Endocannabinoids and Schizophrenia
Abstract
:1. Introduction
2. Cannabis and Schizophrenia
3. Endocannabinoid System
3.1. Receptors
3.2. Ligands
3.3. Other Receptors
3.4. General Functioning of the System
3.5. Endocannabinoids and neurogenesis
4. Endocannabinoids and Schizophrenia
4.1. CB1 receptors - genetics, post-mortem and in vivo studies.
4.2. Endogenous ligands
4.3. Symptomatology
4.4. Endocannabinoids and the neurodevelopmental model of schizophrenia
4.5. Antipsychotic perspectives
5. Schizophrenia and its Associated Comorbidities
5.1. Endocannabinoids and metabolic control
5.2. Endocannabinoids and drug reward
6. Conclusions
Acknowledgements
References
- Bhugra, D. The global prevalence of schizophrenia. PLoS Med. 2005, 2, e151. [Google Scholar]
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005, 2, e141. [Google Scholar]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar]
- Regier, D.A.; Farmer, M.E.; Rae, D.S.; Locke, B.Z.; Keith, S.J.; Judd, L.L.; Goodwin, F.K. Comorbidity of mental disorders with alcohol and other drug abuse. Results from the epidemiologic catchment area (eca) study. JAMA 1990, 264, 2511–2518. [Google Scholar] [PubMed]
- Jablensky, A. Epidemiology of schizophrenia: The global burden of disease and disability. Eur. Arch. Psychiatry Clin. Neurosci. 2000, 250, 274–285. [Google Scholar]
- D'Souza, D.C.; Perry, E.; MacDougall, L.; Ammerman, Y.; Cooper, T.; Wu, Y.T.; Braley, G.; Gueorguieva, R.; Krystal, J.H. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology 2004, 29, 1558–1572. [Google Scholar]
- Henquet, C.; Rosa, A.; Krabbendam, L.; Papiol, S.; Fananas, L.; Drukker, M.; Ramaekers, J.G.; van Os, J. An experimental study of catechol-o-methyltransferase val158met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 2006, 31, 2748–2757. [Google Scholar]
- Nunez, L.A.; Gurpegui, M. Cannabis-induced psychosis: A cross-sectional comparison with acute schizophrenia. Acta Psychiatr. Scand. 2002, 105, 173–178. [Google Scholar]
- D'Souza, D.C.; Braley, G.; Blaise, R.; Vendetti, M.; Oliver, S.; Pittman, B.; Ranganathan, M.; Bhakta, S.; Zimolo, Z.; Cooper, T.; Perry, E. Effects of haloperidol on the behavioral, subjective, cognitive, motor, and neuroendocrine effects of delta-9-tetrahydrocannabinol in humans. Psychopharmacology (Berl) 2008, 198, 587–603. [Google Scholar]
- Moore, T.H.; Zammit, S.; Lingford-Hughes, A.; Barnes, T.R.; Jones, P.B.; Burke, M.; Lewis, G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet 2007, 370, 319–328. [Google Scholar]
- D'Souza, D.C.; Abi-Saab, W.M.; Madonick, S.; Forselius-Bielen, K.; Doersch, A.; Braley, G.; Gueorguieva, R.; Cooper, T.B.; Krystal, J.H. Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biol. Psychiatry 2005, 57, 594–608. [Google Scholar]
- Arseneault, L.; Cannon, M.; Witton, J.; Murray, R.M. Causal association between cannabis and psychosis: Examination of the evidence. Br. J. Psychiatry 2004, 184, 110–117. [Google Scholar]
- Caspi, A.; Moffitt, T.E.; Cannon, M.; McClay, J.; Murray, R.; Harrington, H.; Taylor, A.; Arseneault, L.; Williams, B.; Braithwaite, A.; Poulton, R.; Craig, I.W. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-o-methyltransferase gene: Longitudinal evidence of a gene x environment interaction. Biol. Psychiatry 2005, 57, 1117–1127. [Google Scholar]
- Andreasson, S.; Allebeck, P.; Engstrom, A.; Rydberg, U. Cannabis and schizophrenia. A longitudinal study of swedish conscripts. Lancet 1987, 2, 1483–1486. [Google Scholar] [PubMed]
- van Os, J.; Bak, M.; Hanssen, M.; Bijl, R.V.; de Graaf, R.; Verdoux, H. Cannabis use and psychosis: A longitudinal population-based study. Am. J. Epidemiol 2002, 156, 319–327. [Google Scholar]
- Arseneault, L.; Cannon, M.; Poulton, R.; Murray, R.; Caspi, A.; Moffitt, T.E. Cannabis use in adolescence and risk for adult psychosis: Longitudinal prospective study. BMJ 2002, 325, 1212–1213. [Google Scholar]
- Pistis, M.; Perra, S.; Pillolla, G.; Melis, M.; Muntoni, A.L.; Gessa, G.L. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol. Psychiatry 2004, 56, 86–94. [Google Scholar]
- Ameri, A. The effects of cannabinoids on the brain. Prog. Neurobiol. 1999, 58, 315–348. [Google Scholar]
- Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cdna. Nature 1990, 346, 561–564. [Google Scholar]
- Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003, 4, 873–884. [Google Scholar]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar]
- Cabral, G.A.; Staab, A. Effects on the immune system. Handb. Exp. Pharmacol. 2005, 385–423. [Google Scholar]
