The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments
Abstract
:1. Introduction
2. The Time Course of Antidepressant Effects
3. Pharmacological and Non-Pharmacological Approaches and the Timing of Antidepressant Effects
3.1. The Timing of Onset of Currently Available Antidepressants
3.2. Differences in Timing of Onset Associated with Antidepressants of Different Classes and Influence on Long-term Outcome
3.2.1. SSRIs
3.2.2. Monoamine Oxidase Inhibitors (MAOIs)
3.2.3. Olanzapine-Fluoxetine Combination (OFC)
3.2.4. Intravenous Standard Antidepressants (ISA)
3.2.5. Mirtazapine
3.3. Other Pharmacological and Somatic Interventions Currently Being Investigated for Earlier Antidepressant Effects
3.3.1. Electroconvulsive Therapy (ECT)
3.3.2. Pindolol
3.3.3. Stimulants
3.3.4. Hypothalamic Pituitary Adrenal (HPA) Axis Inhibitors
3.3.5. Repetitive Transcranial Magnetic Stimulation (rTMS)
3.3.6. Deep Brain Stimulation (DBS)
3.3.7. NR2B Antagonists
3.4. Interventions Associated with ROAA
3.4.1. Thyrotropin Releasing Hormone (TRH)
3.4.2. Ketamine
3.4.3. Sleep Deprivation
4. Future Directions
Acknowledgements
Disclosure of Competing Interests and Financial Support
References
- Lingam, R.; Scott, J. Treatment non-adherence in affective disorders. Acta Psychiatr. Scand. 2002, 105, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Fava, M. New approaches to the treatment of refractory depression. J. Clin. Psychiatry 2000, 61, 26–32. [Google Scholar] [PubMed]
- Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; Luther, J.F.; Shores-Wilson, K.; Rush, A.J. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med. 2006, 354, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Jick, H.; Kaye, J.A.; Jick, S.S. Antidepressants and the risk of suicidal behaviors. JAMA 2004, 292, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.E.; Savarino, J.; Operskalski, B.; Wang, P.S. Suicide risk during antidepressant treatment. Am. J. Psychiatry 2006, 163, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Teicher, M.H.; Glod, C.A.; Cole, J.O. Antidepressant drugs and the emergence of suicidal tendencies. Drug Saf. 1993, 8, 186–212. [Google Scholar] [CrossRef]
- Blier, P.; Bergeron, R. Early onset of therapeutic action in depression and greater efficacy of anti-depressant treatments: are they related? Int. Clin. Psychopharmacol. 1997, 12, 21–28. [Google Scholar] [CrossRef]
- Szegedi, A.; Muller, M.J.; Anghelescu, I.; Klawe, C.; Kohnen, R.; Benkert, O. Early improvement under mirtazapine and paroxetine predicts later stable response and remission with high sensitivity in patients with major depression. J. Clin. Psychiatry 2003, 64, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, R.M. Antidepressants in long-term therapy: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatr. Scand. Suppl. 2000, 403, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Wells, K.B.; Stewart, A.; Hays, R.D.; Burnam, M.A.; Rogers, W.; Daniels, M.; Berry, S.; Greenfield, S.; Ware, J. The functioning and well-being of depressed patients. Results from the Medical Outcomes Study. JAMA 1989, 262, 914–919. [Google Scholar] [PubMed]
- Sheline, Y.I.; Wang, P.W.; Gado, M.H.; Csernansky, J.G.; Vannier, M.W. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. US A 1996, 93, 3908–3913. [Google Scholar] [CrossRef]
- Leon, A.C.; Blier, P.; Culpepper, L.; Gorman, J.M.; Hirschfeld, R.M.; Nierenberg, A.A.; Roose, S.P.; Rosenbaum, J.F.; Stahl, S.M.; Trivedi, M.H. An ideal trial to test differential onset of anti-depressant effect. J. Clin. Psychiatry 2001, 62, 34–36. [Google Scholar] [PubMed]
- Angst, J.; Ernst, C. Current concepts of the classification of affective disorders. Int. Clin. Psychopharmacol. 1993, 8, 211–215. [Google Scholar]
- Frank, E.; Kupfer, D.J.; Perel, J.M.; Cornes, C.; Jarrett, D.B.; Mallinger, A.G.; Thase, M.E.; McEachran, A.B.; Grochocinski, V.J. Three-year outcomes for maintenance therapies in recurrent depression. Arch. Gen. Psychiatry 1990, 47, 1093–1099. [Google Scholar] [PubMed]
