Hybrid Cooperative Complexes of Low- and High-Molecular-Weight Hyaluronic Acid in Aesthetic Medicine
Abstract
1. Introduction
2. Hyaluronic Acid in Aesthetic Medicine
2.1. Biological Role and Molecular Weight-Dependent Effects
2.2. Conventional HA Fillers and Skin Boosters: Limitations
3. Hybrid Cooperative Complexes (HCCs) of Low- and High-Molecular-Weight Hyaluronic Acid
3.1. Rationale and Technology
3.2. Rheological Properties
4. Nonclinical Evidence—In Vitro and Animal Studies
5. Clinical Evidence
5.1. Facial and Neck Rejuvenation
5.1.1. Facial Rejuvenation
5.1.2. Neck Rejuvenation
5.2. Body Applications
5.3. Acne Scars and Other Indications
5.3.1. Ane Scars
5.3.2. Other Skin Conditions
5.4. Subject Satisfaction
6. Safety and Tolerability
- at the maximum projection of the zygomatic arch, minimum 2 cm from the lateral canthus of the eye;
- 1.5 cm anterior to the inferior margin of tragus;
- 1.5 cm above the mandibular angle;
- 1.5 cm toward the labial commissure from the intersection point between a vertical line in the middle of the chin and a perpendicular line drawn at a third of that line;
7. Limitations of the Available Evidence
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D | Three-Dimensional |
| AQP3 | Aquaporin 3 |
| BAP | Bio-Aesthetic Points |
| BTH | Bovine Testicular Hyaluronidase |
| CUPRAC | Cupric Reducing Antioxidant Capacity |
| FRAP | Ferric Reducing Antioxidant Power |
| FVLS | Facial Volume Loss Scale |
| GAIS | Global Aesthetic Improvement Scale |
| HA | Hyaluronic Acid |
| HBD-2 | Human Beta-Defensin 2 |
| HCC | Hybrid Cooperative Complex (of Low- and High-Molecular-Weight Hyaluronic Acid) |
| H-HA | High-Molecular Weight Hyaluronic Acid |
| IL | Interleukin |
| kDa | kiloDalton |
| L-HA | Low-Molecular-Weight Hyaluronic Acid |
| MMP | Matrix Metalloproteinase |
| MW | Molecular Weight |
| ORAC | Oxygen Radical Absorbance Capacity |
| RHAMM | Receptors For Hyaluronan-Mediated Motility |
| ROS | Reactive Oxygen Species |
| TEWL | Transepidermal Water Loss |
| TGF-β1 | Transforming Growth Factor Beta 1 |
| TLR | Toll-Like Receptors |
| TNF-α | Tumor Necrosis Factor-Alpha |
| TSASRT | Triple-Step Acne Scar Revision Technique |
| VAS | Visual Analogue Scale |
| WSRS | Wrinkle Severity Rating Scale |
References
- Akhdar, M.; Ehsani, A.; Ehsani, A.; Balighi, K.; Nourmohammadpour, P.; Koohian Mohammadabadi, M.; Fahs, A.; Diab, R.; Rostami, A.; Rahimnia, A. Enhancing fat grafting: Does the addition of hyaluronan hybrid cooperative complexes (Profhilo®) improve long-term volumetric durability in cheek augmentation? Iran. J. Dermatol. 2025, 28, 96–103. [Google Scholar]
- Chaudhry, M. First Reported Use of aiva® Re-Verse, a Novel Combination Injection Protocol for Facial Rejuvenation: A Report of Three Cases. Cureus 2025, 17, e89664. [Google Scholar] [CrossRef]
- Jeong, K.H.; Gwak, M.J.; Moon, S.K.; Lee, S.J.; Shin, M.K. Efficacy and durability of hyaluronic acid fillers for malar enhancement: A prospective, randomized, split-face clinical controlled trial. J. Cosmet. Laser Ther. 2018, 20, 184–188. [Google Scholar]
- Albargawi, S. Synthetic Dermal Fillers in Treating Acne Scars: A Comparative Systematic Review. J. Cosmet. Dermatol. 2025, 24, e16752. [Google Scholar] [CrossRef]
- Guo, J.; Fang, W.; Wang, F. Injectable fillers: Current status, physicochemical properties, function mechanism, and perspectives. RSC Adv. 2023, 13, 23841–23858. [Google Scholar] [CrossRef]
- Agolli, E.; Diffidenti, B.; Di Zitti, N.; Massidda, E.; Patella, F.; Santerini, C.; Beatini, A.; Bianchini, M.; Bizzarri, S.; Camilleri, V.; et al. Hybrid cooperative complexes of high and low molecular weight hyaluronans (Profhilo®): Review of the literature and presentation of the VisionHA project. Esperienze Dermatol. 2018, 20, 5–14. [Google Scholar] [CrossRef]
- Cassuto, D.; Bellia, G.; Schiraldi, C. An Overview of Soft Tissue Fillers for Cosmetic Dermatology: From Filling to Regenerative Medicine. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1857–1866. [Google Scholar] [CrossRef]
- El Hawa, M.; Shahla, W.A.; Fares, C.; Saade, D. Non-Facial Skin Rejuvenation of the Neck, Chest, and Hands. Part One: Using Injections. J. Cosmet. Dermatol. 2025, 24, e16624. [Google Scholar] [CrossRef]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Fakih-Gomez, N.; Kadouch, J. Combining Calcium Hydroxylapatite and Hyaluronic Acid Fillers for Aesthetic Indications: Efficacy of an Innovative Hybrid Filler. Aesthetic Plast. Surg. 2022, 46, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Fakih-Gomez, N.; Kadouch, J.; Felice, F.; Haykal, D.; Munoz-Gonzalez, C. The Hybrid Filler Technique: A 5-Year Retrospective Analysis. Aesthetic Plast. Surg. 2025, 49, 618–626. [Google Scholar] [CrossRef]
- Fisher, S.M.; Borab, Z.; Weir, D.; Rohrich, R.J. The emerging role of biostimulators as an adjunct in facial rejuvenation: A systematic review. J. Plast. Reconstr. Aesthet. Surg. 2024, 92, 118–129. [Google Scholar] [CrossRef]
- Mecani, R.; Amiri, M.; Kadouch, J.; Sajic, D.; Lin, F.; Cheung, J.; Barrera, D.; Haroon, O.; Sil-Zavaleta, S.; Chao, Y.; et al. Combined and Hybrid Treatments of Hyaluronic Acid (HA) and Calcium Hydroxylapatite (CaHA): A Systematic Review of Mechanisms of Action, Aesthetic Effectiveness, Satisfaction, and Safety Profile. Aesthetic Plast. Surg. 2025, 49, 5292–5313. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Dodou, K. Current Knowledge and Regulatory Framework on the Use of Hyaluronic Acid for Aesthetic Injectable Skin Rejuvenation Treatments. Cosmetics 2024, 11, 54. [Google Scholar] [CrossRef]
