Potential Drug Interactions in Psychiatric Patients Undergoing Pangenotypic Therapy for Hepatitis C Virus Infection
Abstract
1. Introduction
2. Methods
3. Overview
3.1. Metabolic Pathways of Pangenotypic DAA Regimens
3.1.1. Glecaprevir/Pibrentasvir
Effect of Glecaprevir and Pibrentasvir on the Metabolism of Other Drugs
Effects of Other Drugs on Glecaprevir and Pibrentasvir
3.1.2. Velpatasvir/Sofosbuvir
Effects of Velpatasvir/Sofosbuvir on Other Drugs
Effects of Other Drugs on Velpatasvir/Sofosbuvir
3.1.3. Voxilaprevir
Effects of Voxilaprevir on Other Drugs
Effects of Other Drugs on Voxilaprevir
3.2. Effect of DAAs on Psychotropic Drugs
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | area under the concentration–time curve |
| BCRP | breast cancer resistance protein |
| CYP | cytochrome |
| DAAs | direct-acting antivirals |
| DDI | drug interactions |
| GLE | glecaprevir |
| HCV | chronic hepatitis C virus |
| OATP | organic anion-transporting polypeptide |
| P-gp | P-glycoprotein |
| PIB | pibrentasvir |
| SOF | sofosbuvir |
| SSRIs | selective serotonin reuptake inhibitors |
| UGT | uridine diphosphate |
| VEL | velpatasvir |
| VOX | voxilaprevir |
References
- Halota, W.; Flisiak, R.; Juszczyk, J.; Małkowski, P.; Pawłowska, M.; Simon, K.; Tomasiewicz, K. Recommendations of the Polish Group of Experts for HCV for the treatment of hepatitis C in 2020. Clin. Exp. Hepatol. 2020, 6, 163–169. [Google Scholar] [CrossRef]
- Gutiérrez-Rojas, L.; de la Gándara Martín, J.J.; García Buey, L.; Uriz Otano, J.I.; Mena, Á.; Roncero, C. Patients with severe mental illness and hepatitis C virus infection benefit from new pangenotypic direct-acting antivirals: Results of a literature review. Gastroenterol. Hepatol. 2023, 46, 382–396. [Google Scholar] [CrossRef]
- Roncero, C.; Littlewood, R.; Vega, P.; Martinez-Raga, J.; Torrens, M. Chronic hepatitis C and individuals with a history of injecting drugs in Spain: Population assessment, challenges for successful treatment. Eur. J. Gastroenterol. Hepatol. 2017, 29, 629–633. [Google Scholar] [CrossRef]
- Patel, N.; Nasiri, M.; Koroglu, A.; Bliss, S.; Davis, M.; McNutt, L.A.; Miller, C. A cross-sectional study comparing the frequency of drug interactions after adding simeprevir- or sofosbuvir-containing therapy to medication profiles of hepatitis C monoinfected patients. Infect. Dis. Ther. 2015, 4, 67–78. [Google Scholar] [CrossRef]
- Smolders, E.J.; de Kanter, C.T.; de Knegt, R.J.; van der Valk, M.; Drenth, J.P.; Burger, D.M. Drug-Drug Interactions Between Direct-Acting Antivirals and Psychoactive Medications. Clin. Pharmacokinet. 2016, 55, 1471–1494. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.; Back, D.; Buggisch, P.; Buti, M.; Craxí, A.; Foster, G.; Klinker, H.; Larrey, D.; Nikitin, I.; Pol, S.; et al. Clinical management of drug-drug interactions in HCV therapy: Challenges and solutions. J. Hepatol. 2013, 58, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Back, D.; Else, L. The importance of drug-drug interactions in the DAA era. Dig. Liver Dis. 2013, 45, S343–S348. [Google Scholar] [CrossRef]
- Magro, L.; Moretti, U.; Leone, R. Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert. Opin. Drug Saf. 2012, 11, 83–94. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Preventable Adverse Reactions: A Focus on Drug Interactions. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/preventable-adverse-drug-reactions-focus-drug-interactions/ (accessed on 30 August 2025).
