Vitamin D in Endocrine Disorders: A Broad Overview of Evidence in Musculoskeletal, Thyroid, Parathyroid, and Reproductive Disorders
Abstract
1. Introduction
2. Methodology
3. Vitamin D Beyond Calcium Homeostasis: A Brief Overview of Its Potential Role in Immunomodulation and Oncogenesis
3.1. Vitamin D and the Immune System
3.2. Vitamin D and Cancer Development
4. The Role of Vitamin D Supplementation in Osteoporosis and Health
4.1. The Basis of Vitamin D Supplementation in Osteoporosis
4.2. Preventive Supplementation
5. Are Patients with Primary Hyperparathyroidism Truly Vitamin D Deficient?
6. Hypoparathyroidism
7. Vitamin D Deficiency and Osteomalacia
8. Vitamin D and the Thyroid
8.1. Hashimoto’s Thyroiditis and Vitamin D
8.2. Postpartum Thyroiditis and Vitamin D
8.3. Basedow-Graves’ Disease and Vitamin D
8.4. Thyroid Cancer and Vitamin D
9. Vitamin D’s Role in Fertility
9.1. Vitamin D and Infertility in General
9.2. Vitamin D in Female Infertility
9.3. Vitamin D and PCOS
9.4. Vitamin D and Endometriosis
9.5. Vitamin D in Male Infertility
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMH | Anti-Müllerian hormone |
| ATG | Anti-thyroglobulin antibody |
| ATPO | Anti-thyroid peroxidase antibody |
| BGD | Basedow–Graves’ disease |
| BMD | Bone mineral density |
| CRP | C-reactive protein |
| DEXA | Dual-energy X-ray absorptiometry |
| FGF23 | Fibroblast growth factor 23 |
| FRAX | Fracture Risk Assessment Tool |
| FSH | Follicle-stimulating hormone |
| GnRH | Gonadotropin-releasing hormone |
| hCG | Human chorionic gonadotropin |
| HDL | High-density lipoprotein |
| HT | Hashimoto thyroiditis |
| IU | International Units |
| IVF | In vitro fertilization |
| LH | Luteinizing hormone |
| PCOS | Polycystic Ovary Syndrome |
| PHPT | Primary hyperparathyroidism |
| PPT | Painless postpartum thyroiditis |
| PTH | Parathyroid hormone |
| RCT | Randomized Controlled Trial |
| SHBG | Sex hormone binding globulin |
| T | Testosterone |
| TNF-alfa | Tumor necrosis factor alpha |
| TRAb | TSH receptor antibodies |
| TSH | Thyroid stimulating hormone |
| VDR | Vitamin D receptor |
| 1,25(OH)2 D3 | 1,25-dihydroxyvitamin D3 |
| 25(OH)D3 | 25-hydroxyvitamin D3 |
References
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Koivisto, O.; Hanel, A.; Carlberg, C. Key Vitamin D Target Genes with Functions in the Immune System. Nutrients 2020, 12, 1140. [Google Scholar] [CrossRef]
- Bouillon, R.; Lieben, L.; Mathieu, C.; Verstuyf, A.; Carmeliet, G. Vitamin D action: Lessons from VDR and Cyp27b1 null mice. Pediatr. Endocrinol. Rev. 2013, 10, 354–366. [Google Scholar]
- Colotta, F.; Jansson, B.; Bonelli, F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017, 85, 78–97. [Google Scholar] [CrossRef]
- Carlberg, C.; Muñoz, A. An update on vitamin D signaling and cancer. Semin. Cancer Biol. 2022, 79, 217–230. [Google Scholar] [CrossRef]
- Dallavalasa, S.; Tulimilli, S.V.; Bettada, V.G.; Karnik, M.; Uthaiah, C.A.; Anantharaju, P.G.; Nataraj, S.M.; Ramashetty, R.; Sukocheva, O.A.; Tse, E.; et al. Vitamin D in Cancer Prevention and Treatment: A Review of Epidemiological, Preclinical, and Cellular Studies. Cancers 2024, 16, 3211. [Google Scholar] [CrossRef]
- Bandera Merchan, B.; Morcillo, S.; Martin-Nuñez, G.; Tinahones, F.J.; Macías-González, M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J. Steroid Biochem. Mol. Biol. 2017, 167, 203–218. [Google Scholar] [CrossRef]
- Fleet, J.C.; DeSmet, M.; Johnson, R.; Li, Y. Vitamin D and cancer: A review of molecular mechanisms. Biochem. J. 2012, 441, 61–76. [Google Scholar] [CrossRef]
- Philips, N.; Samuel, P.; Keller, T.; Alharbi, A.; Alshalan, S.; Shamlan, S.A. Beneficial Regulation of Cellular Oxidative Stress Effects, and Expression of Inflammatory, Angiogenic, and the Extracellular Matrix Remodeling Proteins by 1α,25-Dihydroxyvitamin D3 in a Melanoma Cell Line. Molecules 2020, 25, 1164. [Google Scholar] [CrossRef]