- Pertwee, R.G. Pharmacological actions of cannabinoids. Handb. Exp. Pharmacol. 2005, 1–51. [Google Scholar]
- Pertwee, R.G. Ligands that target cannabinoid receptors in the brain: From thc to anandamide and beyond. Addict. Biol. 2008, 13, 147–159. [Google Scholar]
- Gong, J.P.; Onaivi, E.S.; Ishiguro, H.; Liu, Q.R.; Tagliaferro, P.A.; Brusco, A.; Uhl, G.R. Cannabinoid cb2 receptors: Immunohistochemical localization in rat brain. Brain Res. 2006, 1701, 10–23. [Google Scholar]
- Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; Marnett, L.J.; Di Marzo, V.; Pittman, Q.J.; Patel, K.D.; Sharkey, K.A. Identification and functional characterization of brainstem cannabinoid cb2 receptors. Science 2005, 310, 329–332. [Google Scholar]
- Beltramo, M.; Bernardini, N.; Bertorelli, R.; Campanella, M.; Nicolussi, E.; Fredduzzi, S.; Reggiani, A. Cb2 receptor-mediated antihyperalgesia: Possible direct involvement of neural mechanisms. Eur. J. Neurosci. 2006, 23, 1530–1538. [Google Scholar]
- Onaivi, E.S.; Ishiguro, H.; Gong, J.P.; Patel, S.; Perchuk, A.; Meozzi, P.A.; Myers, L.; Mora, Z.; Tagliaferro, P.; Gardner, E.; Brusco, A.; Akinshola, B.E.; Liu, Q.R.; Hope, B.; Iwasaki, S.; Arinami, T.; Teasenfitz, L.; Uhl, G.R. Discovery of the presence and functional expression of cannabinoid cb2 receptors in brain. Ann. N Y Acad. Sci. 2006, 1074, 514–536. [Google Scholar]
- Ashton, J.C.; Wright, J.L.; McPartland, J.M.; Tyndall, J.D. Cannabinoid cb1 and cb2 receptor ligand specificity and the development of cb2-selective agonists. Curr. Med. Chem. 2008, 15, 1428–1443. [Google Scholar]
- Ashton, J.C.; Glass, M. The cannabinoid cb2 receptor as a target for inflammation-dependent neurodegeneration. Curr. Neuropharmacol. 2007, 5, 73–80. [Google Scholar]
- Di Marzo, V. The endocannabinoid system: Its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol. Res. 2009, 60, 77–84. [Google Scholar]
- Ross, R.A.; Coutts, A.A.; McFarlane, S.M.; Anavi-Goffer, S.; Irving, A.J.; Pertwee, R.G.; MacEwan, D.J.; Scott, R.H. Actions of cannabinoid receptor ligands on rat cultured sensory neurones: Implications for antinociception. Neuropharmacology 2001, 40, 221–232. [Google Scholar]
- Wotherspoon, G.; Fox, A.; McIntyre, P.; Colley, S.; Bevan, S.; Winter, J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 2005, 135, 235–245. [Google Scholar]
- Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949. [Google Scholar]
- Pertwee, R.G. Pharmacology of cannabinoid cb1 and cb2 receptors. Pharmacol. Ther. 1997, 74, 129–180. [Google Scholar]
- Gonsiorek, W.; Lunn, C.; Fan, X.; Narula, S.; Lundell, D.; Hipkin, R.W. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: Antagonism by anandamide. Mol. Pharmacol. 2000, 57, 1045–1050. [Google Scholar]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmaco. 1995, 50, 83–90. [Google Scholar]
- Melis, M.; Perra, S.; Muntoni, A.L.; Pillolla, G.; Lutz, B.; Marsicano, G.; Di Marzo, V.; Gessa, G.L.; Pistis, M. Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J. Neurosci. 2004, 24, 10707–10715. [Google Scholar]
- Palomaki, V.A.; Lehtonen, M.; Savinainen, J.R.; Laitinen, J.T. Visualization of 2-arachidonoylglycerol accumulation and cannabinoid cb1 receptor activity in rat brain cryosections by functional autoradiography. J. Neurochem. 2007, 101, 972–981. [Google Scholar]
- Maccarrone, M.; Rossi, S.; Bari, M.; De Chiara, V.; Fezza, F.; Musella, A.; Gasperi, V.; Prosperetti, C.; Bernardi, G.; Finazzi-Agro, A.; Cravatt, B.F.; Centonze, D. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat. Neurosci. 2008, 11, 152–159. [Google Scholar]
- Porter, A.C.; Sauer, J.M.; Knierman, M.D.; Becker, G.W.; Berna, M.J.; Bao, J.; Nomikos, G.G.; Carter, P.; Bymaster, F.P.; Leese, A.B.; Felder, C.C. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the cb1 receptor. J. Pharmacol. Exp. Ther. 2002, 301, 1020–1024. [Google Scholar]
- Hanus, L.; Abu-Lafi, S.; Fride, E.; Breuer, A.; Vogel, Z.; Shalev, D.E.; Kustanovich, I.; Mechoulam, R. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid cb1 receptor. Proc. Natl. Acad. Sci. U S A 2001, 98, 3662–3665. [Google Scholar]
- Matias, I.; Gonthier, M.P.; Petrosino, S.; Docimo, L.; Capasso, R.; Hoareau, L.; Monteleone, P.; Roche, R.; Izzo, A.A.; Di Marzo, V. Role and regulation of acylethanolamides in energy balance: Focus on adipocytes and beta-cells. Br. J. Pharmacol. 2007, 152, 676–690. [Google Scholar]
- Ross, R.A. The enigmatic pharmacology of gpr55. Trends Pharmacol. Sci. 2009, 30, 156–163. [Google Scholar]