- Roughead, E.E. Multidrug interactions: The current clinical and pharmacovigilance challenge. J. Pharm. Pract. Res. 2015, 45, 138–139. [Google Scholar] [CrossRef]
- Hiemke, C.; Baumann, P.; Bergemann, N.; Conca, A.; Dietmaier, O.; Egberts, K.; Fric, M.; Gerlach, M.; Greiner, C.; Gründer, G.; et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: Update 2011. Pharmacopsychiatry 2011, 44, 195–235. [Google Scholar] [CrossRef]
- König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev. 2013, 65, 944–966. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, C.; Sheehan, N.L. Understanding and preventing drug-drug and drug-gene interactions. Expert. Rev. Clin. Pharmacol. 2014, 7, 533–544. [Google Scholar] [CrossRef]
- Dresser, G.K.; Spence, J.D.; Bailey, D.G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 2000, 38, 41–57. [Google Scholar] [CrossRef]
- Marquez, B.; Van Bambeke, F. ABC multidrug transporters: Target for modulation of drug pharmacokinetics in drug-drug interactions. Curr. Drug Targets 2011, 12, 600–620. [Google Scholar] [CrossRef]
- European Medicines Agency. Summary of Product Characteristics MAVIRET. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/maviret (accessed on 30 August 2025).
- European Medicines Agency. Summary of Product Characteristics EPCLUSA. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/epclusa (accessed on 30 August 2025).
- European Medicines Agency. Summary of Product Characteristics SOVALDI. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/sovaldi (accessed on 30 August 2025).
- European Medicines Agency. Summary of Product Characteristics VOSEVI. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vosevi (accessed on 30 August 2025).
- Chu, X.; Liao, M.; Shen, H.; Yoshida, K.; Zur, A.A.; Arya, V.; Galetin, A.; Giacomini, K.M.; Hanna, I.; Kusuhara, H.; et al. Clinical. Probes and Endogenous Biomarkers as Substrates for Transporter Drug-Drug Interaction Evaluation: Perspectives from the International Transporter Consortium. Clin. Pharmacol. Ther. 2018, 104, 836–864. [Google Scholar] [CrossRef]
- Gabay, M.; Spencer, S.H. Drug Interactions: Scientific and Clinical Principles; PSAP 2021 Book. 3 Chronic Conditions and Public Health; American Psychiatric Publishing, Inc. (APPI): Washington, DC, USA, 2021. [Google Scholar]
- Hong, J.; Wright, R.C.; Partovi, N.; Yoshida, E.M.; Hussaini, T. Review of Clinically Relevant Drug Interactions with Next Generation Hepatitis C Direct-acting Antiviral Agents. J. Clin. Transl. Hepatol. 2020, 8, 322–335. [Google Scholar] [CrossRef]
- Ahmed, A.; Lutchman, G.A.; Kwo, P.Y. Drug-drug interactions in hepatitis C virus treatment: Do they really matter? Clin. Liver Dis. 2017, 10, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Turnes, J.; García-Herola, A.; Morillo-Verdugo, R.; Méndez, M.; Hernández, C.; Sicras-Mainar, A. Impact of potential multiple drug-drug interactions on the adverse event profile of patients with hepatitis C treated with pangenotypic direct-acting antivirals in Spain. Rev. Esp. Sanid. Penit. 2024, 26, 98–112. [Google Scholar] [CrossRef]
- Turnes, J.; Garcia-Herola, A.; Morillo-Verdugo, R.; Mendez, M.; De Alvaro, C.; Hernandez, C.; Sicras-Mainar, A. Use of psychiatric medication and drug interactions in patients with hcv infection treated with pangenotypic direct-acting antivirals. Dig. Liver Dis. 2023, 5, S71. [Google Scholar] [CrossRef]
- Sicras-Mainar, A.; Morillo-Verdugo, R. Potential interactions between pangenotypic direct-acting antivirals and concomitant cardiovascular therapies in patients with chronic hepatitis C virus infection. J. Int. Med. Res. 2020, 48, 1–10. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Available online: https://www.hep-druginteractions.org (accessed on 15 December 2025).