- Stassen, H.H.; Delini, S.A.; Angst, J. Time course of improvement under antidepressant treatment: a survival-analytical approach. Eur. Neuropsychopharmacol. 1993, 3, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Posternak, M.A.; Zimmerman, M. Is there a delay in the antidepressant effect? A meta-analysis . J. Clin. Psychiatry 2005, 66, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Bagby, R.M.; Ryder, A.G.; Schuller, D.R.; Marshall, M.B. The Hamilton Depression Rating Scale: has the gold standard become a lead weight? Am. J. Psychiatry 2004, 161, 2163–2177. [Google Scholar] [CrossRef] [PubMed]
- Quitkin, F.M.; Rabkin, J.D.; Markowitz, J.M.; Stewart, J.W.; McGrath, P.J.; Harrison, W. Use of pattern analysis to identify true drug response. A replication. Arch. Gen. Psychiatry 1987, 44, 259–264. [Google Scholar] [PubMed]
- Quitkin, F.M.; Rabkin, J.G.; Ross, D.; Stewart, J.W. Identification of true drug response to anti-depressants. Use of pattern analysis. Arch. Gen. Psychiatry 1984, 41, 782–786. [Google Scholar] [PubMed]
- Hyman, S.E.; Nestler, E.J. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am. J. Psychiatry 1996, 153, 151–162. [Google Scholar] [PubMed]
- Artigas, F.; Romero, L.; de Montigny, C.; Blier, P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 1996, 19, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Blier, P. The pharmacology of putative early-onset antidepressant strategies. Eur. Neuropsycho-pharmacol. 2003, 13, 57–66. [Google Scholar] [CrossRef]
- Katz, M.M.; Tekell, J.L.; Bowden, C.L.; Brannan, S.; Houston, J.P.; Berman, N.; Frazer, A. Onset and early behavioral effects of pharmacologically different antidepressants and placebo in depression. Neuropsychopharmacology 2004, 29, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, G.I.; Perlis, R.H.; Scalia, M.J.; Petersen, T.J.; Fava, M. A meta-analysis of early sustained response rates between antidepressants and placebo for the treatment of major depressive disorder. J. Clin. Psychopharmacol. 2006, 26, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Benkert, O.; Szegedi, A.; Philipp, M.; Kohnen, R.; Heinrich, C.; Heukels, A.; van der Vegte-Senden, M.; Baker, R.A.; Simmons, J.H.; Schutte, A.J. Mirtazapine orally disintegrating tablets versus venlafaxine extended release: a double-blind, randomized multicenter trial comparing the onset of antidepressant response in patients with major depressive disorder. J. Clin. Psycho-pharmacol. 2006, 26, 75–78. [Google Scholar] [CrossRef]
- Taylor, M.J.; Freemantle, N.; Geddes, J.R.; Bhagwagar, Z. Early onset of selective serotonin reuptake inhibitor antidepressant action: systematic review and meta-analysis. Arch. Gen. Psychiatry 2006, 63, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.D.; Hedeker, D.; Elkin, I.; Waternaux, C.; Kraemer, H.C.; Greenhouse, J.B.; Shea, M.T.; Imber, S.D.; Sotsky, S.M.; Watkins, J.T. Some conceptual and statistical issues in analysis of longitudinal psychiatric data. Application to the NIMH treatment of Depression Collaborative Research Program dataset. Arch. Gen. Psychiatry 1993, 50, 739–750. [Google Scholar] [PubMed]
- Katz, M.M.; Koslow, S.H.; Frazer, A. Onset of antidepressant activity: reexamining the structure of depression and multiple actions of drugs. Depress. Anxiety 1996, 4, 257–267. [Google Scholar] [CrossRef]
- Katz, M.M.; Koslow, S.H.; Maas, J.W.; Frazer, A.; Bowden, C.L.; Casper, R.; Croughan, J.; Kocsis, J.; Redmond Jr., E. The timing, specificity and clinical prediction of tricyclic drug effects in depression. Psychol. Med. 1987, 17, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.M.; Bowden, C.L.; Frazer, A. Rethinking depression and the actions of antidepressants: Uncovering the links between the neural and behavioral elements. J. Affect. Disord. 2010, 120, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Feighner, J.P.; Boyer, W.F. Paroxetine in the treatment of depression: a comparison with imipramine and placebo. J. Clin. Psychiatry 1992, 53, 44–47. [Google Scholar] [PubMed]