- Lauckner, J.E.; Jensen, J.B.; Chen, H.Y.; Lu, H.C.; Hille, B.; Mackie, K. Gpr55 is a cannabinoid receptor that increases intracellular calcium and inhibits m current. Proc. Natl. Acad. Sci. USA 2008, 105, 2699–2704. [Google Scholar]
- Starowicz, K.; Nigam, S.; Di Marzo, V. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 2007, 114, 13–33. [Google Scholar]
- Starowicz, K.; Cristino, L.; Di Marzo, V. Trpv1 receptors in the central nervous system: Potential for previously unforeseen therapeutic applications. Curr. Pharm. Des. 2008, 14, 42–54. [Google Scholar]
- De Petrocellis, L.; Bisogno, T.; Maccarrone, M.; Davis, J.B.; Finazzi-Agro, A.; Di Marzo, V. The activity of anandamide at vanilloid vr1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J. Biol. Chem. 2001, 276, 12856–12863. [Google Scholar]
- de Lago, E.; de Miguel, R.; Lastres-Becker, I.; Ramos, J.A.; Fernandez-Ruiz, J. Involvement of vanilloid-like receptors in the effects of anandamide on motor behavior and nigrostriatal dopaminergic activity: In vivo and in vitro evidence. Brain Res. 2004, 1007, 152–159. [Google Scholar]
- Cimini, A.; Benedetti, E.; Cristiano, L.; Sebastiani, P.; D'Amico, M.A.; D'Angelo, B.; Di Loreto, S. Expression of peroxisome proliferator-activated receptors (ppars) and retinoic acid receptors (rxrs) in rat cortical neurons. Neuroscience 2005, 130, 325–337. [Google Scholar]
- Moreno, S.; Farioli-Vecchioli, S.; Ceru, M.P. Immunolocalization of peroxisome proliferator-activated receptors and retinoid x receptors in the adult rat cns. Neuroscience 2004, 123, 131–145. [Google Scholar]
- Pistis, M.; Melis, M. From surface to nuclear receptors: The endocannabinoid family extends its assets. Curr. Med. Chem. 2010, 17, 1450–1467. [Google Scholar]
- Ahn, K.; McKinney, M.K.; Cravatt, B.F. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem. Rev. 2008, 108, 1687–1707. [Google Scholar]
- Shen, M.; Piser, T.M.; Seybold, V.S.; Thayer, S.A. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci. 1996, 16, 4322–4334. [Google Scholar]
- Chen, K.; Ratzliff, A.; Hilgenberg, L.; Gulyas, A.; Freund, T.F.; Smith, M.; Dinh, T.P.; Piomelli, D.; Mackie, K.; Soltesz, I. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 2003, 39, 599–611. [Google Scholar]
- McKinney, M.K.; Cravatt, B.F. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem. 2005, 74, 411–432. [Google Scholar]
- Dinh, T.P.; Freund, T.F.; Piomelli, D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem. Phys. Lipids 2002, 121, 149–158. [Google Scholar]
- Offermanns, S.; Rosenthal, W. SpringerLink (Service en ligne), Encyclopedia of molecular pharmacology, 2nd ed; Springer: Berlin; New York, 2008; p. 1, texte électronique. [Google Scholar]
- Meschler, J.P.; Conley, T.J.; Howlett, A.C. Cannabinoid and dopamine interaction in rodent brain: Effects on locomotor activity. Pharmacol. Biochem. Behav. 2000, 67, 567–573. [Google Scholar]
- Polissidis, A.; Chouliara, O.; Galanopoulos, A.; Rentesi, G.; Dosi, M.; Hyphantis, T.; Marselos, M.; Papadopoulou-Daifoti, Z.; Nomikos, G.G.; Spyraki, C.; Tzavara, E.T.; Antoniou, K. Individual differences in the effects of cannabinoids on motor activity, dopaminergic activity and darpp-32 phosphorylation in distinct regions of the brain. Int. J. Neuropsychopharmacol. 2009, 1–17. [Google Scholar]
- Degroot, A.; Kofalvi, A.; Wade, M.R.; Davis, R.J.; Rodrigues, R.J.; Rebola, N.; Cunha, R.A.; Nomikos, G.G. Cb1 receptor antagonism increases hippocampal acetylcholine release: Site and mechanism of action. Mol. Pharmacol. 2006, 70, 1236–1245. [Google Scholar]
- Oropeza, V.C.; Mackie, K.; Van Bockstaele, E.J. Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res. 2007, 1127, 36–44. [Google Scholar]
- Balazsa, T.; Biro, J.; Gullai, N.; Ledent, C.; Sperlagh, B. Cb1-cannabinoid receptors are involved in the modulation of non-synaptic [3h]serotonin release from the rat hippocampus. Neurochem. Int. 2008, 52, 95–102. [Google Scholar]
- Katona, I.; Urban, G.M.; Wallace, M.; Ledent, C.; Jung, K.M.; Piomelli, D.; Mackie, K.; Freund, T.F. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 2006, 26, 5628–5637. [Google Scholar]
- Katona, I.; Sperlagh, B.; Sik, A.; Kafalvi, A.; Vizi, E.S.; Mackie, K.; Freund, T.F. Presynaptically located cb1 cannabinoid receptors regulate gaba release from axon terminals of specific hippocampal interneurons. J. Neurosci. 1999, 19, 4544–4558. [Google Scholar]
