Targeted Therapies for the Treatment of Pediatric Non-Hodgkin Lymphomas: Present and Future
Abstract
:1. Introduction
2. Monoclonal Antibodies
2.1. Anti-CD20 Monoclonal Antibodies: Rituximab
2.2. Anti-CD20 Monoclonal Antibodies for Radioimmunotherapy: 90Yttrium-Ibritumomab Tiuxetan
3. Antibody-Drug Conjugates (ADC)
Anti-CD30 ADC: Brentuximab Vedotin
4. Nucleoside Analog
Nelarabine
5. Proteasome Inhibitors
Bortezomib
6. Histone Deacetylase Inhibitors (HDACIs)
6.1. Vorinostat (Suberoylanilide Hydroxamic Acid (SAHA))
6.2. Romidepsin (Depsipeptide)
6.3. Belinostat (PXD101)
7. Small Molecule Inhibitors
7.1. Crizotinib
7.2. Ibrutinib
7.3. Idelalisib
8. Checkpoint Inhibitors
Nivolumab
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Reff, M.E.; Carner, K.; Chambers, K.S.; Chinn, P.C.; Leonard, J.E.; Raab, R.; Newman, R.A.; Hanna, N.; Anderson, D.R. Depletion of b cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994, 83, 435–445. [Google Scholar] [PubMed]
- Maloney, D.G.; Smith, B.; Rose, A. Rituximab: Mechanism of action and resistance. Semin. Oncol. 2002, 29, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Haioun, C.; Ketterer, N.; Engert, A.; Tilly, H.; Ma, D.; Johnson, P.; Lister, A.; Feuring-Buske, M.; Radford, J.A.; et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: A multicenter phase II study. Blood 1998, 92, 1927–1932. [Google Scholar] [PubMed]
- Czuczman, M.S.; Grillo-Lopez, A.J.; White, C.A.; Saleh, M.; Gordon, L.; LoBuglio, A.F.; Jonas, C.; Klippenstein, D.; Dallaire, B.; Varns, C. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and chop chemotherapy. J. Clin. Oncol. 1999, 17, 268–276. [Google Scholar] [PubMed]
- Vose, J.M.; Link, B.K.; Grossbard, M.L.; Czuczman, M.; Grillo-Lopez, A.; Gilman, P.; Lowe, A.; Kunkel, L.A.; Fisher, R.I. Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-hodgkin’s lymphoma. J. Clin. Oncol. 2001, 19, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.H.; Gutierrez, M.; O’Connor, P.; Frankel, S.; Jaffe, E.; Chabner, B.A.; Grossbard, M.L. The role of rituximab and chemotherapy in aggressive B-cell lymphoma: A preliminary report of dose-adjusted epoch-r. Semin. Oncol. 2002, 29, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.A.; Faderl, S.; O’Brien, S.; Bueso-Ramos, C.; Cortes, J.; Garcia-Manero, G.; Giles, F.J.; Verstovsek, S.; Wierda, W.G.; Pierce, S.A.; et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult burkitt and burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 2006, 106, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Pfreundschuh, M.; Trumper, L.; Osterborg, A.; Pettengell, R.; Trneny, M.; Imrie, K.; Ma, D.; Gill, D.; Walewski, J.; Zinzani, P.L.; et al. Chop-like chemotherapy plus rituximab versus chop-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the mabthera international trial (mint) group. Lancet Oncol. 2006, 7, 379–391. [Google Scholar] [CrossRef]
- Glass, B.; Kloess, M.; Bentz, M.; Schlimok, G.; Berdel, W.E.; Feller, A.; Trumper, L.; Loeffler, M.; Pfreundschuh, M.; Schmitz, N.; et al. Dose-escalated chop plus etoposide (megachoep) followed by repeated stem cell transplantation for primary treatment of aggressive high-risk non-Hodgkin lymphoma. Blood 2006, 107, 3058–3064. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.L.; Lones, M.A.; Davenport, V.; Cairo, M.S. B-cell non-Hodgkin’s lymphoma in children and adolescents: Surface antigen expression and clinical implications for future targeted bioimmune therapy: A children’s cancer group report. Clin. Adv. Hematol. Oncol. 2003, 1, 314–317. [Google Scholar] [PubMed]