- Nagayama, H.; Nagano, K.; Ikezaki, A.; Tashiro, T. Prediction of efficacy of antidepressant by 1-week test therapy in depression. J. Affect. Disord. 1991, 23, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Stassen, H.H.; Angst, J.; Delini-Stula, A. Delayed onset of action of antidepressant drugs? Survey of results of Zurich meta-analyses . Pharmacopsychiatry 1996, 29, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Stassen, H.H.; Ragaz, M.; Reich, T. Age-of-onset or age-cohort changes in the lifetime occurrence of depression? Psychiatr. Genet. 1997, 7, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.A. Are 2-week trials sufficient to indicate efficacy? Psychopharmacol. Bull. 1995, 31, 41–44. [Google Scholar] [PubMed]
- Parker, G.; Roy, K.; Menkes, D.B.; Snowdon, J.; Boyce, P.; Grounds, D.; Hughson, B.; Stringer, C. How long does it take for antidepressant therapies to act. Aust. N.Z. J. Psychiatry 2000, 34, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Kasper, S.; Spadone, C.; Verpillat, P.; Angst, J. Onset of action of escitalopram compared with other antidepressants: results of a pooled analysis. Int. Clin. Psychopharmacol. 2006, 21, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M.; Nierenberg, A.A.; Gorman, J.M. Evidence of early onset of antidepressant effect in randomized controlled trials . J. Clin. Psychiatry 2001, 62 (Suppl. 4), 17–23. [Google Scholar] [PubMed]
- Patris, M.; Bouchard, J.M.; Bougerol, T.; Charbonnier, J.F.; Chevalier, J.F.; Clerc, G.; Cyran, C.; Van Amerongen, P.; Lemming, O.; Hopfner Petersen, H.E. Citalopram versus fluoxetine: a double-blind, controlled, multicentre, phase III trial in patients with unipolar major depression treated in general practice. Int. Clin. Psychopharmacol. 1996, 11, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Placebo-controlled comparison of the selective serotonin reuptake inhibitors citalopram and sertraline. Biol. Psychiatry 2000, 48, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Levitan, R.D.; Shen, J.H.; Jindal, R.; Driver, H.S.; Kennedy, S.H.; Shapiro, C.M. Preliminary randomized double-blind placebo-controlled trial of tryptophan combined with fluoxetine to treat major depressive disorder: antidepressant and hypnotic effects. J. Psychiatry Neurosci. 2000, 25, 337–346. [Google Scholar] [PubMed]
- Baker, G.B.; Coutts, R.T.; McKenna, K.F.; Sherry-McKenna, R.L. Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review. J. Psychiatry Neurosci. 1992, 17, 206–214. [Google Scholar] [PubMed]
- Georgotas, A.; McCue, R.E.; Hapworth, W.; Friedman, E.; Kim, O.M.; Welkowitz, J.; Chang, I.; Cooper, T.B. Comparative efficacy and safety of MAOIs versus TCAs in treating depression in the elderly. Biol. Psychiatry 1986, 21, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Bresnahan, D.B.; Pandey, G.N.; Janicak, P.G.; Sharma, R.; Boshes, R.A.; Chang, S.S.; Gierl, B.L.; Davis, J.M. MAO inhibition and clinical response in depressed patients treated with phenelzine. J. Clin. Psychiatry 1990, 51, 47–50. [Google Scholar] [PubMed]
- Stewart, J.W.; McGrath, P.J.; Quitkin, F.M.; Rabkin, J.G.; Harrison, W.; Wagner, S.; Nunes, E.; Ocepek-Welikson, K.; Tricamo, E. Chronic depression: response to placebo, imipramine, and phenelzine. J. Clin. Psychopharmacol. 1993, 13, 391–396. [Google Scholar] [PubMed]
- Amsterdam, J.D.; Shults, J. MAOI efficacy and safety in advanced stage treatment-resistant depression--a retrospective study. J. Affect. Disord. 2005, 89, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Thase, M.E.; Frank, E.; Mallinger, A.G.; Hamer, T.; Kupfer, D.J. Treatment of imipramine-resistant recurrent depression, III: Efficacy of monoamine oxidase inhibitors. J. Clin. Psychiatry 1992, 53, 5–11. [Google Scholar] [PubMed]
