | 232.8944 | 210.9551 | −0.14274 | Down | 8 | Hub |
Myosin light polypeptide 6 (LOC100349824) | 2817.639 | 2572.484 | −0.13133 | Down | 7 | Hub |
Mitochondrial ribosomal protein L35 (MRPL35) | 341.1524 | 342.8565 | 0.007189 | Up | 5 | DMR |
Ankyrin repeat domain 23 (ANKRD23) | 82,064.12 | 84,664.2 | 0.045 | Up | 5 | DMR |
Solute carrier family 25 member 26 (SLC25A26) | 178.6897 | 198.0738 | 0.148582 | Up | 2 | DMR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Elzo, M.A.; Fan, H.; Du, K.; Xia, S.; Shao, J.; Lai, T.; Hu, S.; Jia, X.; et al. Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits. Curr. Issues Mol. Biol. 2021, 43, 1558-1575. https://doi.org/10.3390/cimb43030110
Li Y, Wang J, Elzo MA, Fan H, Du K, Xia S, Shao J, Lai T, Hu S, Jia X, et al. Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits. Current Issues in Molecular Biology. 2021; 43(3):1558-1575. https://doi.org/10.3390/cimb43030110
Chicago/Turabian StyleLi, Yanhong, Jie Wang, Mauricio A. Elzo, Huimei Fan, Kun Du, Siqi Xia, Jiahao Shao, Tianfu Lai, Shenqiang Hu, Xianbo Jia, and et al. 2021. "Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits" Current Issues in Molecular Biology 43, no. 3: 1558-1575. https://doi.org/10.3390/cimb43030110
APA StyleLi, Y., Wang, J., Elzo, M. A., Fan, H., Du, K., Xia, S., Shao, J., Lai, T., Hu, S., Jia, X., & Lai, S. (2021). Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits. Current Issues in Molecular Biology, 43(3), 1558-1575. https://doi.org/10.3390/cimb43030110