- Herrmann, J.L.; Hoffmann, R.K.; Ward, C.E.; Schulman, J.M.; Grekin, R.C. Biochemistry, Physiology, and Tissue Interactions of Contemporary Biodegradable Injectable Dermal Fillers. Dermatol. Surg. 2018, 44, S19–S31. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Verdier-Sevrain, S.; Bonte, F. Skin hydration: A review on its molecular mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82. [Google Scholar] [CrossRef]
- Waggett, S.; Lyles, E.; Schlesinger, T. Update on Low-Molecular Weight Hyaluronic Acid in Dermatology: A Scoping Review. EMJ Dermatol. 2024, 12, 134–146. [Google Scholar] [CrossRef]
- Wang, S.T.; Neo, B.H.; Betts, R.J. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1227–1246. [Google Scholar] [CrossRef]
- Balazs, E.A.; Laurent, T.C.; Jeanloz, R.W. Nomenclature of hyaluronic acid. Biochem. J. 1986, 235, 903. [Google Scholar] [CrossRef]
- Bee Lan, L.; Kah Woon, L.; Tuck Wah, S.; Weni, M.; Sheau Jye, T.; Ain Abdullah, N.; Tanzini, L.; Cigni, C.; Grimolizzi, F.; Bellia, G. Patient Satisfaction Using Hybrid Cooperative Complexes of Hyaluronic Acid for Neck Laxity: A Survey of Asian Populations. Plast. Aesthetic Nurs. (Phila) 2025, 45, 163–172. [Google Scholar] [CrossRef]
- Stern, R.; Maibach, H.I. Hyaluronan in skin: Aspects of aging and its pharmacologic modulation. Clin. Dermatol. 2008, 26, 106–122. [Google Scholar] [CrossRef]
- Stellavato, A.; Corsuto, L.; D’Agostino, A.; La Gatta, A.; Diana, P.; Bernini, P.; De Rosa, M.; Schiraldi, C. Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation. PLoS ONE 2016, 11, e0163510. [Google Scholar] [CrossRef] [PubMed]
- Rahman, E.; Rao, P.; Sayed, K.; Garcia, P.E.; Ioannidis, S.; Yu, N.; Sadeghi-Esfahlani, S.; Nassif, A.D.; Webb, W.R.; Rahman, Z.; et al. Decades of Scientific Data and Global Media Reporting on Complications in Non-surgical Aesthetic Treatments for a Transparent Safety Profile: Kissing Snow White Awake. Aesthetic Plast. Surg. 2025, 49, 5567–5603. [Google Scholar] [CrossRef] [PubMed]
- Meyer, L.J.; Stern, R. Age-dependent changes of hyaluronan in human skin. J. Invest. Dermatol. 1994, 102, 385–389. [Google Scholar] [CrossRef]
- Tzellos, T.G.; Klagas, I.; Vahtsevanos, K.; Triaridis, S.; Printza, A.; Kyrgidis, A.; Karakiulakis, G.; Zouboulis, C.C.; Papakonstantinou, E. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp. Dermatol. 2009, 18, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Sparavigna, A.; Tenconi, B. Efficacy and tolerance of an injectable medical device containing stable hybrid cooperative complexes of high- and low-molecular-weight hyaluronic acid: A monocentric 16 weeks open-label evaluation. Clin. Cosmet. Investig. Dermatol. 2016, 9, 297–305. [Google Scholar] [CrossRef]
- Donejko, M.; Przylipiak, A.; Rysiak, E.; Miltyk, W.; Galicka, E.; Przylipiak, J.; Zareba, I.; Surazynski, A. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts. Drug Des. Devel Ther. 2015, 9, 6225–6233. [Google Scholar]
- Keen, M.A. Hyaluronic Acid in Dermatology. Skinmed 2017, 15, 441–448. [Google Scholar]
- Triggs-Raine, B.; Natowicz, M.R. Biology of hyaluronan: Insights from genetic disorders of hyaluronan metabolism. World J. Biol. Chem. 2015, 6, 110–120. [Google Scholar] [CrossRef]
- Valachova, K.; Soltes, L. Hyaluronan as a Prominent Biomolecule with Numerous Applications in Medicine. Int. J. Mol. Sci. 2021, 22, 7077. [Google Scholar] [CrossRef]
- Salathia, S.; Gigliobianco, M.R.; Casadidio, C.; Di Martino, P.; Censi, R. Hyaluronic Acid-Based Nanosystems for CD44 Mediated Anti-Inflammatory and Antinociceptive Activity. Int. J. Mol. Sci. 2023, 24, 7286. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, A.; Stellavato, A.; Busico, T.; Papa, A.; Tirino, V.; Papaccio, G.; La Gatta, A.; De Rosa, M.; Schiraldi, C. In vitro analysis of the effects on wound healing of high- and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes. BMC Cell Biol. 2015, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Margara, A.; Siquier-Dameto, G.; Dell’Avanzato, R.; Cigni, C.; Grimolizzi, F.; Bellia, G. Body Skin Laxity Treatment Using Hybrid Cooperative Complexes of Hyaluronans: A Real-World Data Evaluation of Patient-Reported Satisfaction. Ann. Case Rep. 2024, 9, 7. [Google Scholar]
- Wang, F.; Garza, L.A.; Kang, S.; Varani, J.; Orringer, J.S.; Fisher, G.J.; Voorhees, J.J. In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Arch. Dermatol. 2007, 143, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Bezpalko, L.; Filipskiy, A. Clinical and Ultrasound Evaluation of Skin Quality After Subdermal Injection of Two Non-Crosslinked Hyaluronic Acid-Based Fillers. Clin. Cosmet. Investig. Dermatol. 2023, 16, 2175–2183. [Google Scholar] [CrossRef]
- Stellavato, A.; La Noce, M.; Corsuto, L.; Pirozzi, A.V.A.; De Rosa, M.; Papaccio, G.; Schiraldi, C.; Tirino, V. Hybrid Complexes of High and Low Molecular Weight Hyaluronans Highly Enhance HASCs Differentiation: Implication for Facial Bioremodelling. Cell Physiol. Biochem. 2017, 44, 1078–1092. [Google Scholar] [CrossRef]
- Fanian, F.; Jeudy, A.; Lihoreau, T.; Moisenier, S.; Delobel, P.; Meunier, S.; Humbert, P. In-vivo injection of oligonutrients and high molecular weight hyaluronic acid—Results of a randomized controlled trial. Aesthetic Med. 2017, 3, 23–34. [Google Scholar]