- Brieva, T.; Rivero, A.; Rivero-Juarez, A. Pharmacokinetic drug evaluation of velpatasvir plus sofosbuvir for the treatment of hepatitis C virus infection. Expert. Opin. Drug Metab. Toxicol. 2017, 13, 483–490. [Google Scholar] [CrossRef]
- Greig, S.L. Sofosbuvir/Velpatasvir: A review in chronic hepatitis C. Drugs 2016, 76, 1567–1578. [Google Scholar] [CrossRef]
- Bramness, J.G.; Skurtveit, S.; Mørland, J. Clinical impairment of benzodiazepines—Relation between benzodiazepine concentrations and impairment in apprehended drivers. Drug Alcohol. Depend. 2002, 68, 131–141. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Summary of Product Characteristics Olysio. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/olysio (accessed on 30 August 2025).
- Sockalingam, S.; Tseng, A.; Giguere, P.; Wong, D. Psychiatric treatment considerations with direct acting antivirals in hepatitis C. BMC Gastroenterol. 2013, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Dybowska, D.; Zarębska-Michaluk, D.; Rzymski, P.; Berak, H.; Lorenc, B.; Sitko, M.; Dybowski, M.; Mazur, W.; Tudrujek-Zdunek, M.; Janocha-Litwin, J.; et al. Real-world effectiveness and safety of direct-acting antivirals in hepatitis C virus patients with mental disorders. World J. Gastroenterol. 2023, 29, 4085–4098. [Google Scholar] [CrossRef] [PubMed]
- Dick, T.B.; Lindberg, L.S.; Ramirez, D.D.; Charlton, M.R. A clinician’s guide to drug-drug interactions with direct-acting antiviral agents for the treatment of hepatitis C viral infection. Hepatology 2016, 63, 634–643. [Google Scholar] [CrossRef]
- Food and Drug Administration. Prescribing Information Xanax. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/018276s059lbl.pdf (accessed on 28 December 2025).
- Health Products Regulatory Authority. Summary of Product Characteristics Lexotan. Available online: https://assets.hpra.ie/products/Human/30761/Licence_PA2239-008-001_07052020082419.pdf (accessed on 28 December 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics Librium. Available online: https://www.medicines.org.uk/emc/product/1729/smpc#gref (accessed on 28 December 2025).
- Summary of Product Characteristics Dalpam. Available online: https://www.geneesmiddeleninformatiebank.nl/smpc/h118084_smpc_en.pdf (accessed on 28 December 2021).
- Guo, T.; Mao, G.; Zhao, L.; Xia, D.; Yang, L. Comparative pharmacokinetics of zolpidem tartrate in five ethnic populations of China. Acta Pharm. Sin. B 2014, 4, 146–150. [Google Scholar] [CrossRef]
- Becquemont, L.; Mouajjah, S.; Escaffre, O.; Beaune, P.; Funck-Brentano, C.; Jaillon, P. Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab. Dispos. 1999, 27, 1068–1073. [Google Scholar] [CrossRef]
- Spina, E.; Santoro, V.; D’Arrigo, C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: An update. Clin. Ther. 2008, 30, 1206–1227. [Google Scholar] [CrossRef]
- Food and Drug Administration. Prescribing Information Cymbalta. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/021427s055s057lbl.pdf#page=38 (accessed on 28 December 2025).
- Available online: https://go.drugbank.com/drugs/DB00472 (accessed on 28 December 2025).
- Venkatakrishnan, K.; Obach, R.S. In vitro- in vivo extrapolation of CYP2D6 inactivation by paroxetine: Prediction of nonstationary pharmacokinetics and drug interaction magnitude. Drug Metab. Dispos. 2005, 33, 845–852. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ishizuka, T.; Shimada, N.; Yoshimura, Y.; Kamijima, K.; Chiba, K. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metab. Dispos. 1999, 27, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Störmer, E.; von Moltke, L.L.; Perloff, M.D.; Greenblatt, D.J. P-glycoprotein interactions of nefazodone and trazodone in cell culture. J. Clin. Pharmacol. 2001, 41, 708–714. [Google Scholar] [CrossRef]
- Petrucci, V.; Dragone, P.; Laurenti, M.C.; Oggianu, L.; Zabela, V.; Cattaneo, A. Characterization of trazodone metabolic pathways and species-specific profiles. Front. Pharmacol. 2025, 16, 1636919. [Google Scholar] [CrossRef]
- Available online: https://go.drugbank.com/drugs/DB00285 (accessed on 28 December 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics Efexor XL. Available online: https://www.medicines.org.uk/emc/product/1219/smpc#gref (accessed on 28 December 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics Amitriptyline. Available online: https://www.medicines.org.uk/emc/product/10849/smpc#gref (accessed on 28 December 2025).