- Nozu, K.; Iijima, K.; Fujisawa, M.; Nakagawa, A.; Yoshikawa, N.; Matsuo, M. Rituximab treatment for posttransplant lymphoproliferative disorder (PTLD) induces complete remission of recurrent nephrotic syndrome. Pediatr. Nephrol. 2005, 20, 1660–1663. [Google Scholar] [CrossRef] [PubMed]
- Skoda-Smith, S.; Douglas, V.K.; Mehta, P.; Graham-Pole, J.; Wingard, J.R. Treatment of post-transplant lymphoproliferative disease with induction chemotherapy followed by haploidentical peripheral blood stem cell transplantation and rituximab. Bone Marrow Transp. 2001, 27, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Attias, D.; Weitzman, S. The efficacy of rituximab in high-grade pediatric B-cell lymphoma/leukemia: A review of available evidence. Curr. Opin. Pediatr. 2008, 20, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Attarbaschi, A.; Dworzak, M.; Steiner, M.; Urban, C.; Fink, F.M.; Reiter, A.; Gadner, H.; Mann, G. Outcome of children with primary resistant or relapsed non-hodgkin lymphoma and mature B-cell leukemia after intensive first-line treatment: A population-based analysis of the austrian cooperative study group. Pediatr. Blood Cancer 2005, 44, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kobrinsky, N.L.; Sposto, R.; Shah, N.R.; Anderson, J.R.; DeLaat, C.; Morse, M.; Warkentin, P.; Gilchrist, G.S.; Cohen, M.D.; Shina, D.; et al. Outcomes of treatment of children and adolescents with recurrent non-Hodgkin’s lymphoma and Hodgkin’s disease with dexamethasone, etoposide, cisplatin, cytarabine, and l-asparaginase, maintenance chemotherapy, and transplantation: Children’s cancer group study ccg-5912. J. Clin. Oncol. 2001, 19, 2390–2396. [Google Scholar] [PubMed]
- Philip, T.; Hartmann, O.; Pinkerton, R.; Zucker, J.M.; Gentet, J.C.; Lamagnere, J.P.; Berhendt, H.; Perel, Y.; Otten, J.; Lutz, P.; et al. Curability of relapsed childhood B-cell non-Hodgkin’s lymphoma after intensive first line therapy: A report from the societe francaise d’oncologie pediatrique. Blood 1993, 81, 2003–2006. [Google Scholar] [PubMed]
- Griffin, T.C.; Weitzman, S.; Weinstein, H.; Chang, M.; Cairo, M.; Hutchison, R.; Shiramizu, B.; Wiley, J.; Woods, D.; Barnich, M.; et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: A report from the children’s oncology group. Pediatr. Blood Cancer 2009, 52, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, A.; Burkhardt, B.; Zimmermann, M.; Borkhardt, A.; Kontny, U.; Klingebiel, T.; Berthold, F.; Janka-Schaub, G.; Klein, C.; Kabickova, E.; et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and burkitt leukemia. J. Clin. Oncol. 2010, 28, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.; Smith, L.; Anderson, J.R.; Perkins, S.; Harrison, L.; Geyer, M.B.; Gross, T.G.; Weinstein, H.; Bergeron, S.; Shiramizu, B.; et al. Rituximab and FAB/LMB 96 chemotherapy in children with stage III/IV B-cell non-Hodgkin lymphoma: A children’s oncology group report. Leukemia 2013, 27, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Patte, C.; Auperin, A.; Gerrard, M.; Michon, J.; Pinkerton, R.; Sposto, R.; Weston, C.; Raphael, M.; Perkins, S.L.; McCarthy, K.; et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: It is possible to reduce treatment for the early responding patients. Blood 2007, 109, 2773–2780. [Google Scholar] [PubMed]
- Cairo, M.S.; Sposto, R.; Gerrard, M.; Auperin, A.; Goldman, S.C.; Harrison, L.; Pinkerton, R.; Raphael, M.; McCarthy, K.; Perkins, S.L.; et al. Advanced stage, increased lactate dehydrogenase, and primary site, but not adolescent age (≥15 years), are associated with an increased risk of treatment failure in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: Results of the FAB LMB 96 study. J. Clin. Oncol. 2012, 30, 387–393. [Google Scholar] [PubMed]