- Stern, R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004, 83, 317–325. [Google Scholar] [CrossRef]
- Naor, D. Editorial: Interaction Between Hyaluronic Acid and Its Receptors (CD44, RHAMM) Regulates the Activity of Inflammation and Cancer. Front. Immunol. 2016, 7, 39. [Google Scholar] [CrossRef]
- Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78–88. [Google Scholar]
- Vinshtok, Y.; Cassuto, D. Biochemical and physical actions of hyaluronic acid delivered by intradermal jet injection route. J. Cosmet. Dermatol. 2020, 19, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014, 10, 1558–1570. [Google Scholar] [CrossRef]
- Vigetti, D.; Karousou, E.; Viola, M.; Deleonibus, S.; De Luca, G.; Passi, A. Hyaluronan: Biosynthesis and signaling. Biochim. Biophys. Acta 2014, 1840, 2452–2459. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Kim, Y.K.; Jung, J.Y.; Shin, J.E.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Intrinsic aging- and photoaging-dependent level changes of glycosaminoglycans and their correlation with water content in human skin. J. Dermatol. Sci. 2011, 62, 192–201. [Google Scholar] [CrossRef]
- Akerman, L.; Mimouni, D.; Nosrati, A.; Hilewitz, D.; Solomon-Cohen, E. A Combination of Non-ablative Laser and Hyaluronic Acid Injectable for Postacne Scars: A Novel Treatment Protocol. J. Clin. Aesthet. Dermatol. 2022, 15, 53–56. [Google Scholar]
- Bellas, E.; Seiberg, M.; Garlick, J.; Kaplan, D.L. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol. Biosci. 2012, 12, 1627–1636. [Google Scholar] [CrossRef]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef]
- Artzi, O.; Cohen, S.; Koren, A.; Niv, R.; Friedman, O. Dual-plane hyaluronic acid treatment for atrophic acne scars. J. Cosmet. Dermatol. 2020, 19, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Sparavigna, A.; Grimolizzi, F.; Cigni, C.; Lualdi, R.; Bellia, G. Dual-Plane Treatment With Highly Concentrated Hybrid Cooperative Complexes of Hyaluronans for Facial Atrophic Acne Scars. Dermatol. Surg. 2025, 51, 152–156. [Google Scholar] [CrossRef]
- Dastgheib, M.; Heidari, S.; Azizipour, A.; Kavyani, M.; Lajevardi, V.; Ehsani, A.H.; Teimourpour, A.; Daneshpazhooh, M.; Kashani, M.N.; Balighi, K. Investigating the impact of added Profhilo mesogel to subcision versus subcision monotherapy in treating acne scars; a single-blinded, split-face randomized trial. J. Cosmet. Dermatol. 2024, 23, 1992–2000. [Google Scholar] [CrossRef]
- Hiramoto, K.; Kobayashi, H.; Yamate, Y.; Ishii, M.; Sato, E.F. Intercellular pathway through hyaluronic acid in UVB-induced inflammation. Exp. Dermatol. 2012, 21, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Beasley, K.L.; Weiss, M.A.; Weiss, R.A. Hyaluronic acid fillers: A comprehensive review. Facial Plast. Surg. 2009, 25, 86–94. [Google Scholar] [CrossRef]
- Brandt, F.S.; Cazzaniga, A. Hyaluronic acid fillers: Restylane and Perlane. Facial Plast. Surg. Clin. North. Am. 2007, 15, 63–76. [Google Scholar] [CrossRef]
- Verpaele, A.; Strand, A. Restylane SubQ, a non-animal stabilized hyaluronic acid gel for soft tissue augmentation of the mid- and lower face. Aesthet. Surg. J. 2006, 26, S10–S17. [Google Scholar] [CrossRef]
- Boen, M.; Jacob, C. A Review and Update of Treatment Options Using the Acne Scar Classification System. Dermatol. Surg. 2019, 45, 411–422. [Google Scholar] [CrossRef]
- Sudha, P.N.; Rose, M.H. Beneficial effects of hyaluronic acid. Adv. Food Nutr. Res. 2014, 72, 137–176. [Google Scholar] [PubMed]
- Sparavigna, A.; Bombelli, L.; Giori, A.M.; Bellia, G. Efficacy and Tolerability of Hybrid Complexes of High- and Low-Molecular-Weight Hyaluronan Intradermal Injections for the Treatment of Skin Roughness and Laxity of the Neck. Sci. World J. 2022, 2022, 4497176. [Google Scholar] [CrossRef]
- Gilbert, E.; Hui, A.; Meehan, S.; Waldorf, H.A. The basic science of dermal fillers: Past and present Part II: Adverse effects. J. Drugs Dermatol. 2012, 11, 1069–1077. [Google Scholar] [PubMed]
- Kontis, T.C. Contemporary review of injectable facial fillers. JAMA Facial Plast. Surg. 2013, 15, 58–64. [Google Scholar] [CrossRef]
- Fagien, S.; Bertucci, V.; von Grote, E.; Mashburn, J.H. Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast. Reconstr. Surg. 2019, 143, 707e–720e. [Google Scholar] [CrossRef] [PubMed]
- Humzah, D.; Molina, B.; Salti, G.; Cigni, C.; Bellia, G.; Grimolizzi, F. Intradermal Injection of Hybrid Complexes of High- and Low-Molecular-Weight Hyaluronan: Where Do We Stand and Where Are We Headed in Regenerative Medicine? Int. J. Mol. Sci. 2024, 25, 3216. [Google Scholar] [CrossRef] [PubMed]
- Tezel, A.; Fredrickson, G.H. The science of hyaluronic acid dermal fillers. J. Cosmet. Laser Ther. 2008, 10, 35–42. [Google Scholar] [CrossRef]
- Paliwal, S.; Fagien, S.; Sun, X.; Holt, T.; Kim, T.; Hee, C.K.; Van Epps, D.; Messina, D.J. Skin extracellular matrix stimulation following injection of a hyaluronic acid-based dermal filler in a rat model. Plast. Reconstr. Surg. 2014, 134, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Satardinova, E. Hybrid cooperative complexes of high and low molecular weight hyaluronans for facial skin rejuvenation in the Oriental mongoloid face: A case series. Aesthetic Med. 2019, 5, 14–19. [Google Scholar]
- Tammi, R.; Agren, U.M.; Tuhkanen, A.L.; Tammi, M. Hyaluronan metabolism in skin. Prog. Histochem. Cytochem. 1994, 29, 1–81. [Google Scholar] [CrossRef]