- Almasi, A.; Patel, P.; Meza, C.E. Doxepin. StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542306/ (accessed on 16 December 2025).
- Available online: https://www.clinpgx.org/drug/PA449969/summaryAnnotation (accessed on 28 December 2025).
- Koyama, E.; Chiba, K.; Tani, M.; Ishizaki, T. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J. Pharmacol. Exp. Ther. 1996, 278, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Electronic Medicines Compendium. Summary of Product Characteristics Manerix. Available online: https://www.medicines.org.uk/emc/product/10614/smpc#gref (accessed on 28 December 2025).
- Nicolussi, S.; Drewe, J.; Butterweck, V.; Meyer zu Schwabedissen, H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol. 2020, 177, 1212–1226. [Google Scholar] [CrossRef]
- European Medicines Agency. Summary of Product Characteristics Abilify. Available online: https://www.ema.europa.eu/en/documents/product-information/abilify-maintena-epar-product-information_en.pdf (accessed on 28 December 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics Clozaril. Available online: https://www.medicines.org.uk/emc/product/4411/smpc#gref (accessed on 28 December 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics Haloperidol. Available online: https://www.medicines.org.uk/emc/product/100315/smpc#gref (accessed on 28 December 2025).
- European Medicines Agency. Summary of Product Characteristics Latuda. Available online: https://www.ema.europa.eu/en/documents/product-information/latuda-epar-product-information_en.pdf (accessed on 28 December 2025).
- European Medicines Agency. Summary of Product Characteristics Zyprexa. Available online: https://www.ema.europa.eu/en/documents/product-information/zyprexa-epar-product-information_en.pdf (accessed on 28 December 2025).
- European Medicines Agency. Summary of Product Characteristics Xeplion. Available online: https://www.ema.europa.eu/en/documents/product-information/xeplion-epar-product-information_en.pdf (accessed on 28 December 2025).
- European Medicines Agency. Summary of Product Characteristics Seroquel. Available online: https://www.ema.europa.eu/en/documents/referral/seroquel-seroquel-xr-and-associated-names-article-30-referral-annex-iii_en.pdf (accessed on 28 December 2025).
- European Medicines Agency. Summary of Product Characteristics Okedi. Available online: https://www.ema.europa.eu/en/documents/product-information/okedi-epar-product-information_en.pdf (accessed on 28 December 2025).
- Centers for Disease Control and Prevention. Global Viral Hepatitis. Available online: https://www.cdc.gov/hepatitis/global/?CDC_AAref_Val (accessed on 30 August 2025).
- Davoodi, L.; Masoum, B.; Moosazadeh, M.; Jafarpour, H.; Haghshenas, M.R.; Mousavi, T. Psychiatric side effects of pegylated interferon-α and ribavirin therapy in Iranian patients with chronic hepatitis C: A meta-analysis. Exp. Ther. Med. 2018, 16, 971–978. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, E.A.; Adams, J.L.; Kramer, J.; Sahota, A.K.; Silverberg, M.J.; Shenkman, E.; Nelson, D.R. Assessing the Safety of Direct Acting Antiviral Agents for Hepatitis C. JAMA Netw. Open 2019, 2, E194765. [Google Scholar] [CrossRef]
- Lauffenburger, J.C.; Mayer, C.L.; Hawke, R.L.; Brouwer, K.L.; Fried, M.W.; Farley, J.F. Medication use and medical comorbidity in patients with chronic hepatitis C from a US commercial claims database: High utilization of drugs with interaction potential. Eur. J. Gastroenterol. Hepatol. 2014, 26, 1073–1082. [Google Scholar] [CrossRef]