- Goldman, S.; Smith, L.; Galardy, P.; Perkins, S.L.; Frazer, J.K.; Sanger, W.; Anderson, J.R.; Gross, T.G.; Weinstein, H.; Harrison, L.; et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive burkitt lymphoma/leukaemia: A children’s oncology group report. Br. J. Haematol. 2014, 167, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D. Radioimmunotherapy of non-Hodgkin lymphomas. Blood 2003, 101, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Witzig, T.E.; Gordon, L.I.; Cabanillas, F.; Czuczman, M.S.; Emmanouilides, C.; Joyce, R.; Pohlman, B.L.; Bartlett, N.L.; Wiseman, G.A.; Padre, N.; et al. Randomized controlled trial of Yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol. 2002, 20, 2453–2463. [Google Scholar] [CrossRef] [PubMed]
- Witzig, T.E.; Flinn, I.W.; Gordon, L.I.; Emmanouilides, C.; Czuczman, M.S.; Saleh, M.N.; Cripe, L.; Wiseman, G.; Olejnik, T.; Multani, P.S.; et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J. Clin. Oncol. 2002, 20, 3262–3269. [Google Scholar] [CrossRef] [PubMed]
- Cooney-Qualter, E.; Krailo, M.; Angiolillo, A.; Fawwaz, R.A.; Wiseman, G.; Harrison, L.; Kohl, V.; Adamson, P.C.; Ayello, J.; vande Ven, C.; et al. A phase I study of 90yttrium-ibritumomab-tiuxetan in children and adolescents with relapsed/refractory CD20-positive non-hodgkin’s lymphoma: A children’s oncology group study. Clin. Cancer Res. 2007, 13, 5652s–5660s. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.; Weiss, L.M.; Chu, P.G. D2–40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: A comparative immunohistochemical study with kit (CD117) and CD30. Mod. Pathol. 2007, 20, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, W.; Tsang, P.; Liu, Z.; Wu, C.D.; Dong, H.Y.; Goldstein, M.; Cohen, P.; Gangi, M.; Weisberger, J. CD30-positive T-cell lymphomas co-expressing CD15: An immunohistochemical analysis. Int. J. Oncol. 2003, 22, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 2004, 10, 7063–7070. [Google Scholar] [CrossRef] [PubMed]
- Doronina, S.O.; Mendelsohn, B.A.; Bovee, T.D.; Cerveny, C.G.; Alley, S.C.; Meyer, D.L.; Oflazoglu, E.; Toki, B.E.; Sanderson, R.J.; Zabinski, R.F.; et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: Effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 2006, 17, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 2010, 363, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Gopal, A.K.; Smith, S.E.; Ansell, S.M.; Rosenblatt, J.D.; Savage, K.J.; Ramchandren, R.; Bartlett, N.L.; Cheson, B.D.; de Vos, S.; et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 2012, 30, 2183–2189. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.; Connors, J.M.; Park, S.I.; Fanale, M.; O’Meara, M.M.; Hunder, N.N.; Huebner, D.; Ansell, S.M. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: A phase 1, open-label, dose-escalation study. Lancet Oncol. 2013, 14, 1348–1356. [Google Scholar] [CrossRef]
- Mikles, B.; Levine, J.; Gindin, T.; Bhagat, G.; Satwani, P. Brentuximab vedotin (SGN-35) in a 3-year-old child with relapsed systemic anaplastic large cell lymphoma. J. Pediatr. Hematol. Oncol. 2014, 36, e85–e87. [Google Scholar] [CrossRef] [PubMed]
- Neville, K.; Gore, L.; Mauz-Korholz, C.; Rosole, A.; Landman-Parker, J.; Sanches de Toledo, J.; Beishizen, A.; Franklin, A.R.K.; Fasanmade, A.; Wang, J.G.; et al. Phase I/II study of brentuximab vedotin in pediatric patients with relapsed or refractory Hodgkin lymphoma or systemic anaplastic large-cell lymphoma: Interim phase I safety data. J. Clin. Oncol. Proc. Am. Soc. Clin. Oncol. 2013, 31, 10028. [Google Scholar]
- Locatelli, F.; Neville, K.; Rosolen, A.; Landman-Parker, J.; Aladjidi, N.; Beishuizen, A.; Daw, S.; Gore, L.; Franklin, A.R.K.; Fasanmade, A.; et al. Phase I/II study of brentuximab vedotin in pediatric patients with relapsed or refractory Hodgkin lymphoma or systemic anaplastic large-cell lymphoma: Preliminary phase 2 data for brentuximab vedotin 1.8 mg/kg in the hl study arm. Blood 2013, 122, 4378. [Google Scholar]