- Brown, E.B.; McElroy, S.L.; Keck Jr., P.E.; Deldar, A.; Adams, D.H.; Tohen, M.; Williamson, D.J. A 7-week, randomized, double-blind trial of olanzapine/fluoxetine combination versus lamotrigine in the treatment of bipolar I depression. J. Clin. Psychiatry 2006, 67, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Corya, S.A.; Williamson, D.; Sanger, T.M.; Briggs, S.D.; Case, M.; Tollefson, G. A randomized, double-blind comparison of olanzapine/fluoxetine combination, olanzapine, fluoxetine, and venlafaxine in treatment-resistant depression. Depress. Anxiety 2006, 23, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Shelton, R.C.; Williamson, D.J.; Corya, S.A.; Sanger, T.M.; Van Campen, L.E.; Case, M.; Briggs, S.D.; Tollefson, G.D. Olanzapine/fluoxetine combination for treatment-resistant depression: a controlled study of SSRI and nortriptyline resistance. J. Clin. Psychiatry 2005, 66, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; Brotchie, H.; Parker, K. Is combination olanzapine and antidepressant medication associated with a more rapid response trajectory than antidepressant alone? Am. J. Psychiatry 2005, 162, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Moukaddam, N.J.; Hirschfeld, R.M. Intravenous antidepressants: a review. Depress. Anxiety 2004, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pollock, B.G.; Perel, J.M.; Shostak, M. Rapid achievement of antidepressant effect with intravenous chlorimipramine. N. Engl. J. Med. 1985, 312, 1130. [Google Scholar] [PubMed]
- Pollock, B.G.; Perel, J.M.; Shostak, M.; Antelman, S.M.; Brandom, B.; Kupfer, D.J. Understanding the response lag to tricyclics I. Application of pulse-loading regimens with intravenous clomipramine. Psychopharmacol. Bull. 1986, 22, 214–219. [Google Scholar] [PubMed]
- Escobar, J.I.; Flemenbaum, A.; Schiele, B.C. Chlorimipramine: a double-blind comparison of intravenous versus oral administration in depressed patients. Psychopharmacologia 1973, 33, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Faravelli, C.; Broadhurst, A.D.; Ambonetti, A.; Ballerini, A.; De Biase, L.; La Malfa, G.; Das, M. Double-blind trial with oral versus intravenous clomipramine in primary depression. Biol. Psychiatry 1983, 18, 695–706. [Google Scholar] [PubMed]
- Pollock, B.G.; Perel, J.M.; Nathan, R.S.; Kupfer, D.J. Acute antidepressant effect following pulse loading with intravenous and oral clomipramine. Arch. Gen. Psychiatry 1989, 46, 29–35. [Google Scholar] [PubMed]
- Deisenhammer, E.A.; Whitworth, A.B.; Geretsegger, C.; Kurzthaler, I.; Gritsch, S.; Miller, C.H.; Fleischhacker, W.W.; Stuppack, C.H. Intravenous versus oral administration of amitriptyline in patients with major depression. J. Clin. Psychopharmacol. 2000, 20, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P.; Nil, R.; Bertschy, G.; Jecker, A.; Brandli, H.; Morand, J.; Kasas, A.; Vuagniaux, O.; Ramseier, F. A double-blind double-dummy study of citalopram comparing infusion versus oral administration. J. Affect. Disord. 1998, 49, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Guelfi, J.D.; Strub, N.; Loft, H. Efficacy of intravenous citalopram compared with oral citalopram for severe depression. Safety and efficacy data from a double-blind, double-dummy trial. J. Affect. Disord. 2000, 58, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Quitkin, F.M.; Taylor, B.P.; Kremer, C. Does mirtazapine have a more rapid onset than SSRIs? J. Clin. Psychiatry 2001, 62, 358–361. [Google Scholar] [PubMed]
- Amini, H.; Aghayan, S.; Jalili, S.A.; Akhondzadeh, S.; Yahyazadeh, O.; Pakravan-Nejad, M. Comparison of mirtazapine and fluoxetine in the treatment of major depressive disorder: a double-blind, randomized trial. J. Clin. Pharm. Ther. 2005, 30, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Post, R.M.; Uhde, T.W.; Rubinow, D.R.; Huggins, T. Differential time course of antidepressant effects after sleep deprivation, ECT, and carbamazepine: clinical and theoretical implications. Psychiatry Res. 1987, 22, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Folkerts, H.W.; Michael, N.; Tolle, R.; Schonauer, K.; Mucke, S.; Schulze-Monking, H. Electroconvulsive therapy vs. paroxetine in treatment-resistant depression -- a randomized study. Acta Psychiatr. Scand. 1997, 96, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Gangadhar, B.N.; Kapur, R.L.; Kalyanasundaram, S. Comparison of electroconvulsive therapy with imipramine in endogenous depression: a double blind study. Br. J. Psychiatry 1982, 141, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Rich, C.L. Recovery from depression after one ECT. Am. J. Psychiatry 1984, 141, 1010–1011. [Google Scholar] [PubMed]