- Spencer, K.M.; Nestor, P.G.; Niznikiewicz, M.A.; Salisbury, D.F.; Shenton, M.E.; McCarley, R.W. Abnormal neural synchrony in schizophrenia. J. Neurosci. 2003, 23, 7407–7411. [Google Scholar]
- Uhlhaas, P.J.; Haenschel, C.; Nikolic, D.; Singer, W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. Bull. 2008, 34, 927–943. [Google Scholar]
- Stella, N.; Piomelli, D. Receptor-dependent formation of endogenous cannabinoids in cortical neurons. Eur. J. Pharmacol. 2001, 425, 189–196. [Google Scholar]
- Galve-Roperh, I.; Palazuelos, J.; Aguado, T.; Guzman, M. The endocannabinoid system and the regulation of neural development: Potential implications in psychiatric disorders. Eur Arch Psychiatry Clin. Neurosci. 2009, 259, 371–382. [Google Scholar]
- Harkany, T.; Guzman, M.; Galve-Roperh, I.; Berghuis, P.; Devi, L.A.; Mackie, K. The emerging functions of endocannabinoid signaling during cns development. Trends Pharmacol. Sci. 2007, 28, 83–92. [Google Scholar]
- Mulder, J.; Aguado, T.; Keimpema, E.; Barabas, K.; Ballester Rosado, C.J.; Nguyen, L.; Monory, K.; Marsicano, G.; Di Marzo, V.; Hurd, Y.L.; Guillemot, F.; Mackie, K.; Lutz, B.; Guzman, M.; Lu, H.C.; Galve-Roperh, I.; Harkany, T. Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc. Natl. Acad. Sci. U S A 2008, 105, 8760–8765. [Google Scholar]
- Morozov, Y.M.; Freund, T.F. Postnatal development and migration of cholecystokinin-immunoreactive interneurons in rat hippocampus. Neuroscience 2003, 120, 923–939. [Google Scholar]
- Berghuis, P.; Rajnicek, A.M.; Morozov, Y.M.; Ross, R.A.; Mulder, J.; Urban, G.M.; Monory, K.; Marsicano, G.; Matteoli, M.; Canty, A.; Irving, A.J.; Katona, I.; Yanagawa, Y.; Rakic, P.; Lutz, B.; Mackie, K.; Harkany, T. Hardwiring the brain: Endocannabinoids shape neuronal connectivity. Science 2007, 316, 1212–1216. [Google Scholar]
- van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar]
- Cao, Q.; Martinez, M.; Zhang, J.; Sanders, A.R.; Badner, J.A.; Cravchik, A.; Markey, C.J.; Beshah, E.; Guroff, J.J.; Maxwell, M.E.; Kazuba, D.M.; Whiten, R.; Goldin, L.R.; Gershon, E.S.; Gejman, P.V. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997, 43, 1–8. [Google Scholar]
- Ujike, H.; Takaki, M.; Nakata, K.; Tanaka, Y.; Takeda, T.; Kodama, M.; Fujiwara, Y.; Sakai, A.; Kuroda, S. Cnr1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol. Psychiatry 2002, 7, 515–518. [Google Scholar]
- Chavarria-Siles, I.; Contreras-Rojas, J.; Hare, E.; Walss-Bass, C.; Quezada, P.; Dassori, A.; Contreras, S.; Medina, R.; Ramirez, M.; Salazar, R.; Raventos, H.; Escamilla, M.A. Cannabinoid receptor 1 gene (cnr1) and susceptibility to a quantitative phenotype for hebephrenic schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2008, 147, 279–284. [Google Scholar]
- Gadzicki, D.; Muller-Vahl, K.; Stuhrmann, M. A frequent polymorphism in the coding exon of the human cannabinoid receptor (cnr1) gene. Mol. Cell Probes 1999, 13, 321–323. [Google Scholar]
- Leroy, S.; Griffon, N.; Bourdel, M.C.; Olie, J.P.; Poirier, M.F.; Krebs, M.O. Schizophrenia and the cannabinoid receptor type 1 (cb1): Association study using a single-base polymorphism in coding exon 1. Am. J. Med. Genet. 2001, 105, 749–752. [Google Scholar]
- Hamdani, N.; Tabeze, J.P.; Ramoz, N.; Ades, J.; Hamon, M.; Sarfati, Y.; Boni, C.; Gorwood, P. The cnr1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur. Neuropsychopharmacol. 2008, 18, 34–40. [Google Scholar]
- Tiwari, A.K.; Zai, C.C.; Likhodi, O.; Lisker, A.; Singh, D.; Souza, R.P.; Batra, P.; Zaidi, S.H.; Chen, S.; Liu, F.; Puls, I.; Meltzer, H.Y.; Lieberman, J.A.; Kennedy, J.L.; Muller, D.J. A common polymorphism in the cannabinoid receptor 1 (cnr1) gene is associated with antipsychotic-induced weight gain in schizophrenia. Neuropsychopharmacology 2010, 35, 1315–1324. [Google Scholar]
- Seifert, J.; Ossege, S.; Emrich, H.M.; Schneider, U.; Stuhrmann, M. No association of cnr1 gene variations with susceptibility to schizophrenia. Neurosci. Lett. 2007, 426, 29–33. [Google Scholar]
- Ishiguro, H.; Horiuchi, Y.; Ishikawa, M.; Koga, M.; Imai, K.; Suzuki, Y.; Morikawa, M.; Inada, T.; Watanabe, Y.; Takahashi, M.; Someya, T.; Ujike, H.; Iwata, N.; Ozaki, N.; Onaivi, E.S.; Kunugi, H.; Sasaki, T.; Itokawa, M.; Arai, M.; Niizato, K.; Iritani, S.; Naka, I.; Ohashi, J.; Kakita, A.; Takahashi, H.; Nawa, H.; Arinami, T. Brain cannabinoid cb2 receptor in schizophrenia. Biol. Psychiatry 2010, 67, 974–982. [Google Scholar]
- Dean, B.; Sundram, S.; Bradbury, R.; Scarr, E.; Copolov, D. Studies on [3h]cp-55940 binding in the human central nervous system: Regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 2001, 103, 9–15. [Google Scholar]