- Kisor, D.F.; Plunkett, W.; Kurtzberg, J.; Mitchell, B.; Hodge, J.P.; Ernst, T.; Keating, M.J.; Gandhi, V. Pharmacokinetics of nelarabine and 9-β-d-arabinofuranosyl guanine in pediatric and adult patients during a phase I study of nelarabine for the treatment of refractory hematologic malignancies. J. Clin. Oncol. 2000, 18, 995–1003. [Google Scholar] [PubMed]
- Cooper, T.M. Role of nelarabine in the treatment of T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Ther. Clin. Risk Manag. 2007, 3, 1135–1141. [Google Scholar] [PubMed]
- Rodriguez, C.O., Jr.; Stellrecht, C.M.; Gandhi, V. Mechanisms for T-cell selective cytotoxicity of arabinosylguanine. Blood 2003, 102, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Kurtzberg, J.; Ernst, T.J.; Keating, M.J.; Gandhi, V.; Hodge, J.P.; Kisor, D.F.; Lager, J.J.; Stephens, C.; Levin, J.; Krenitsky, T.; et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J. Clin. Oncol. 2005, 23, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Berg, S.L.; Blaney, S.M.; Devidas, M.; Lampkin, T.A.; Murgo, A.; Bernstein, M.; Billett, A.; Kurtzberg, J.; Reaman, G.; Gaynon, P.; et al. Phase II study of nelarabine (compound 506u78) in children and young adults with refractory T-cell malignancies: A report from the children’s oncology group. J. Clin. Oncol. 2005, 23, 3376–3382. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.H.; Johnson, J.R.; Massie, T.; Sridhara, R.; McGuinn, W.D., Jr.; Abraham, S.; Booth, B.P.; Goheer, M.A.; Morse, D.; Chen, X.H.; et al. Approval summary: Nelarabine for the treatment of T-cell lymphoblastic leukemia/lymphoma. Clin. Cancer Res. 2006, 12, 5329–5335. [Google Scholar] [CrossRef] [PubMed]
- Commander, L.A.; Seif, A.E.; Insogna, I.G.; Rheingold, S.R. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br. J. Haematol. 2010, 150, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Dunsmore, K.P.; Devidas, M.; Linda, S.B.; Borowitz, M.J.; Winick, N.; Hunger, S.P.; Carroll, W.L.; Camitta, B.M. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: A report from the children’s oncology group. J. Clin. Oncol. 2012, 30, 2753–2759. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.S.; Dunsmore, K.P.; Devidas, M.; Eisenberg, N.; Asselin, B.L.; Wood, B.L.; Leonard Rn, M.S.; Murphy, J.; Gastier-Foster, J.M.; Carroll, A.J.; et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s oncology group study aall0434. Pediatr. Blood Cancer 2015, 62, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, B.; Reiter, A.; Landmann, E.; Lang, P.; Lassay, L.; Dickerhoff, R.; Lakomek, M.; Henze, G.; von Stackelberg, A. Poor outcome for children and adolescents with progressive disease or relapse of lymphoblastic lymphoma: A report from the berlin-frankfurt-muenster group. J. Clin. Oncol. 2009, 27, 3363–3369. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Morton, C.L.; Kolb, E.A.; Lock, R.; Carol, H.; Reynolds, C.P.; Keshelava, N.; Maris, J.M.; Keir, S.T.; Wu, J.; et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr. Blood Cancer 2008, 50, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Li, G.; Auclair, D.; Hideshima, T.; Podar, K.; Mitsiades, N.; Mitsiades, C.; Chen, L.B.; Munshi, N.; Saxena, S.; et al. 2-methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating heat shock protein-27. Apoptosis 2004, 9, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Mitsiades, N.; Mitsiades, C.S.; Richardson, P.G.; Poulaki, V.; Tai, Y.T.; Chauhan, D.; Fanourakis, G.; Gu, X.; Bailey, C.; Joseph, M.; et al. The proteasome inhibitor ps-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: Therapeutic applications. Blood 2003, 101, 2377–2380. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.H.; Yang, H.H.; Parker, K.; Manyak, S.; Friedman, J.M.; Altamirano, C.; Wu, Z.Q.; Borad, M.J.; Frantzen, M.; Roussos, E.; et al. The proteasome inhibitor ps-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin. Cancer Res. 2003, 9, 1136–1144. [Google Scholar] [PubMed]