- Segman, R.H.; Shapira, B.; Gorfine, M.; Lerer, B. Onset and time course of antidepressant action: psychopharmacological implications of a controlled trial of electroconvulsive therapy. Psychopharmacology (Berl) 1995, 119, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Kho, K.H.; Blansjaar, B.A.; Vothknecht, S.; Cornelissen, N.M.; Koomen, E.; Zwinderman, A.H.; Linszen, D.H. A study into predictors for the speed of response to electroconvulsive therapy. J. ECT 2004, 20, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.M.; McClintock, S.M.; Rush, A.J.; Knapp, R.G.; Fink, M.; Rummans, T.A.; Rasmussen, K.; Claassen, C.; Petrides, G.; Biggs, M.M. The efficacy of acute electroconvulsive therapy in atypical depression. J. Clin. Psychiatry 2008, 69, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Blier, P.; de Montigny, C.; Chaput, Y. A role for the serotonin system in the mechanism of action of antidepressant treatments: preclinical evidence. J. Clin. Psychiatry 1990, 51, 14–20. [Google Scholar] [PubMed]
- Blier, P.; de Montigny, C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 1994, 15, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Rabiner, E.A.; Bhagwagar, Z.; Gunn, R.N.; Sargent, P.A.; Bench, C.J.; Cowen, P.J.; Grasby, P.M. Pindolol augmentation of selective serotonin reuptake inhibitors: PET evidence that the dose used in clinical trials is too low. Am. J. Psychiatry 2001, 158, 2080–2082. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.W.; Vogel, F.; McAbee, R.S.; Thurmond, A.J. Improvement of depression by REM sleep deprivation. New findings and a theory. Arch. Gen. Psychiatry 1980, 37, 247–253. [Google Scholar] [PubMed]
- Artigas, F.; Adell, A.; Celada, P. Pindolol augmentation of antidepressant response. Curr. Drug Targets 2006, 7, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, J.; Callado, L.F. Effectiveness of pindolol plus serotonin uptake inhibitors in depression: a meta-analysis of early and late outcomes from randomised controlled trials. J. Affect. Disord. 2004, 79, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.; Soler, J.; Puigdemont, D.; Alvarez, E.; Artigas, F. A double-blind, randomized, placebo-controlled trial of pindolol augmentation in depressive patients resistant to serotonin reuptake inhibitors. Grup de Recerca en Trastorns Afectius. Arch. Gen. Psychiatry 1999, 56, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.B.; Berman, R.M.; Sanacora, G.; Anand, A.; Lynch-Colonese, K.; Charney, D.S. Pindolol augmentation in depressed patients resistant to selective serotonin reuptake inhibitors: a double-blind, randomized, controlled trial. J. Clin. Psychiatry 2004, 65, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Blier, P. Possible neurobiological mechanisms underlying faster onset of antidepressant action . J. Clin. Psychiatry 2001, 62 (Suppl. 4), 7–11. [Google Scholar] [PubMed]
- Chiarello, R.J.; Cole, J.O. The use of psychostimulants in general psychiatry. A reconsideration. Arch. Gen. Psychiatry 1987, 44, 286–295. [Google Scholar] [PubMed]
- Gwirtsman, H.E.; Szuba, M.P.; Toren, L.; Feist, M. The antidepressant response to tricyclics in major depressives is accelerated with adjunctive use of methylphenidate. Psychopharmacol. Bull. 1994, 30, 157–164. [Google Scholar] [PubMed]
- Postolache, T.T.; Rosenthal, R.N.; Hellerstein, D.J.; Aromin, R.; Kelton, G.M.; Muran, J.C.; Londono, J.H. Early augmentation of sertraline with methylphenidate. J. Clin. Psychiatry 1999, 60, 123–124. [Google Scholar] [PubMed]