- Zavitsanou, K.; Garrick, T.; Huang, X.F. Selective antagonist [3h]sr141716a binding to cannabinoid cb1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 355–360. [Google Scholar]
- Koethe, D.; Llenos, I.C.; Dulay, J.R.; Hoyer, C.; Torrey, E.F.; Leweke, F.M.; Weis, S. Expression of cb1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J. Neural Transm. 2007, 114, 1055–1063. [Google Scholar]
- Haznedar, M.M.; Buchsbaum, M.S.; Hazlett, E.A.; Shihabuddin, L.; New, A.; Siever, L.J. Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr. Res. 2004, 71, 249–262. [Google Scholar]
- Newell, K.A.; Deng, C.; Huang, X.F. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp. Brain Res. 2006, 172, 556–560. [Google Scholar]
- Uriguen, L.; Garcia-Fuster, M.J.; Callado, L.F.; Morentin, B.; La Harpe, R.; Casado, V.; Lluis, C.; Franco, R.; Garcia-Sevilla, J.A.; Meana, J.J. Immunodensity and mrna expression of a2a adenosine, d2 dopamine, and cb1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: Effect of antipsychotic treatment. Psychopharmacology (Berl.) 2009, 206, 313–324. [Google Scholar] [PubMed]
- Wong, D.F.; Kuwabara, H.; Horti, A.G.; Raymont, V.; Brasic, J.; Guevara, M.; Ye, W.; Dannals, R.F.; Ravert, H.T.; Nandi, A.; Rahmim, A.; Ming, J.E.; Grachev, I.; Roy, C.; Cascella, N. Quantification of cerebral cannabinoid receptors subtype 1 (cb1) in healthy subjects and schizophrenia by the novel pet radioligand [(11)c]omar. Neuroimage 2010, 52, 1505–1513. [Google Scholar]
- Palmer, B.W.; Dawes, S.E.; Heaton, R.K. What do we know about neuropsychological aspects of schizophrenia? Neuropsychol. Rev. 2009, 19, 365–384. [Google Scholar]
- Malone, D.T.; Kearn, C.S.; Chongue, L.; Mackie, K.; Taylor, D.A. Effect of social isolation on cb1 and d2 receptor and fatty acid amide hydrolase expression in rats. Neuroscience 2008, 152, 265–272. [Google Scholar]
- Seillier, A.; Advani, T.; Cassano, T.; Hensler, J.G.; Giuffrida, A. Inhibition of fatty-acid amide hydrolase and cb1 receptor antagonism differentially affect behavioural responses in normal and pcp-treated rats. Int. J. Neuropsychopharmacol. 2010, 13, 373–386. [Google Scholar]
- Vigano, D.; Guidali, C.; Petrosino, S.; Realini, N.; Rubino, T.; Di Marzo, V.; Parolaro, D. Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia. Int. J. Neuropsychopharmacol. 2009, 12, 599–614. [Google Scholar]
- Gorriti, M.A.; Rodriguez de Fonseca, F.; Navarro, M.; Palomo, T. Chronic (-)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur. J. Pharmacol. 1999, 365, 133–142. [Google Scholar]
- Gorriti, M.A.; Ferrer, B.; del Arco, I.; Bermudez-Silva, F.J.; de Diego, Y.; Fernandez-Espejo, E.; Navarro, M.; Rodriguez de Fonseca, F. Acute delta9-tetrahydrocannabinol exposure facilitates quinpirole-induced hyperlocomotion. Pharmacol. Biochem. Behav. 2005, 81, 71–77. [Google Scholar]
- Leweke, F.M.; Giuffrida, A.; Wurster, U.; Emrich, H.M.; Piomelli, D. Elevated endogenous cannabinoids in schizophrenia. Neuroreport 1999, 10, 1665–1669. [Google Scholar]
- Giuffrida, A.; Leweke, F.M.; Gerth, C.W.; Schreiber, D.; Koethe, D.; Faulhaber, J.; Klosterkotter, J.; Piomelli, D. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 2004, 29, 2108–2114. [Google Scholar]
- De Marchi, N.; De Petrocellis, L.; Orlando, P.; Daniele, F.; Fezza, F.; Di Marzo, V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003, 2, 5. [Google Scholar]
- Potvin, S.; Kouassi, E.; Lipp, O.; Bouchard, R.H.; Roy, M.A.; Demers, M.F.; Gendron, A.; Astarita, G.; Piomelli, D.; Stip, E. Endogenous cannabinoids in patients with schizophrenia and substance use disorder during quetiapine therapy. J. Psychopharmacol. 2008, 22, 262–269. [Google Scholar]
- Giuffrida, A.; Parsons, L.H.; Kerr, T.M.; Rodriguez de Fonseca, F.; Navarro, M.; Piomelli, D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci. 1999, 2, 358–363. [Google Scholar]
- Koethe, D.; Giuffrida, A.; Schreiber, D.; Hellmich, M.; Schultze-Lutter, F.; Ruhrmann, S.; Klosterkotter, J.; Piomelli, D.; Leweke, F.M. Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br. J. Psychiatry 2009, 194, 371–372. [Google Scholar]
- Ferrer, B.; Gorriti, M.A.; Palomino, A.; Gornemann, I.; de Diego, Y.; Bermudez-Silva, F.J.; Bilbao, A.; Fernandez-Espejo, E.; Moratalla, R.; Navarro, M.; Rodriguez de Fonseca, F. Cannabinoid cb1 receptor antagonism markedly increases dopamine receptor-mediated stereotypies. Eur. J. Pharmacol. 2007, 559, 180–183. [Google Scholar]