- Alessandrini, A.; Di Bartolo, C.; Pavesio, A.; Pressato, D. ACP gel: A new hyaluronic acid-based injectable for facial rejuvenation. Preclinical data in a rabbit model. Plast. Reconstr. Surg. 2006, 118, 341–346. [Google Scholar] [CrossRef]
- Williams, S.; Tamburic, S.; Stensvik, H.; Weber, M. Changes in skin physiology and clinical appearance after microdroplet placement of hyaluronic acid in aging hands. J. Cosmet. Dermatol. 2009, 8, 216–225. [Google Scholar] [CrossRef]
- Andre, P. New trends in face rejuvenation by hyaluronic acid injections. J. Cosmet. Dermatol. 2008, 7, 251–258. [Google Scholar] [CrossRef]
- Micheels, P.; Besse, S.; Vandeputte, J. Cohesive Polydensified Matrix® cross-linked hyaluronic acid volumizing gel: A magnetic resonance imaging and computed tomography study. Clin. Cosmet. Investig. Dermatol. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Rivkin, A.Z. Volume correction in the aging hand: Role of dermal fillers. Clin. Cosmet. Investig. Dermatol. 2016, 9, 225–232. [Google Scholar] [CrossRef]
- Mehrabi, J.; Shehadeh, W.; Gallo, E.S.; Artzi, O.; Horovitz, T. Comparison of 2 Hyaluronic Acid-based Fillers for the Treatment of Acne Scars: Structural Lifting Versus Biostimulatory Effect. Dermatol. Surg. 2023, 49, 581–586. [Google Scholar] [CrossRef]
- Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [Google Scholar] [CrossRef]
- Hong, G.W.; Wan, J.; Park, Y.; Yoo, J.; Cartier, H.; Garson, S.; Haykal, D.; Yi, K.H. Manufacturing Process of Hyaluronic Acid Dermal Fillers. Polymers 2024, 16, 2739. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Choi, T.H.; Chung, J.H.; Jeon, Y.K.; Kim, S. Hyaluronic acid-cross-linked filler stimulates collagen type 1 and elastic fiber synthesis in skin through the TGF-beta/Smad signaling pathway in a nude mouse model. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 1355–1362. [Google Scholar] [CrossRef]
- Warwar Damouny, C.; Martin, P.; Vasilyev, G.; Vilensky, R.; Fadul, R.; Redenski, I.; Srouji, S.; Zussman, E. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022, 23, 3222–3234. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Liao, M.; Wang, Y.; Lu, J.R. Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications. Gels 2025, 11, 420. [Google Scholar] [CrossRef]
- Protsak, I.S.; Morozov, Y.M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, G.; Wang, L.; Yang, Q.; Liao, F.; Yang, X.; Xiao, B.; Duan, L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024, 16, 430. [Google Scholar] [CrossRef]
- Deng, S.; Li, X.; Yang, W.; He, K.; Ye, X. Injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels for drug release. J. Biomater. Sci. Polym. Ed. 2018, 29, 1643–1655. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Cai, Z.; Li, Z.; Zhang, Q.; Zhang, S.; Deng, L.; Lu, L.; Li, L.; Zhou, C. Synthesis of in-situ formable hydrogels with collagen and hyaluronan through facile Michael addition. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1035–1043. [Google Scholar] [CrossRef]
- Beatini, A.; Schiraldi, C.; Sparavigna, A. Hyaluronic acid hybrid cooperative complexes and the BAP (Bio Aesthetic Points) technique: The new edge in biorejuvenation. Aesthetic Med. 2016, 2, 45–51. [Google Scholar]
- Laurino, C.; Palmieri, B.; Coacci, A. Efficacy, Safety, and Tolerance of a New Injection Technique for High- and Low-Molecular-Weight Hyaluronic Acid Hybrid Complexes. Eplasty 2015, 15, e46. [Google Scholar]
- Cassuto, D.; Delledonne, M.; Zaccaria, G.; Illiano, I.; Giori, A.M.; Bellia, G. Safety Assessment of High- and Low-Molecular-Weight Hyaluronans (Profhilo®) as Derived from Worldwide Postmarketing Data. Biomed. Res. Int. 2020, 2020, 8159047. [Google Scholar] [CrossRef]
- De Rosa, M.; D’Agostino, A.; La Gatta, A.; Schiraldi, C. Hybrid Cooperative Complexes of Hyaluronic Acid. WO Patent WO/2012/032,151, 15 March 2012. Available online: https://patents.google.com/patent/WO2012032151A2/en (accessed on 15 November 2025).
- Profhilo®. What is Profhilo. Available online: https://profhilo.com.hk/what-is-profhilo (accessed on 15 November 2025).
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef]
- Dong, Q.; Guo, X.; Li, L.; Yu, C.; Nie, L.; Tian, W.; Zhang, H.; Huang, S.; Zang, H. Understanding hyaluronic acid induced variation of water structure by near-infrared spectroscopy. Sci. Rep. 2020, 10, 1387. [Google Scholar] [CrossRef]
- Giubertoni, G.; Koenderink, G.H.; Bakker, H.J. Direct Observation of Intrachain Hydrogen Bonds in Aqueous Hyaluronan. J. Phys. Chem. A 2019, 123, 8220–8225. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, A.; Maritato, R.; La Gatta, A.; Fusco, A.; Reale, S.; Stellavato, A.; Pirozzi, A.V.A.; De Rosa, M.; Donnarumma, G.; Schiraldi, C. In Vitro Evaluation of Novel Hybrid Cooperative Complexes in a Wound Healing Model: A Step Toward Improved Bioreparation. Int. J. Mol. Sci. 2019, 20, 4727. [Google Scholar] [CrossRef] [PubMed]
- Abuyousif, H.S.; Porcello, A.; Cerrano, M.; Marques, C.; Scaletta, C.; Lourenco, K.; Abdel-Sayed, P.; Chemali, M.; Raffoul, W.; Hirt-Burri, N.; et al. In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment. Polymers 2025, 17, 638. [Google Scholar] [CrossRef]
- Sparavigna, A.; Cicerone, M.; Giori, A.M.; Bellia, G. Long Term Efficacy and Tolerance of High-And Low-Molecular-Weight Hyaluronans (Profhilo) Intradermal Injections. J. Plas Pathol. Dermatol. 2022, 18, 185–191. [Google Scholar]
- Profhilo®. Patient Information Leaflet. Available online: https://www.ibsaderma.com/it/profhilo_system.htm (accessed on 15 November 2025).