- Patkar, A.A.; Masand, P.S.; Pae, C.U.; Peindl, K.; Hooper-Wood, C.; Mannelli, P.; Ciccone, P. A randomized, double-blind, placebo-controlled trial of augmentation with an extended release formulation of methylphenidate in outpatients with treatment-resistant depression. J. Clin. Psychopharmacol. 2006, 26, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Belanoff, J.K.; Rothschild, A.J.; Cassidy, F.; DeBattista, C.; Baulieu, E.E.; Schold, C.; Schatzberg, A.F. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry 2002, 52, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Young, A.H.; Gallagher, P.; Watson, S.; Del-Estal, D.; Owen, B.M.; Ferrier, I.N. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology 2004, 29, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Carroll, B.J.; Rubin, R.T. Mifepristone in psychotic depression? Biol. Psychiatry 2008, 63, e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Grunberg, S.M.; Weiss, M.H.; Russell, C.A.; Spitz, I.M.; Ahmadi, J.; Sadun, A.; Sitruk-Ware, R. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006, 24, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, A.J. Challenges in the treatment of depression with psychotic features. Biol. Psychiatry 2003, 53, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Valdez, G.R. CRF receptors as a potential target in the development of novel pharmacotherapies for depression. Curr. Pharm. Des. 2009, 15, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Ducottet, C.; Griebel, G.; Belzung, C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.; Griebel, G.; Pavone, G.; Stemmelin, J.; Le Fur, G.; Soubrie, P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol. Psychiatry 2004, 9, 278–286. [Google Scholar] [CrossRef]
- Farrokhi, C.; Blanchard, D.C.; Griebel, G.; Yang, M.; Gonzales, C.; Markham, C.; Blanchard, R.J. Effects of the CRF1 antagonist SSR125543A on aggressive behaviors in hamsters. Pharmacol. Biochem. Behav. 2004, 77, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Griebel, G.; Simiand, J.; Steinberg, R.; Jung, M.; Gully, D.; Roger, P.; Geslin, M.; Scatton, B.; Maffrand, J.P.; Soubrie, P. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist II. Characterization in rodent models of stress-related disorders. J. Pharmacol. Exp. Ther. 2002, 301, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Zobel, A.W.; Nickel, T.; Kunzel, H.E.; Ackl, N.; Sonntag, A.; Ising, M.; Holsboer, F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res. 2000, 34, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Jahn, H.; Schick, M.; Kiefer, F.; Kellner, M.; Yassouridis, A.; Wiedemann, K. Metyrapone as additive treatment in major depression: A double-blind and placebo-controlled trial. Arch. Gen. Psychiatry 2004, 61, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.K.; Mitchell, P.B. A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. J. Affect. Disord. 2005, 88, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Keck, M.E. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J. Psychiatr. Res. 2001, 35, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Rumi, D.O.; Gattaz, W.F.; Rigonatti, S.P.; Rosa, M.A.; Fregni, F.; Rosa, M.O.; Mansur, C.; Myczkowski, M.L.; Moreno, R.A.; Marcolin, M.A. Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: A double-blind placebo-controlled study. Biol. Psychiatry 2005, 57, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Rossini, D.; Lucca, A.; Zanardi, R.; Magri, L.; Smeraldi, E. Transcranial magnetic stimulation in treatment-resistant depressed patients: a double-blind, placebo-controlled trial. Psychiatry Res. 2005, 137, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Lozano, A.M.; Mayberg, H.S.; Giacobbe, P.; Hamani, C.; Craddock, R.C.; Kennedy, S.H. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 2008, 64, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Preskorn, S.H.; Baker, B.; Kolluri, S.; Menniti, F.S.; Krams, M.; Landen, J.W. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol. 2008, 28, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Crespi, F.; Keane, P.E.; Morre, M. In vivo evaluation by differential pulse voltammetry of the effect of thyrotropin-releasing hormone (TRH) on dopaminergic and serotoninergic synaptic activity in the striatum and nucleus accumbens of the rat. Exp. Brain Res. 1986, 62, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Estienne, M.J.; Harter-Dennis, J.M.; Barb, C.R. Role of neuropeptides and amino acids in controlling secretion of hormones from the anterior pituitary gland in pigs. J. Reprod. Fertil. Suppl. 1997, 52, 3–17. [Google Scholar] [PubMed]