- Di Marzo, V. Targeting the endocannabinoid system: To enhance or reduce? Nat. Rev. Drug Discov. 2008, 7, 438–455. [Google Scholar]
- Mei, L.; Xiong, W.C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 2008, 9, 437–452. [Google Scholar]
- Boucher, A.A.; Hunt, G.E.; Karl, T.; Micheau, J.; McGregor, I.S.; Arnold, J.C. Heterozygous neuregulin 1 mice display greater baseline and delta(9)-tetrahydrocannabinol-induced c-fos expression. Neuroscience 2007, 149, 861–870. [Google Scholar]
- Boucher, A.A.; Arnold, J.C.; Duffy, L.; Schofield, P.R.; Micheau, J.; Karl, T. Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of delta9-tetrahydrocannabinol. Psychopharmacology (Berl) 2007, 192, 325–336. [Google Scholar] [PubMed]
- Drake, R.E.; Xie, H.; McHugo, G.J.; Green, A.I. The effects of clozapine on alcohol and drug use disorders among patients with schizophrenia. Schizophr. Bull. 2000, 26, 441–449. [Google Scholar]
- Sundram, S.; Copolov, D.; Dean, B. Clozapine decreases [3h] cp 55940 binding to the cannabinoid 1 receptor in the rat nucleus accumbens. Naunyn Schmiedebergs Arch. Pharmacol. 2005, 371, 428–433. [Google Scholar]
- Fukudome, Y.; Ohno-Shosaku, T.; Matsui, M.; Omori, Y.; Fukaya, M.; Tsubokawa, H.; Taketo, M.M.; Watanabe, M.; Manabe, T.; Kano, M. Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and m1/m3-mediated indirect suppression through endocannabinoid signalling. Eur. J. Neurosci. 2004, 19, 2682–2692. [Google Scholar]
- Mailleux, P.; Vanderhaeghen, J.J. Dopaminergic regulation of cannabinoid receptor mrna levels in the rat caudate-putamen: An in situ hybridization study. J. Neurochem. 1993, 61, 1705–1712. [Google Scholar]
- Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: Their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 1159–1172. [Google Scholar]
- Secher, A.; Husum, H.; Holst, B.; Egerod, K.L.; Mellerup, E. Risperidone treatment increases cb1 receptor binding in rat brain. Neuroendocrinology 2010, 91, 155–168. [Google Scholar]
- Weston-Green, K.; Huang, X.F.; Han, M.; Deng, C. The effects of antipsychotics on the density of cannabinoid receptors in the dorsal vagal complex of rats: Implications for olanzapine-induced weight gain. Int. J. Neuropsychopharmacol. 2008, 11, 827–835. [Google Scholar]
- Theisen, F.M.; Haberhausen, M.; Firnges, M.A.; Gregory, P.; Reinders, J.H.; Remschmidt, H.; Hebebrand, J.; Antel, J. No evidence for binding of clozapine, olanzapine and/or haloperidol to selected receptors involved in body weight regulation. Pharmacogenomics J 2007, 7, 275–281. [Google Scholar]
- Poncelet, M.; Barnouin, M.C.; Breliere, J.C.; Le Fur, G.; Soubrie, P. Blockade of cannabinoid (cb1) receptors by 141716 selectively antagonizes drug-induced reinstatement of exploratory behaviour in gerbils. Psychopharmacology (Berl) 1999, 144, 144–150. [Google Scholar]
- Ballmaier, M.; Bortolato, M.; Rizzetti, C.; Zoli, M.; Gessa, G.; Heinz, A.; Spano, P. Cannabinoid receptor antagonists counteract sensorimotor gating deficits in the phencyclidine model of psychosis. Neuropsychopharmacology 2007, 32, 2098–2107. [Google Scholar]
- Roser, P.; Vollenweider, F.X.; Kawohl, W. Potential antipsychotic properties of central cannabinoid (cb1) receptor antagonists. World J. Biol. Psychiatry 2010, 11, 208–219. [Google Scholar]
- Horder, J.; Harmer, C.J.; Cowen, P.J.; McCabe, C. Reduced neural response to reward following 7 days treatment with the cannabinoid cb1 antagonist rimonabant in healthy volunteers. Int. J.Neuropsychopharmacol. 2010, 13, 1103–1113. [Google Scholar]
- Meltzer, H.Y.; Arvanitis, L.; Bauer, D.; Rein, W. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am. J. Psychiatry 2004, 161, 975–984. [Google Scholar]
- Mechoulam, R.; Parker, L.A.; Gallily, R. Cannabidiol: An overview of some pharmacological aspects. J. Clin. Pharmacol. 2002, 42, 11S–19S. [Google Scholar]
- Mechoulam, R.; Hanus, L. Cannabidiol: An overview of some chemical and pharmacological aspects. Part i: Chemical aspects. Chem. Phys. Lipids 2002, 121, 35–43. [Google Scholar]
- Petitet, F.; Jeantaud, B.; Reibaud, M.; Imperato, A.; Dubroeucq, M.C. Complex pharmacology of natural cannabinoids: Evidence for partial agonist activity of delta9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors. Life Sci. 1998, 63, PL1–PL6. [Google Scholar]
- Breivogel, C.S.; Griffin, G.; Di Marzo, V.; Martin, B.R. Evidence for a new g protein-coupled cannabinoid receptor in mouse brain. Mol. Pharmacol. 2001, 60, 155–163. [Google Scholar]