- Messinger, Y.; Gaynon, P.; Raetz, E.; Hutchinson, R.; Dubois, S.; Glade-Bender, J.; Sposto, R.; van der Giessen, J.; Eckroth, E.; Bostrom, B.C. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (all): A report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr. Blood Cancer 2010, 55, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Messinger, Y.H.; Gaynon, P.S.; Sposto, R.; van der Giessen, J.; Eckroth, E.; Malvar, J.; Bostrom, B.C.; Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Consortium. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic advances in childhood leukemia & lymphoma (TACL) study. Blood 2012, 120, 285–290. [Google Scholar] [PubMed]
- Peart, M.J.; Tainton, K.M.; Ruefli, A.A.; Dear, A.E.; Sedelies, K.A.; O’Reilly, L.A.; Waterhouse, N.J.; Trapani, J.A.; Johnstone, R.W. Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res. 2003, 63, 4460–4471. [Google Scholar] [PubMed]
- Sakajiri, S.; Kumagai, T.; Kawamata, N.; Saitoh, T.; Said, J.W.; Koeffler, H.P. Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp. Hematol. 2005, 33, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Dokmanovic, M.; Marks, P.A. Prospects: Histone deacetylase inhibitors. J. Cell. Biochem. 2005, 96, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.K.; Richon, V.M.; O’Connor, O.; Curley, T.; MacGregor-Curtelli, B.; Tong, W.; Klang, M.; Schwartz, L.; Richardson, S.; Rosa, E.; et al. Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 2003, 9, 3578–3588. [Google Scholar] [PubMed]
- Kelly, W.K.; Marks, P.A. Drug insight: Histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat. Clin. Pract. Oncol. 2005, 2, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.K.; O’Connor, O.A.; Krug, L.M.; Chiao, J.H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J.P.; Schwartz, L.; et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 3923–3931. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.O.; Kim, Y.; Kuzel, T.; Pacheco, T.; Foss, F.; Parker, S.; Wang, J.G.; Frankel, S.R.; Lis, J.; Duvic, M. Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): Results of a phase IIB trial. J. Clin. Oncol. Proc. Am. Soc. Clin. Oncol. 2006, 24, 7500. [Google Scholar]
- Kewitz, S.; Bernig, T.; Staege, M.S. Histone deacetylase inhibition restores cisplatin sensitivity of hodgkin’s lymphoma cells. Leuk. Res. 2012, 36, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, P.S.; Piazza, R.G.; Janes, M.E.; Wong, N.C.; Davies, C.; Mogavero, A.; Bhadri, V.A.; Szymanska, B.; Geninson, G.; Magistroni, V.; et al. Epigenetic silencing of bim in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010, 116, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Valdez, B.C.; Brammer, J.E.; Li, Y.; Murray, D.; Liu, Y.; Hosing, C.; Nieto, Y.; Champlin, R.E.; Andersson, B.S. Romidepsin targets multiple survival signaling pathways in malignant t cells. Blood Cancer J. 2015, 5, e357. [Google Scholar] [CrossRef] [PubMed]