- Renaud, L.P.; Blume, H.W.; Pittman, Q.J.; Lamour, Y.; Tan, A.T. Thyrotropin-releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons. Science 1979, 205, 1275–1277. [Google Scholar] [PubMed]
- Kastin, A.J.; Ehrensing, R.H.; Schalch, D.S.; Anderson, M.S. Improvement in mental depression with decreased thyrotropin response after administration of thyrotropin-releasing hormone. Lancet 1972, 2, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Prange Jr., A.J.; Wilson, I.C.; Knox, A.E.; McClane, T.K.; Breese, G.R.; Martin, B.R.; Alltop, L.B.; Lipton, M.A. Thyroid-imipramine clinical and chemical interaction: evidence for a receptor deficit in depression. J. Psychiatr. Res. 1972, 9, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, R.; Matulevicius, V. Short-lasting behavioural effects of thyrotropin-releasing hormone in depressed women: results of placebo-controlled study. Psychoneuroendocrinology 1993, 18, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Hollister, L.E.; Berger, P.; Ogle, F.L.; Arnold, R.C.; Johnson, A. Protirelin (TRH) in depression. Arch. Gen. Psychiatry 1974, 31, 468–470. [Google Scholar] [PubMed]
- Redding, T.W.; Schally, A.V. Studies on the inactivation of thyrotropin-releasing hormone (TRH). Proc. Soc. Exp. Biol. Med. 1969, 131, 415–420. [Google Scholar] [PubMed]
- Marangell, L.B.; George, M.S.; Callahan, A.M.; Ketter, T.A.; Pazzaglia, P.J.; L'Herrou, T.A.; Leverich, G.S.; Post, R.M. Effects of intrathecal thyrotropin-releasing hormone (protirelin) in refractory depressed patients. Arch. Gen. Psychiatry 1997, 54, 214–222. [Google Scholar] [PubMed]
- Szuba, M.P.; Amsterdam, J.D.; Fernando, A.T.; Gary, K.A.; Whybrow, P.C.; Winokur, A. Rapid antidepressant response after nocturnal TRH administration in patients with bipolar type I and bipolar type II major depression . J. Clin. Psychopharmacol. 2005, 25, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Zarate Jr., C.A.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef] [PubMed]
- DiazGranados, N.; Ibrahim, I.; Brutsche, N.E.; Ameli, R.; Henter, I.; Luckenbaugh, D.A.; Machado, Vieira; Zarate Jr., C.A. Rapid resolution of suicidal ideation after a single infusion of an NMDA antagonist in patients with treatment-resistant major depressive disorder . J. Clin. Psychiatry 2009, in press. [Google Scholar]
- Price, R.B.; Nock, M.K.; Charney, D.S.; Mathew, S.J. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Curr. Pharm. Des. 2009, 15, 2637–2649. [Google Scholar] [CrossRef] [PubMed]
- Maeng, S.; Zarate Jr., C.A.; Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 2008, 63, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Machado-Vieira, R.; Maeng, S.; Martinovitch, K.; Manji, H.; Zarate Jr., C. Enhancing AMPA to NMDA throughput as a convergent mechanism for antidepressant action. Drug Disc. Today: Dis. Mech. 2007, 3, 519–526. [Google Scholar]
- Zarate Jr., C.A.; Singh, J.; Manji, H.K. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol. Psychiatry 2006, 59, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Mickley, G.A.; Schaldach, M.A.; Snyder, K.J.; Balogh, S.A.; Len, T.; Neimanis, K.; Goulis, P.; Hug, J.; Sauchak, K.; Remmers-Roeber, D.R.; Walker, C.; Yamamoto, B.K. Ketamine blocks a conditioned taste aversion (CTA) in neonatal rats. Physiol. Behav. 1998, 64, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, J.S.; Nadal, R.; Pallares, M.; Ferre, N. Acute effects of ketamine in the holeboard, the elevated-plus maze, and the social interaction test in Wistar rats. Depress. Anxiety 1997, 5, 29–33. [Google Scholar] [CrossRef]
- Wu, J.C.; Bunney, W.E. The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am. J. Psychiatry 1990, 147, 14–21. [Google Scholar] [PubMed]