- Hajos, N.; Ledent, C.; Freund, T.F. Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neuroscience 2001, 106, 1–4. [Google Scholar]
- Ryberg, E.; Larsson, N.; Sjogren, S.; Hjorth, S.; Hermansson, N.O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The orphan receptor gpr55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar]
- Huang, J.T.; Leweke, F.M.; Tsang, T.M.; Koethe, D.; Kranaster, L.; Gerth, C.W.; Gross, S.; Schreiber, D.; Ruhrmann, S.; Schultze-Lutter, F.; Klosterkotter, J.; Holmes, E.; Bahn, S. Csf metabolic and proteomic profiles in patients prodromal for psychosis. PLoS One 2007, 2, e756. [Google Scholar]
- Dinu, I.R.; Popa, S.; Bicu, M.; Mota, E.; Mota, M. The implication of cnr1 gene's polymorphisms in the modulation of endocannabinoid system effects. Rom. J. Intern. Med. 2009, 47, 9–18. [Google Scholar]
- Bermudez-Silva, F.J.; Viveros, M.P.; McPartland, J.M.; Rodriguez de Fonseca, F. The endocannabinoid system, eating behavior and energy homeostasis: The end or a new beginning? Pharmacol. Biochem. Behav. 2010, 95, 375–382. [Google Scholar]
- Di Marzo, V.; Matias, I. Endocannabinoid control of food intake and energy balance. Nat.Neurosci. 2005, 8, 585–589. [Google Scholar]
- Rodriguez de Fonseca, F.; Carrera, M.R.; Navarro, M.; Koob, G.F.; Weiss, F. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 1997, 276, 2050–2054. [Google Scholar]
- Beinfeld, M.C.; Connolly, K. Activation of cb1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids. Neurosci. Lett. 2001, 301, 69–71. [Google Scholar]
- Karaliota, S.; Siafaka-Kapadai, A.; Gontinou, C.; Psarra, K.; Mavri-Vavayanni, M. Anandamide increases the differentiation of rat adipocytes and causes ppargamma and cb1 receptor upregulation. Obesity (Silver Spring) 2009, 17, 1830–1838. [Google Scholar]
- Cota, D.; Marsicano, G.; Tschop, M.; Grubler, Y.; Flachskamm, C.; Schubert, M.; Auer, D.; Yassouridis, A.; Thone-Reineke, C.; Ortmann, S.; Tomassoni, F.; Cervino, C.; Nisoli, E.; Linthorst, A.C.; Pasquali, R.; Lutz, B.; Stalla, G.K.; Pagotto, U. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 2003, 112, 423–431. [Google Scholar]
- Osei-Hyiaman, D.; DePetrillo, M.; Pacher, P.; Liu, J.; Radaeva, S.; Batkai, S.; Harvey-White, J.; Mackie, K.; Offertaler, L.; Wang, L.; Kunos, G. Endocannabinoid activation at hepatic cb1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 2005, 115, 1298–1305. [Google Scholar]
- Schleinitz, D.; Carmienke, S.; Bottcher, Y.; Tonjes, A.; Berndt, J.; Kloting, N.; Enigk, B.; Muller, I.; Dietrich, K.; Breitfeld, J.; Scholz, G.H.; Engeli, S.; Stumvoll, M.; Bluher, M.; Kovacs, P. Role of genetic variation in the cannabinoid type 1 receptor gene (cnr1) in the pathophysiology of human obesity. Pharmacogenomics 2010, 11, 693–702. [Google Scholar]
- Lee, H.K.; Choi, E.B.; Pak, C.S. The current status and future perspectives of studies of cannabinoid receptor 1 antagonists as anti-obesity agents. Curr. Top. Med. Chem. 2009, 9, 482–503. [Google Scholar]
- Hennekens, C.H.; Hennekens, A.R.; Hollar, D.; Casey, D.E. Schizophrenia and increased risks of cardiovascular disease. Am. Heart J. 2005, 150, 1115–1121. [Google Scholar]
- Allison, D.B.; Mackell, J.A.; McDonnell, D.D. The impact of weight gain on quality of life among persons with schizophrenia. Psychiatr. Serv. 2003, 54, 565–567. [Google Scholar]
- Weiden, P.J.; Mackell, J.A.; McDonnell, D.D. Obesity as a risk factor for antipsychotic noncompliance. Schizophr. Res. 2004, 66, 51–57. [Google Scholar]
- Meyer, J.M.; Stahl, S.M. The metabolic syndrome and schizophrenia. Acta Psychiatr. Scand. 2009, 119, 4–14. [Google Scholar]
- Venkatasubramanian, G.; Chittiprol, S.; Neelakantachar, N.; Naveen, M.N.; Thirthall, J.; Gangadhar, B.N.; Shetty, K.T. Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am. J. Psychiatry 2007, 164, 1557–1560. [Google Scholar]
- Spelman, L.M.; Walsh, P.I.; Sharifi, N.; Collins, P.; Thakore, J.H. Impaired glucose tolerance in first-episode drug-naive patients with schizophrenia. Diabet. Med. 2007, 24, 481–485. [Google Scholar]
- Randall, M.D.; Kendall, D.A.; Bennett, A.J.; O'Sullivan, S.E. Rimonabant in obese patients with type 2 diabetes. Lancet 2007, 369, 555. [Google Scholar]
- Tarcin, O.; Bajaj, M.; Akalin, S. Insulin resistance, adipocyte biology, and thiazolidinediones: A review. Metab.Syndr. Relat. Disord. 2007, 5, 103–115. [Google Scholar]
- Fu, J.; Gaetani, S.; Oveisi, F.; Lo Verme, J.; Serrano, A.; Rodriguez De Fonseca, F.; Rosengarth, A.; Luecke, H.; Di Giacomo, B.; Tarzia, G.; Piomelli, D. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor ppar-alpha. Nature 2003, 425, 90–93. [Google Scholar]