- Langness, J.A.; Nguyen, M.; Wieland, A.; Everson, G.T.; Kiser, J.J. Optimizing hepatitis C virus treatment through pharmacist interventions: Identification and management of drug-drug interactions. World J. Gastroenterol. 2017, 23, 1618–1626. [Google Scholar] [CrossRef]

| Drug [References] | Route of Metabolism | Potential Interactions with DAA | Comments | ||||
|---|---|---|---|---|---|---|---|
| GLE | PIB | VOX | VEL | SOF | |||
| Benzodiazepines | |||||||
| Alprazolam [28,36] | Substrate CYP3A4 | - | - | - | - | - | No interaction expected. GLE/PIB is a weak inhibitor of CYP3A4 and is unlikely to affect the exposure of alprazolam. |
| Bromazepam [28,37] | Substrate CYP1A2, CYP2D6 | - | - | - | - | - | No interaction expected. |
| Chlordiazepoxide [28,38] | Substrate CYP3A4 | - | - | - | - | - | No interaction expected. |
| Diazepam [28,39] | Substrate CYP3A4, CYP2C19 | - | - | - | - | - | No interaction expected. GLE/PIB is a weak inhibitor of CYP3A4 and is unlikely to affect the exposure of diazepam. |
| Lorazepam [5,28] | Substrate multiple UGTs | - | - | - | - | - | No interaction expected. |
| Midazolam [16,28] | Substrate CYP3A4, CYP2B6 | - | - | - | - | - | Co-administration with GLE/PIB increased midazolam exposure, but it is not clinically significant, and dose adjustment is not required. |
| Oxazepam [28] | Substrate UGT | - | - | - | - | - | No interaction expected. |
| Zolpidem [28,40] | Substrate CYP3A4, CYP1A2, CYP2C19 | - | - | - | - | - | No interaction expected. |
| Zopiclone [28,41] | Substrate CYP3A4, CYP2C8 | - | - | - | - | - | No interaction expected. |
| SSRIs | |||||||
| Citalopram [28,42] | Substrate CYP3A4, CYP2C19, CYP2D6 Inhibitor weak: CYP2D6, CYP2C19, CYP1A2, CYP2B6 | - | - | - | - | - | No interaction expected. |
| Duloxetine [28,43] | Substrate CYP1A2, CYP2D6, Inhibitor moderate: CYP2D6 | - | - | - | - | - | No interaction expected. |
| Escitalopram [28,42] | Substrate CYP3A4, CYP2C19, Inhibitor weak: CYP2D6 | - | - | - | - | - | No interaction expected. |
| Fluoxetine [28,44] | Substrate CYP2C9, CYP2D6 Inhibitor: Strong: CYP2D6, moderate: CYP2C19, Weak: CYP1A2, CYP2B6, CYP2C9 | - | - | - | - | - | No interaction expected. |
| Paroxetine [28,45] | Substrate CYP2D6 Inhibitor strong: CYP2D6, moderate: CYP2B6, weak: CYP2C19, CYP2C9, CYP1A2 | - | - | - | - | - | No interaction expected. |
| Sertraline [28,46] | Substrate CYP2C19, CYP3A4, CYP2B6, CYP2D6, CYP2C9 Inhibitor moderate: CYP2B6, CYP2C19, CYP2D6, weak: CYP1A2, CYP2C8, CYP2C9 | - | - | - | - | - | No interaction expected. |
| Trazodone [28,47,48] | Substrate CYP3A4 Inducer: P-gp | - | - | - | - | - | No interaction expected. |
| Venlafaxine [28,49,50] | Substrate CYP2D6, CYP3A4 Inhibitor weak: CYP2B6, CYP2D6, CYP3A4 | - | - | - | - | - | No interaction expected. |
| Tricyclic antidepressants | |||||||
| Amitriptyline [28,51] | Substrate CYP2D6, CYP2C19, P-gp Inhibitor weak: CYP1A2, CYP2C19, CYP2C9, CYP2D6 CYP2E1 | - | - | - | - | - | No interaction expected. |
| Doxepin [28,52] | Substrate CYP2D6, CYP2C19, CYP1A2, CYP2C9 | - | - | - | - | - | No interaction expected |
| Imipramine [5,28,53] | Substrate CYP2C19, CYP2D6, CYP1A2, CYP3A4 Inhibitor moderate: CYP2D6, weak: CYP1A2, CYP2C19, CYP2E1 | - | - | - | - | - | No interaction expected. |