- Forte, R.; Salti, G.; Tateo, A. Profhilo® Structura, Current Status and Future Perspectives: A Practical Review. Plast. Aesthetic Nurs. 2024, 44, 213–219. [Google Scholar] [CrossRef]
- Sparavigna, A.; Grimolizzi, F.; Cigni, C.; Lualdi, R.; Bellia, G. Profhilo Body® for Tackling Skin Roughness and Laxity of Inner Arm, Abdomen and Knees. J. Plast. Pathol. Dermatol. 2023, 19, 31–38. [Google Scholar]
- Kruglikov, I.L.; Scherer, P.E. General theory of skin reinforcement. PLoS ONE 2017, 12, e0182865. [Google Scholar] [CrossRef]
- Wollina, U.; Wetzker, R.; Abdel-Naser, M.B.; Kruglikov, I.L. Role of adipose tissue in facial aging. Clin. Interv. Aging 2017, 12, 2069–2076. [Google Scholar] [CrossRef]
- Sparavigna, A.; Grimolizzi, F.; Cigni, C.; Lualdi, R.; Bellia, G. Efficacy and tolerability of Profhilo® Structura intended to restore lateral cheek fat compartment: An observational pilot study. Health Sci. Rep. 2024, 7, e1743. [Google Scholar] [CrossRef] [PubMed]
- Cassuto, D.; Cigni, C.; Bellia, G.; Schiraldi, C. Restoring Adipose Tissue Homeostasis in Response to Aging: Initial Clinical Experience with Profhilo Structura®. Gels 2023, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Scrima, M.; Merola, F.; Vito, N.; Pacchioni, D.; Vecchi, G.; Melito, C.; Iorio, A.; Giori, A.M.; Ferravante, A. Elucidations on the Performance and Reversibility of Treatment with Hyaluronic Acid Based Dermal Fillers: In vivo and in vitro Approaches. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2629–2640. [Google Scholar] [CrossRef]
- Vassallo, V.; Di Meo, C.; Alessio, N.; La Gatta, A.; Ferraro, G.A.; Nicoletti, G.F.; Schiraldi, C. Highly Concentrated Stabilized Hybrid Complexes of Hyaluronic Acid: Rheological and Biological Assessment of Compatibility with Adipose Tissue and Derived Stromal Cells towards Regenerative Medicine. Int. J. Mol. Sci. 2024, 25, 2019. [Google Scholar] [CrossRef]
- Kochhar, A.; Wu, I.; Mohan, R.; Conde-Green, A.; Hillel, A.T.; Byrne, P.J.; Elisseeff, J.H. A comparison of the rheologic properties of an adipose-derived extracellular matrix biomaterial, lipoaspirate, calcium hydroxylapatite, and cross-linked hyaluronic acid. JAMA Facial Plast. Surg. 2014, 16, 405–409. [Google Scholar] [CrossRef]
- Sundaram, H.; Voigts, B.; Beer, K.; Meland, M. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: Calcium hydroxylapatite and hyaluronic acid. Dermatol. Surg. 2010, 36, 1859–1865. [Google Scholar] [CrossRef]
- Sundaram, H.; Rohrich, R.J.; Liew, S.; Sattler, G.; Talarico, S.; Trevidic, P.; Molliard, S.G. Cohesivity of Hyaluronic Acid Fillers: Development and Clinical Implications of a Novel Assay, Pilot Validation with a Five-Point Grading Scale, and Evaluation of Six U.S. Food and Drug Administration-Approved Fillers. Plast. Reconstr. Surg. 2015, 136, 678–686. [Google Scholar] [CrossRef]
- Salti, G.; Tateo, A.; Cassuto, D.; Arrigoni, F.; Godina, C.; Mazzola, F.; Cigni, C.; Grimolizzi, F.; Bellia, G. Hyaluronic Acid Hybrid Cooperative Complexes Nearing 10 Years of Use: Update on Safety Assessment Based on Post-Marketing Surveillance Data. J. Cosmet. Dermatol. 2025, 24, e70197. [Google Scholar] [CrossRef]
- Lipko-Godlewska, S.; Bolanca, Z.; Kalinova, L.; Kermen, I.; Onisak, B.; Papp, I.; Rebrov, M.; Valanciene, G. Whole-Face Approach with Hyaluronic Acid Fillers. Clin. Cosmet. Investig. Dermatol. 2021, 14, 169–178. [Google Scholar] [CrossRef]
- International Society of Aesthetic Plastic Surgery. Available online: https://www.isaps.org/discover/about-isaps/global-statistics/global-survey-2023-full-report-and-press-releases/ (accessed on 15 November 2025).