- Maldonado, R.; Valverde, O.; Berrendero, F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006, 29, 225–232. [Google Scholar]
- Gardner, E.L. Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacol. Biochem. Behav. 2005, 81, 263–284. [Google Scholar]
- Lupica, C.R.; Riegel, A.C. Endocannabinoid release from midbrain dopamine neurons: A potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 2005, 48, 1105–1116. [Google Scholar]
- Sipe, J.C.; Chiang, K.; Gerber, A.L.; Beutler, E.; Cravatt, B.F. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl. Acad. Sci. USA 2002, 99, 8394–8399. [Google Scholar]
- Agrawal, A.; Wetherill, L.; Dick, D.M.; Xuei, X.; Hinrichs, A.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.I., Jr.; Schuckit, M.; Bierut, L.J.; Edenberg, H.J.; Foroud, T. Evidence for association between polymorphisms in the cannabinoid receptor 1 (cnr1) gene and cannabis dependence. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2009, 150B, 736–740. [Google Scholar]
- Proudnikov, D.; Kroslak, T.; Sipe, J.C.; Randesi, M.; Li, D.; Hamon, S.; Ho, A.; Ott, J.; Kreek, M.J. Association of polymorphisms of the cannabinoid receptor (cnr1) and fatty acid amide hydrolase (faah) genes with heroin addiction: Impact of long repeats of cnr1. Pharmacogenomics J. 2010, 10, 232–242. [Google Scholar]
- Zuo, L.; Kranzler, H.R.; Luo, X.; Covault, J.; Gelernter, J. Cnr1 variation modulates risk for drug and alcohol dependence. Biol. Psychiatry 2007, 62, 616–626. [Google Scholar]
- Benyamina, A.; Kebir, O.; Blecha, L.; Reynaud, M.; Krebs, M.O. Cnr1 gene polymorphisms in addictive disorders: A systematic review and a meta-analysis. Addict. Biol. 2010. [Google Scholar]
- Zhang, P.W.; Ishiguro, H.; Ohtsuki, T.; Hess, J.; Carillo, F.; Walther, D.; Onaivi, E.S.; Arinami, T.; Uhl, G.R. Human cannabinoid receptor 1: 5' exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol. Psychiatry 2004, 9, 916–931. [Google Scholar]
- Clapper, J.R.; Mangieri, R.A.; Piomelli, D. The endocannabinoid system as a target for the treatment of cannabis dependence. Neuropharmacology 2009, 56 (Suppl. 1), 235–243. [Google Scholar]
- Howlett, A.C. Pharmacology of cannabinoid receptors. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 607–634. [Google Scholar]
- Mackie, K. Signaling via cns cannabinoid receptors. Mol. Cell Endocrinol. 2008, 286, S60–S65. [Google Scholar]
- Bossong, M.G.; van Berckel, B.N.; Boellaard, R.; Zuurman, L.; Schuit, R.C.; Windhorst, A.D.; van Gerven, J.M.; Ramsey, N.F.; Lammertsma, A.A.; Kahn, R.S. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 2009, 34, 759–766. [Google Scholar]
- Kegeles, L.S.; Abi-Dargham, A.; Frankle, W.G.; Gil, R.; Cooper, T.B.; Slifstein, M.; Hwang, D.R.; Huang, Y.; Haber, S.N.; Laruelle, M. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen. Psychiatry 2010, 67, 231–239. [Google Scholar]
- Stokes, P.R.; Mehta, M.A.; Curran, H.V.; Breen, G.; Grasby, P.M. Can recreational doses of thc produce significant dopamine release in the human striatum? Neuroimage 2009, 48, 186–190. [Google Scholar] [PubMed]
- Mueser, K.T.; Drake, R.E.; Wallach, M.A. Dual diagnosis: A review of etiological theories. Addict. Behav. 1998, 23, 717–734. [Google Scholar]
- Leweke, F.M.; Giuffrida, A.; Koethe, D.; Schreiber, D.; Nolden, B.M.; Kranaster, L.; Neatby, M.A.; Schneider, M.; Gerth, C.W.; Hellmich, M.; Klosterkotter, J.; Piomelli, D. Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: Impact of cannabis use. Schizophr. Res. 2007, 94, 29–36. [Google Scholar]
- Melis, M.; Pillolla, G.; Luchicchi, A.; Muntoni, A.L.; Yasar, S.; Goldberg, S.R.; Pistis, M. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors. J. Neurosci. 2008, 28, 13985–13994. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Desfossés, J.; Stip, E.; Bentaleb, L.A.; Potvin, S. Endocannabinoids and Schizophrenia. Pharmaceuticals 2010, 3, 3101-3126. https://doi.org/10.3390/ph3103101
Desfossés J, Stip E, Bentaleb LA, Potvin S. Endocannabinoids and Schizophrenia. Pharmaceuticals. 2010; 3(10):3101-3126. https://doi.org/10.3390/ph3103101
Chicago/Turabian StyleDesfossés, Joëlle, Emmanuel Stip, Lahcen Ait Bentaleb, and Stéphane Potvin. 2010. "Endocannabinoids and Schizophrenia" Pharmaceuticals 3, no. 10: 3101-3126. https://doi.org/10.3390/ph3103101
APA StyleDesfossés, J., Stip, E., Bentaleb, L. A., & Potvin, S. (2010). Endocannabinoids and Schizophrenia. Pharmaceuticals, 3(10), 3101-3126. https://doi.org/10.3390/ph3103101