| Other antidepressants | |||||||
| Mianserin [28,54] | Substrate CYP2D6, CYP1A2, CYP3A4 | - | - | - | - | - | Potential weak interaction with GLE/PIB. |
| Mirtazapine [5,28] | Substrate CYP1A2, CYP2D6, CYP3A4, CYP2C9 Inhibitor weak: CYP1A2 | - | - | - | - | - | No interaction expected. |
| Moclobemide [5,28,55] | Substrate CYP2C19, CYP2D6 Inhibitor moderate: CYP2C19, weak: CYP1A2, CYP2D6 | - | - | - | - | - | No interaction expected. |
| St John’s wort [28,56] | Inducer: CYP3A4, P-gp, CYP2B6, CYP2C8, CYP3A4, CYP1A2 | ↓ | ↓ | ↓ | ↓ | ↓ | Do not coadminister. Co-administration with pangenotypic DAA may be considered if the total daily hyperforin dose is less than 1 mg. |
| Antipsychotics | |||||||
| Aripiprazole [28,57] | Substrate CYP2D6, CYP3A4 | - | - | - | - | - | Potential interaction with GLE/PIB. Aripiprazole has a narrow therapeutic index—monitor patients closely for signs and symptoms of toxicity when administered with GLE/PIB. |
| Clozapine [28,58] | Substrate CYP1A2, CYP3A4, CYP2C19, CYP2D6. | - | - | - | - | - | Potential interaction with GLE/PIB. A clinically significant interaction is unlikely. Close monitoring is recommended when administered with GLE/PIB. |
| Haloperidol [5,28,59] | Substrate CYP2D6, CYP3A4, UGT Inhibitor moderate: CYP2D6 | - | - | - | - | - | No interaction expected. |
| Lurasidone [28,60] | Substrate CYP3A4, BCRP, P-gp Inhibitor weak: CYP3A4 | - | - | - | - | - | Potential weak interaction with GLE/PIB. Exposure to Lurasidone may increase with GLE/PIB. No prior Lurasidone dose change is recommended. |
| Olanzapine [28,61] | Substrate CYP1A2, CYP2D6, | - | - | - | - | - | No interaction expected. |
| Paliperidone [28,62] | Substrate P-gp | - | - | - | - | - | Potential interaction with GLE/PIB, VOX, and VEL. A concentration of paliperidone may increase when administered with GLE/PIB, VOX, and VEL. A prior paliperidone dose change is not required. Close monitoring for side effects is recommended. |
| Quetiapine [28,63] | Substrate CYP3A4, CYP2D6 | - | - | - | - | - | Potential interaction with GLE/PIB. Caution is advised when using higher doses of quetiapine (over 400 mg/day) with GLE/PIB. |
| Risperidone [28,64] | Substrate CYP2D6, CYP3A4, P-gp | - | - | - | - | - | Potential weak interaction with pangenotypic DAA. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dybowska, D.; Pawłowska, M.; Kozielewicz, D. Potential Drug Interactions in Psychiatric Patients Undergoing Pangenotypic Therapy for Hepatitis C Virus Infection. Pharmaceuticals 2026, 19, 87. https://doi.org/10.3390/ph19010087
Dybowska D, Pawłowska M, Kozielewicz D. Potential Drug Interactions in Psychiatric Patients Undergoing Pangenotypic Therapy for Hepatitis C Virus Infection. Pharmaceuticals. 2026; 19(1):87. https://doi.org/10.3390/ph19010087
Chicago/Turabian StyleDybowska, Dorota, Małgorzata Pawłowska, and Dorota Kozielewicz. 2026. "Potential Drug Interactions in Psychiatric Patients Undergoing Pangenotypic Therapy for Hepatitis C Virus Infection" Pharmaceuticals 19, no. 1: 87. https://doi.org/10.3390/ph19010087
APA StyleDybowska, D., Pawłowska, M., & Kozielewicz, D. (2026). Potential Drug Interactions in Psychiatric Patients Undergoing Pangenotypic Therapy for Hepatitis C Virus Infection. Pharmaceuticals, 19(1), 87. https://doi.org/10.3390/ph19010087