- Duranti, F.; Salti, G.; Bovani, B.; Calandra, M.; Rosati, M.L. Injectable hyaluronic acid gel for soft tissue augmentation. A clinical and histological study. Dermatol. Surg. 1998, 24, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Go, B.C.; Frost, A.S.; Friedman, O. Using injectable fillers for midface rejuvenation. Plast. Aesthet. Res. 2021, 8, 39. [Google Scholar] [CrossRef]
- Attenello, N.H.; Maas, C.S. Injectable Fillers: Review of Material and Properties. Facial Plast. Surg. 2015, 31, 29–34. [Google Scholar] [CrossRef]
- Christen, M.O. Collagen Stimulators in Body Applications: A Review Focused on Poly-L-Lactic Acid (PLLA). Clin. Cosmet. Investig. Dermatol. 2022, 15, 997–1019. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, S.B.; McCarthy, A.; Khalifian, S.; Lorenc, Z.P.; Goldie, K.; Chernoff, W.G. The Role of Calcium Hydroxylapatite (Radiesse) as a Regenerative Aesthetic Treatment: A Narrative Review. Aesthet. Surg. J. 2023, 43, 1063–1090. [Google Scholar] [CrossRef]
- Alessio, N.; Stellavato, A.; Squillaro, T.; Del Gaudio, S.; Di Bernardo, G.; Peluso, G.; De Rosa, M.; Schiraldi, C.; Galderisi, U. Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: A pilot study for future therapeutic application. Aging 2018, 10, 1575–1585. [Google Scholar] [CrossRef]
- Hattori, N.; Mochizuki, S.; Kishi, K.; Nakajima, T.; Takaishi, H.; D’Armiento, J.; Okada, Y. MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am. J. Pathol. 2009, 175, 533–546. [Google Scholar] [CrossRef]
- Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- de Filippis, A.; D’Agostino, A.; Pirozzi, A.V.A.; Tufano, M.A.; Schiraldi, C.; Baroni, A. Q-switched Nd-YAG laser alone and in combination with innovative hyaluronic acid gels improve keratinocytes wound healing in vitro. Lasers Med. Sci. 2021, 36, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Hara, M.; Sougrat, R.; Verbavatz, J.M.; Verkman, A.S. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J. Biol. Chem. 2002, 277, 17147–17153. [Google Scholar] [CrossRef] [PubMed]
- Nakahigashi, K.; Kabashima, K.; Ikoma, A.; Verkman, A.S.; Miyachi, Y.; Hara-Chikuma, M. Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. J. Invest. Dermatol. 2011, 131, 865–873. [Google Scholar] [CrossRef]
- Hara-Chikuma, M.; Verkman, A.S. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J. Mol. Med. 2008, 86, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Lu, Z.; Nie, F.; Chong, Y. Integrins regulation of wound healing processes: Insights for chronic skin wound therapeutics. Front. Cell Infect. Microbiol. 2024, 14, 1324441. [Google Scholar] [CrossRef]
- Li, H.; Chang, L.; Du, W.W.; Gupta, S.; Khorshidi, A.; Sefton, M.; Yang, B.B. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin. Mol. Ther. 2014, 22, 1839–1850. [Google Scholar] [CrossRef]
- Mahabeleshwar, G.H.; Chen, J.; Feng, W.; Somanath, P.R.; Razorenova, O.V.; Byzova, T.V. Integrin affinity modulation in angiogenesis. Cell Cycle 2008, 7, 335–347. [Google Scholar] [CrossRef]
- Tateo, A.; Sofo, G. Optimization of the lipofilling procedure with hybrid cooperative complexes of high and low molecular weight hyaluronic acid: Preliminary experiments. Esperienze Dermatol. 2019, 21, 22–26. [Google Scholar] [CrossRef]
- Dziabas, D.C.; Kasai, M.; Chicone, G. Use of Hyaluronic Acid Hybrid Complex to Treat Wrinkles in the Upper Third of the Face: A Case Report. Cureus 2024, 16, e73451. [Google Scholar] [CrossRef]
- de Maio, M. Myomodulation with Injectable Fillers: An Innovative Approach to Addressing Facial Muscle Movement. Aesthetic Plast. Surg. 2018, 42, 798–814. [Google Scholar] [CrossRef] [PubMed]
- de Maio, M. Myomodulation with Injectable Fillers: An Update. Aesthetic Plast. Surg. 2020, 44, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Goltsova, E.N.; Shemonaeva, O.A. Hybrid cooperative complexes of H-HA and L-HA (Profhilo®) and the BAP technique for facial skin bioremodeling: A clinical experience at the NEO-Clinic (Tyumen, Russia). Esperienze Dermatol. 2019, 21, 47–53. [Google Scholar] [CrossRef]
- Cheng, S.W.N.; Lim, S.Y.D.; Cigni, C.; Grimolizzi, F.; Goh, C.L. Efficacy and Tolerability of Stable Hybrid Cooperative Complexes of High- and Low-Molecular Weight Hyaluronic Acid in Asian Patients: An Open-Label Study. Aesthetic Plast. Surg. 2025, 1–10. [Google Scholar] [CrossRef]
- Sykes, J.M. Management of the aging face in the Asian patient. Facial Plast. Surg. Clin. North. Am. 2007, 15, 353–360. [Google Scholar] [CrossRef]
- Vashi, N.A.; de Castro Maymone, M.B.; Kundu, R.V. Aging Differences in Ethnic Skin. J. Clin. Aesthet. Dermatol. 2016, 9, 31–38. [Google Scholar]
- Sparavigna, A.; Lualdi, R.; Cicerone, M.; Giori, A.M.; Bellia, G. A pilot study testing efficacy and tolerability of hybrid cooperative complexes of hyaluronic acid intradermal injections in Chinese women. Aesthetic Med. Plast. Surg. 2023, 1, 5–12. [Google Scholar]
- Sparavigna, A.; Cigni, C.; Grimolizzi, F.; Bellia, G. Neck and face rejuvenation outcomes with Profhilo®: A comparative analysis between Chinese and Caucasian cohorts. Gazz. Med. Ital.-Arch. Sci. Med. 2023, 182, 628–633. [Google Scholar] [CrossRef]
- de Wit, A.; Siebenga, P.S.; Wijdeveld, R.W.; Koopmans, P.C.; van Loghem, J.A.J. A split-face comparative performance evaluation of injectable hyaluronic acid-based preparations HCC and CPM-HA20G in healthy females. J. Cosmet. Dermatol. 2022, 21, 5576–5583. [Google Scholar] [CrossRef]
- Ghassemi, A.; Prescher, A.; Riediger, D.; Axer, H. Anatomy of the SMAS revisited. Aesthetic Plast. Surg. 2003, 27, 258–264. [Google Scholar] [CrossRef]