- Gardner, J.P.; Fornal, C.A.; Jacobs, B.L. Effects of sleep deprivation on serotonergic neuronal activity in the dorsal raphe nucleus of the freely moving cat. Neuropsychopharmacology 1997, 17, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Grassi Zucconi, G.; Cipriani, S.; Balgkouranidou, I.; Scattoni, R. 'One night' sleep deprivation stimulates hippocampal neurogenesis. Brain Res. Bull. 2006, 69, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Marin, R.; Suntsova, N.; Stewart, D.R.; Gong, H.; Szymusiak, R.; McGinty, D. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J. Physiol. 2003, 549, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.L.; Quiroz, J.A.; Zarate Jr., C.A.; Manji, H.K. Timing is everything: does the robust upregulation of noradrenergically regulated plasticity genes underlie the rapid antidepressant effects of sleep deprivation? Biol. Psychiatry 2002, 52, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Giedke, H.; Schwarzler, F. Therapeutic use of sleep deprivation in depression. Sleep Med. Rev. 2002, 6, 361–377. [Google Scholar] [PubMed]
- Baxter, L.R.J.; Liston, E.H.; Schwartz, J.M.; Altshuler, L.L.; Wilkins, J.N.; Richeimer, S.; Guze, B.H. Prolongation of the antidepressant response to partial sleep deprivation by lithium. Psychiatry Res. 1986, 19, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Colombo, C.; Barbini, B.; Campori, E.; Smeraldi, E. Ongoing lithium treatment prevents relapse after total sleep deprivation. J. Clin. Psychopharmacol. 1999, 19, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Szuba, M.P.; Baxter Jr., L.R.; Altshuler, L.L.; Allen, E.M.; Guze, B.H.; Schwartz, J.M.; Liston, E.H. Lithium sustains the acute antidepressant effects of sleep deprivation: preliminary findings from a controlled study. Psychiatry Res. 1994, 51, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Vollmann, J.; Hohagen, F.; Konig, A.; Lohner, H.; Voderholzer, U.; Riemann, D. Sleep deprivation combined with consecutive sleep phase advance as a fast-acting therapy in depression: an open pilot trial in medicated and unmedicated patients. Am. J. Psychiatry 1997, 154, 870–872. [Google Scholar] [PubMed]
- Smeraldi, E.; Benedetti, F.; Barbini, B.; Campori, E.; Colombo, C. Sustained antidepressant effect of sleep deprivation combined with pindolol in bipolar depression. A placebo-controlled trial. Neuropsychopharmacology 1999, 20, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Wehr, T.A.; Wirz-Justice, A.; Goodwin, F.K.; Duncan, W.; Gillin, J.C. Phase advance of the circadian sleep-wake cycle as an antidepressant. Science 1979, 206, 710–713. [Google Scholar] [PubMed]
- Wu, J.C.; Kelsoe, J.R.; Schachat, C.; Bunney, B.G.; DeModena, A.; Golshan, S.; Gillin, J.C.; Potkin, S.G.; Bunney, W.E. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol. Psychiatry 2009, 66, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Smeraldi, E. Neuroimaging and genetics of antidepressant response to sleep deprivation: implications for drug development. Curr. Pharm. Des. 2009, 15, 2637–2649. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Machado-Vieira, R.; Baumann, J.; Wheeler-Castillo, C.; Latov, D.; Henter, I.D.; Salvadore, G.; Zarate, C.A., Jr. The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments. Pharmaceuticals 2010, 3, 19-41. https://doi.org/10.3390/ph3010019
Machado-Vieira R, Baumann J, Wheeler-Castillo C, Latov D, Henter ID, Salvadore G, Zarate CA Jr. The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments. Pharmaceuticals. 2010; 3(1):19-41. https://doi.org/10.3390/ph3010019
Chicago/Turabian StyleMachado-Vieira, Rodrigo, Jacqueline Baumann, Cristina Wheeler-Castillo, David Latov, Ioline D. Henter, Giacomo Salvadore, and Carlos A. Zarate, Jr. 2010. "The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments" Pharmaceuticals 3, no. 1: 19-41. https://doi.org/10.3390/ph3010019
APA StyleMachado-Vieira, R., Baumann, J., Wheeler-Castillo, C., Latov, D., Henter, I. D., Salvadore, G., & Zarate, C. A., Jr. (2010). The Timing of Antidepressant Effects: A Comparison of Diverse Pharmacological and Somatic Treatments. Pharmaceuticals, 3(1), 19-41. https://doi.org/10.3390/ph3010019