- Panicker, J.; Li, Z.; McMahon, C.; Sizer, C.; Steadman, K.; Piekarz, R.; Bates, S.E.; Thiele, C.J. Romidepsin (FK228/depsipeptide) controls growth and induces apoptosis in neuroblastoma tumor cells. Cell Cycle 2010, 9, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.L.; Pickering, D.; Lowe, E.J.; Zwick, D.; Abromowitch, M.; Davenport, G.; Cairo, M.S.; Sanger, W.G. Childhood anaplastic large cell lymphoma has a high incidence of alk gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: A genetic and pathological correlation. Br. J. Haematol. 2005, 131, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Satwani, P.; Bavishi, S.; Saha, A.; Zhao, F.; Ayello, J.; van de Ven, C.; Chu, Y.; Cairo, M.S. Upregulation of nkg2d ligands in acute lymphoblastic leukemia and non-Hodgkin lymphoma cells by romidepsin and enhanced in vitro and in vivo natural killer cell cytotoxicity. Cytotherapy 2014, 16, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Piekarz, R.L.; Robey, R.; Sandor, V.; Bakke, S.; Wilson, W.H.; Dahmoush, L.; Kingma, D.M.; Turner, M.L.; Altemus, R.; Bates, S.E. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous t-cell lymphoma: A case report. Blood 2001, 98, 2865–2868. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: Pivotal study update demonstrates durable responses. J. Hematol. Oncol. 2014, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral t-cell lymphoma after prior systemic therapy. J. Clin. Oncol. 2012, 30, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Children’s Oncology Group; Fouladi, M.; Furman, W.L.; Chin, T.; Freeman, B.B., 3rd; Dudkin, L.; Stewart, C.F.; Krailo, M.D.; Speights, R.; Ingle, A.M.; et al. Phase I study of depsipeptide in pediatric patients with refractory solid tumors: A children’s oncology group report. J. Clin. Oncol. 2006, 24, 3678–3685. [Google Scholar]
- Lee, H.Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Li Shen, Y.; Chen, X.H.; et al. FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin. Cancer Res. 2015, 21, 2666–2670. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, O.A.; Horwitz, S.; Masszi, T.; Van Hoof, A.; Brown, P.; Doorduijn, J.; Hess, G.; Jurczak, W.; Knoblauch, P.; Chawla, S.; et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: Results of the pivotal phase II belief (CLN-19) study. J. Clin. Oncol. 2015, 33, 2492–2499. [Google Scholar] [CrossRef] [PubMed]
- Puvvada, S.D.; Li, H.; Rimsza, L.M.; Bernstein, S.H.; Fisher, R.I.; LeBlanc, M.; Schmelz, M.; Glinsmann-Gibson, B.; Miller, T.P.; Maddox, A.M.; et al. A phase II study of belinostat (PXD101) in relapsed and refractory aggressive B-cell lymphomas: Swog s0520. Leuk. Lymphoma 2016, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.L.; Takeuchi, K.; Soda, M.; Inamura, K.; Togashi, Y.; Hatano, S.; Enomoto, M.; Hamada, T.; Haruta, H.; Watanabe, H.; et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008, 68, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Griffin, C.A.; Hawkins, A.L.; Dvorak, C.; Henkle, C.; Ellingham, T.; Perlman, E.J. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999, 59, 2776–2780. [Google Scholar] [PubMed]
- Chen, Y.; Takita, J.; Choi, Y.L.; Kato, M.; Ohira, M.; Sanada, M.; Wang, L.; Soda, M.; Kikuchi, A.; Igarashi, T.; et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008, 455, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Maxson, J.E.; Davare, M.A.; Luty, S.B.; Eide, C.A.; Chang, B.H.; Loriaux, M.M.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; McWeeney, S.K.; et al. Therapeutically targetable ALK mutations in leukemia. Cancer Res. 2015, 75, 2146–2150. [Google Scholar] [CrossRef] [PubMed]
- Gambacorti-Passerini, C.; Messa, C.; Pogliani, E.M. Crizotinib in anaplastic large-cell lymphoma. N. Engl. J. Med. 2011, 364, 775–776. [Google Scholar] [CrossRef] [PubMed]
- Mosse, Y.P.; Lim, M.S.; Voss, S.D.; Wilner, K.; Ruffner, K.; Laliberte, J.; Rolland, D.; Balis, F.M.; Maris, J.M.; Weigel, B.J.; et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: A children’s oncology group phase 1 consortium study. Lancet Oncol. 2013, 14, 472–480. [Google Scholar] [CrossRef]