- Gosain, A.K.; Klein, M.H.; Sudhakar, P.V.; Prost, R.W. A volumetric analysis of soft-tissue changes in the aging midface using high-resolution MRI: Implications for facial rejuvenation. Plast. Reconstr. Surg. 2005, 115, 1143–1152, discussion 53-5. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.; Trujillo, O.; Kristen, Q.; Isac, K.; Zorko, J.; Fam, M.; Okonkwo, K.; Mian, A.; Thanh, H.; Koban, K.; et al. The Facial Adipose Tissue: A Revision. Facial Plast. Surg. 2016, 32, 671–682. [Google Scholar] [CrossRef]
- Rohrich, R.J.; Pessa, J.E. The fat compartments of the face: Anatomy and clinical implications for cosmetic surgery. Plast. Reconstr. Surg. 2007, 119, 2219–2227. [Google Scholar] [CrossRef]
- Wan, D.; Amirlak, B.; Rohrich, R.; Davis, K. The clinical importance of the fat compartments in midfacial aging. Plast. Reconstr. Surg. Glob. Open 2013, 1, e92. [Google Scholar] [CrossRef] [PubMed]
- Donath, A.S.; Glasgold, R.A.; Glasgold, M.J. Volume loss versus gravity: New concepts in facial aging. Curr. Opin. Otolaryngol. Head. Neck Surg. 2007, 15, 238–243. [Google Scholar] [CrossRef]
- Mertens, A.; Foyatier, J.L.; Mojallal, A. Quantitative analysis of midface fat compartments mass with ageing and body mass index, anatomical study. Ann. Chir. Plast. Esthet. 2016, 61, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Gierloff, M.; Stohring, C.; Buder, T.; Gassling, V.; Acil, Y.; Wiltfang, J. Aging changes of the midfacial fat compartments: A computed tomographic study. Plast. Reconstr. Surg. 2012, 129, 263–273. [Google Scholar] [CrossRef]
- Wan, D.; Amirlak, B.; Giessler, P.; Rasko, Y.; Rohrich, R.J.; Yuan, C.; Lysikowski, J.; Delgado, I.; Davis, K. The differing adipocyte morphologies of deep versus superficial midfacial fat compartments: A cadaveric study. Plast. Reconstr. Surg. 2014, 133, 615e–622e. [Google Scholar] [CrossRef]
- Nakano, A.; Keida, T.; Suzuki, M.; Tateo, A.; Renosto, V.; Cigni, C.; Grimolizzi, F.; Bellia, G.; Soyano, S. Development of a satisfaction survey to investigate pre- and post- treatment of the neck using hybrid cooperative complexes of hyaluronans in a cohort of Japanese patients. Aesthetic Med. 2024, 10, e2024023. [Google Scholar]
- Paganelli, A.; Mandel, V.D.; Pellacani, G.; Rossi, E. Synergic effect of plasma exeresis and non-cross-linked low and high molecular weight hyaluronic acid to improve neck skin laxities. J. Cosmet. Dermatol. 2020, 19, 55–60. [Google Scholar] [CrossRef]
- de Castro Filho, A.G.; Palo, J.S.; Faria, G.E.L.; Zattar, L.; Cigni, C.; Grimolizzi, F.; Boggio, R.F. Efficacy of Hybrid Cooperative Complexes of Hyaluronic Acid for Treating Hand Skin Laxity and Thickness: An Ultrasound-Based Evaluation. Ann. Case Rep. 2025, 10, 2320. [Google Scholar] [CrossRef]
- Sparavigna, A.; Grimolizzi, F.; Cigni, C.; Lualdi, R.; Bellia, G. Use of intradermic injection of hybrid cooperative complexes of hyaluronic acid to counteract Skin Roughness and Laxity on the Back of the Hands. J. Plast. Pathol. Dermatol. 2023, 19, 7–13. [Google Scholar]
- Sparavigna, A.; Musella, D.; Cicerone, M.; Giori, A.M.; Bellia, G. Hybrid cooperative complexes of high and low molecular weight hyaluronans (96 mg/3 mL) for the treatment of skin laxity of the inner arm and abdomen. Gazz. Med. Ital. Arch. Sci. Med. 2022, 181, 487–495. [Google Scholar] [CrossRef]
- Margara, A.; Haykal, D.; Musella, D.; Bellia, G.; Boriani, F. Hyaluronan Hybrid Cooperative Complexes Injection as a Biostimulation for Postobese Skin Laxity in the Arm: A Histopathologic Study. Aesthet. Surg. J. Open Forum 2024, 6, ojad110. [Google Scholar] [CrossRef]
- Mohammed, G.F.; Al-Dhubaibi, M.S. Triple steps acne scar revision technique: A new combination therapeutic modality for atrophic acne scars. J. Cosmet. Dermatol. 2022, 21, 4659–4668. [Google Scholar] [CrossRef] [PubMed]
- Siquier-Dameto, G.; Solalinde, L. Case report. Positive effect of hybrid stable cooperative complexes of high and low molecular weight hyaluronic acid in localized psoriasis plaques. In Proceedings of the IMCAS World Congress 2020, Paris, France, 30 January–1 February 2020; p. 100255. [Google Scholar]
- Siquier-Dameto, G.; Solalinde, L. Positive effect of hybrid stable cooperative complexes of high- and low-molecular-weight hyaluronic acid in psoriasis: A clinical series. Esperienze Dermatol. 2020, 22, 53–55. [Google Scholar] [CrossRef]
- Sun, M.; Liang, H.R.; Zhang, H.; Bai, T.; Xu, R.D.; Duan, S.Y.; Cai, Z.C. Surgical options for Evans-Jensen type IV intertrochanteric femur fractures in the elderly over 65: A comparison between total hip arthroplasty and proximal femoral nail antirotation. Front. Surg. 2024, 11, 1510094. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Abascal, M.; Saldana Fernandez, M. Bio-Remodelación Facial Mediante Inyección Intradérmica de Un Complejo Híbrido Estabilizado de Ácido Hialurónico de Alto y Bajo Peso Molecular: Estudio Prospectivo En 30 Pacientes. Eur. Aesthetic Plast. Surg. J. 2015, 5, 123–131. [Google Scholar]
- Siquier-Dameto, G. Evaluation of the beneficial impact of atopic dermatitis treatment with high-and lowmolecular-weight hyaluronic acid hybrid stable cooperative complexes: A case report. Aesthetic Med. 2022, 8, 45–48. [Google Scholar]
- Trevidic, P.; Kaufman-Janette, J.; Weinkle, S.; Wu, R.; Dhillon, B.; Antunes, S.; Mace, E.; Maffert, P. Injection Guidelines for Treating Midface Volume Deficiency With Hyaluronic Acid Fillers: The ATP Approach (Anatomy, Techniques, Products). Aesthet. Surg. J. 2022, 42, 920–934. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.B.; Heydenrych, I. The Importance of Functional Quality in Patient Satisfaction: Cosmetic Injectable Patient Experience Exploratory Study-Part 2. Aesthet. Surg. J. Open Forum 2022, 4, ojac044. [Google Scholar] [CrossRef]
- Waldman, A.; Maisel, A.; Weil, A.; Iyengar, S.; Sacotte, K.; Lazaroff, J.M.; Kurumety, S.; Shaunfield, S.L.; Reynolds, K.A.; Poon, E.; et al. Patients believe that cosmetic procedures affect their quality of life: An interview study of patient-reported motivations. J. Am. Acad. Dermatol. 2019, 80, 1671–1681. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.; Fabi, S. Look Better, Feel Better, Live Better? The Impact of Minimally Invasive Aesthetic Procedures on Satisfaction with Appearance and Psychosocial Wellbeing. J. Clin. Aesthet. Dermatol. 2022, 15, 47–58. [Google Scholar] [PubMed]
| References | Cells | Tested Formulation | Key Findings |
|---|---|---|---|
| [23,33,91] | Keratinocytes and fibroblasts | 3.2% HCCs | Increased elastin, type I collagen protein synthesis was higher in fibroblasts than in keratinocytes, increase in HBD-2, reduction in TNF-α and IL-8 protein expression, accelerated scratch closure |
| [92] | Fibroblasts | 3.2% HCCs | Increase in total collagen production |
| [114] | Mesenchymal stromal cells | 3.2% HCCs | Delayed senescence, promoted adipogenic and chondrogenic differentiation |
| [38] | Human adipose-derived stem cells | 3.2% HCCs | Increase in proliferation, induced adipogenic differentiation, induction of strong secretion of adiponectin and leptin |
| [102] | Human adipose stromal cell | 4.5% HCCs | Sustained viability of the cells, faster cell growth compared to H-HA, progressive increase in intracellular lipid droplets |
| Reference | Type of Study | Intervention | Control/Comparator | Number of Enrolled Subjects | Number of Subjects Included in Final Analysis | Evaluation or Follow-Up |
|---|---|---|---|---|---|---|
| [1] | Single-blind randomized controlled pilot study | autologous fat transplantation with two injections of 3.2% HCCs two and six weeks after the fat transplantation | only autologous fat transplantation to the cheeks | 10 women | 9 women | 1 month and 6 months postprocedure |
| [2] | Three case studies | formulation combining hyper-dilute calcium hydroxylapatite, polydeoxyribonucleotide and 3.2% HCCs | N/A | 3 women | 3 women | 6 months postprocedure |
| [6] | Case report | Three sessions of 3.2% HCCs 30 days apart followed by 100 units of botulinum toxin 30 days after the last HCC application | N/A | 1 woman | 1 woman | N/A |
| [6] | Case report | 3.2% HCCs at baseline, after 30, 90, 150 and 270 days with cross-linked HA after 60 and 210 days | N/A | 1 woman | 1 woman | N/A |
| [27] | Monocentric, open-label, not-controlled, exploratory study | Two applications of 3.2% HCCs 4 weeks apart | N/A | 64 women | 60 women (of which 4 concluded at 12 weeks) | 4, 8, 12 and 16 weeks |
| [37] | Prospective non-consecutive case series | 3.2% HCCs on the left side of the face | Cross-linked HA filler on the right side of the face | 15 women | 15 women | Before the procedure and every 6–7 days until 3 weeks |
| [83] | A retrospective evaluation | Two applications of 3.2% HCCs 4 weeks apart | N/A | 15 women | 15 women | 4 and 8 weeks after baseline |
| [84] | Monocentric observational study | Two applications of 3.2% HCCs 1 month apart | N/A | 11 women | 11 women | Before the procedure 1 and 2 months after initial treatment |
| [93] | Open, single-centered, controlled clinical trial | 3.2% HCCs at baseline, after 4 weeks, and every 2 months for 7 applications in total | N/A | 30 women | 23 women | 12 months from the first application (4 weeks after the last application) |
| [99] | Single-center study | Two applications of 4.5% HCCs in the lateral cheek fat compartment 1 month apart | N/A | 50 Caucasian women | 50 Caucasian women | Before the procedure, after 1 month, and 3 months after the end of treatment |
| [100] | Case series | Two applications of 4.5% HCCs in the lateral cheek fat compartment 30 days apart | N/A | 22 subjects | 22 subjects | Immediately after treatment, 3 and after 6 months after first treatment |
| [125] | Case report | Two applications of 3.2% HCCs 30 days apart | N/A | 3 women | 3 women | N/A |
| [128] | Monocentric observational study | Three applications of 3.2% HCCs 4 weeks apart | N/A | 10 women | 10 women | Before the procedure, after 4, 8 and 12 weeks |
| [129] | Open-labeled, exploratory, single-center study | Two applications of 3.2% HCCs 4 weeks apart | N/A | 30 Asian women | 28 women at week 4, 26 women at week 12 | Before the procedure, after 4 and 12 weeks |
| [132] | Single-center clinical trial | Two applications of 3.2% HCCs 4 weeks apart | N/A | 10 Chinesewomen | 10 women at weeks 4 and 8, 3 women at week 12, none at week 16 | Before the procedure, after 4, 8, 12 and 16 weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tintor, G.; Cohadzic, T.; Bukic, J.; Leskur, D.; Zekan, L.; Rusic, D.; Dudukovic, M. Hybrid Cooperative Complexes of Low- and High-Molecular-Weight Hyaluronic Acid in Aesthetic Medicine. Pharmaceuticals 2026, 19, 73. https://doi.org/10.3390/ph19010073
Tintor G, Cohadzic T, Bukic J, Leskur D, Zekan L, Rusic D, Dudukovic M. Hybrid Cooperative Complexes of Low- and High-Molecular-Weight Hyaluronic Acid in Aesthetic Medicine. Pharmaceuticals. 2026; 19(1):73. https://doi.org/10.3390/ph19010073
Chicago/Turabian StyleTintor, Goran, Tin Cohadzic, Josipa Bukic, Dario Leskur, Lovre Zekan, Doris Rusic, and Mladen Dudukovic. 2026. "Hybrid Cooperative Complexes of Low- and High-Molecular-Weight Hyaluronic Acid in Aesthetic Medicine" Pharmaceuticals 19, no. 1: 73. https://doi.org/10.3390/ph19010073
APA StyleTintor, G., Cohadzic, T., Bukic, J., Leskur, D., Zekan, L., Rusic, D., & Dudukovic, M. (2026). Hybrid Cooperative Complexes of Low- and High-Molecular-Weight Hyaluronic Acid in Aesthetic Medicine. Pharmaceuticals, 19(1), 73. https://doi.org/10.3390/ph19010073