- Ceccon, M.; Mologni, L.; Giudici, G.; Piazza, R.; Pirola, A.; Fontana, D.; Gambacorti-Passerini, C. Treatment efficacy and resistance mechanisms using the second-generation ALK inhibitor AP26113 in human NPM-ALK-positive anaplastic large cell lymphoma. Mol. Cancer Res. 2015, 13, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Honigberg, L.A.; Smith, A.M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D.H.; Miller, R.A.; et al. The bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and b-cell malignancy. Proc. Natl. Acad. Sci. USA 2010, 107, 13075–13080. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yin, C.; Ayello, J.; Morris, E.; O’Connell, M.S.; Harrison, L.; van de Ven, C.; Barth, M.; Miles, R.R.; Galardy, P.; et al. Ibrutinib significantly prolonged survival in a human burkitt lymphoma (BL) xenograft nsg mouse model: Ibrutinib may be a potential adjuvant agent in the treatment of BL. Blood 2015, 126, 5117. [Google Scholar]
- Lee, S.; Yin, C.; Ayello, J.; Morris, E.; Harrison, L.; van de Ven, C.; Barth, M.; Miles, R.R.; Galardy, P.; Goldman, S.; et al. Ibrutinib alone and in combination with dexamethasone and carfilzomib signifiantly inhibits cell proliferation in primary mediastinal B-cell lymphoma (PMBL): Ibrutinib may be a future targeted agent in combination therapy in patients with PMBL. Blood 2015, 126, 4852. [Google Scholar]
- Bartlett, N.; LaPlant, B.; Qi, J.; Ansell, S.; Kuruvilla, J.; Reeder, C.; Thye, L.; Anderson, D.; Erlichman, C.; Siegel, B. Ibrutinib monotherapy in relapsed/refractory follicular lymphoma (FL): Preliminary results of a phase 2 consortium (P2C) trial. In Proceedings of the 56th ASH Annual Meeting and Exposition, San Francisco, CA, USA, 9 December 2014; p. 800.
- Fowler, N.; Nastoupil, L.; de Vos, S.; Knapp, M.; Flinn, I.; Chen, R.; Advani, R.; Bhatia, S.; Martin, P.; Mena, R.; et al. Ibrutinib plus rituximab in treatment-naïve patients with follicular lymphoma: Results from a multicenter, phase 2 study. In Proceedings of the 57th ASH Annual Meeting and Exposition, Orlando, FL, USA, 7 December 2015; p. 470.
- Lannutti, B.J.; Meadows, S.A.; Herman, S.E.; Kashishian, A.; Steiner, B.; Johnson, A.J.; Byrd, J.C.; Tyner, J.W.; Loriaux, M.M.; Deininger, M.; et al. Cal-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of b-cell malignancies, inhibits pi3k signaling and cellular viability. Blood 2011, 117, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Traynor, K. Idelalisib approved for three blood cancers. Am. J. Health Syst. Pharm. 2014, 71, 1430. [Google Scholar] [CrossRef] [PubMed]
- Weber, J. Immune checkpoint proteins: A new therapeutic paradigm for cancer-preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol. 2010, 37, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorge, C.E.; McDaniel, J.K.; Xavier, A.C. Targeted Therapies for the Treatment of Pediatric Non-Hodgkin Lymphomas: Present and Future. Pharmaceuticals 2016, 9, 28. https://doi.org/10.3390/ph9020028
Sorge CE, McDaniel JK, Xavier AC. Targeted Therapies for the Treatment of Pediatric Non-Hodgkin Lymphomas: Present and Future. Pharmaceuticals. 2016; 9(2):28. https://doi.org/10.3390/ph9020028
Chicago/Turabian StyleSorge, Caryn E., Jenny K. McDaniel, and Ana C. Xavier. 2016. "Targeted Therapies for the Treatment of Pediatric Non-Hodgkin Lymphomas: Present and Future" Pharmaceuticals 9, no. 2: 28. https://doi.org/10.3390/ph9020028
APA StyleSorge, C. E., McDaniel, J. K., & Xavier, A. C. (2016). Targeted Therapies for the Treatment of Pediatric Non-Hodgkin Lymphomas: Present and Future. Pharmaceuticals, 9(2), 28. https://doi.org/10.3390/ph9020028