- Bajbouj, K.; Al-Ali, A.; Shafarin, J.; Sahnoon, L.; Sawan, A.; Shehada, A.; Elkhalifa, W.; Saber-Ayad, M.; Muhammad, J.S.; Elmoselhi, A.B.; et al. Vitamin D Exerts Significant Antitumor Effects by Suppressing Vasculogenic Mimicry in Breast Cancer Cells. Front. Oncol. 2022, 12, 918340. [Google Scholar] [CrossRef]
- Seraphin, G.; Rieger, S.; Hewison, M.; Capobianco, E.; Lisse, T.S. The impact of vitamin D on cancer: A mini review. J. Steroid Biochem. Mol. Biol. 2023, 231, 106308. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Szappanos, Á.; Zábó, V.; Kaposvári, C.; Horváth, A.; Farkas, Á.; Fazekas-Pongor, V.; Major, D.; Lipécz, Á.; et al. Vitamin D and Colorectal Cancer Prevention: Immunological Mechanisms, Inflammatory Pathways, and Nutritional Implications. Nutrients 2025, 17, 1351. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Bartina, Y.; Larti, M.; Kiaei, A.; Hemmati, M.; Shohaimi, S.; Mohammadi, M. Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 16, 669. [Google Scholar] [CrossRef]
- Alswat, K.A. Gender Disparities in Osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef]
- Chen, X.; Shen, L.; Gao, C.; Weng, R.; Fan, Y.; Xu, S.; Zhang, Z.; Hu, W. Vitamin D status and its associations with bone mineral density, bone turnover markers, and parathyroid hormone in Chinese postmenopausal women with osteopenia and osteoporosis. Front. Nutr. 2024, 10, 1307896. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 2001, 22, 477–501. [Google Scholar] [CrossRef]
- Harvey, N.C.; Biver, E.; Kaufman, J.M.; Bauer, J.; Branco, J.; Brandi, M.L.; Bruyère, O.; Coxam, V.; Cruz-Jentoft, A.; Czerwinski, E.; et al. The role of calcium supplementation in healthy musculoskeletal ageing: An expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos. Int. 2017, 28, 447–462. [Google Scholar] [CrossRef]
- Suzuki, T.; Nakamura, Y.; Kato, H. Vitamin D and Calcium Addition during Denosumab Therapy over a Period of Four Years Significantly Improves Lumbar Bone Mineral Density in Japanese Osteoporosis Patients. Nutrients 2018, 10, 272. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Liao, E.Y.; Xia, W.B.; Lin, H.; Cheng, Q.; Wang, L.; Hao, Y.Q.; Chen, D.C.; Tang, H.; De Peng, Y.; et al. Alendronate sodium/vitamin D3 combination tablet versus calcitriol for osteoporosis in Chinese postmenopausal women: A 6-month, randomized, open-label, active-comparator-controlled study with a 6-month extension. Osteoporos. Int. 2015, 26, 2365–2374. [Google Scholar] [CrossRef]
- Carmel, A.S.; Shieh, A.; Bang, H.; Bockman, R.S. The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥33 ng/ml. Osteoporos. Int. 2012, 23, 2479–2487. [Google Scholar] [CrossRef]
- Ralston, S.H.; Binkley, N.; Boonen, S.; Kiel, D.P.; Reginster, J.-Y.; Roux, C.; Chen, L.; Rosenberg, E.; Santora, A.; Investigators of FOCUS-D (FOSAVANCE vs. Standard Care—Use and Study of Vitamin D) Trial. Randomized Trial of Alendronate Plus Vitamin D3 Versus Standard Care in Osteoporotic Postmenopausal Women with Vitamin D Insufficiency. Calcif. Tissue Int. 2011, 88, 485–494. [Google Scholar] [CrossRef]
- Kim, K.J.; Min, Y.K.; Koh, J.M.; Chung, Y.S.; Kim, K.M.; Byun, D.W.; Kim, I.J.; Kim, M.; Kim, S.S.; Min, K.W.; et al. Efficacy and safety of weekly alendronate plus vitamin D3 5600 IU versus weekly alendronate alone in Korean osteoporotic women: 16-week randomized trial. Yonsei Med. J. 2014, 55, 715–724. [Google Scholar] [CrossRef]
- Chiloiro, S.; Costanza, F.; Riccardi, E.; Giampietro, A.; De Marinis, L.; Bianchi, A.; Pontecorvi, A.; Giustina, A. Vitamin D in pituitary driven osteopathies. Pituitary 2024, 27, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Avenell, A.; Mak, J.C.; O’Connell, D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014, 2014, Cd000227. [Google Scholar] [CrossRef]
- DIPART (Vitamin D Individual Patient Analysis of Randomized Trials) Group. Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ 2010, 340, b5463. [Google Scholar] [CrossRef]
- Kong, S.H.; Jang, H.N.; Kim, J.H.; Kim, S.W.; Shin, C.S. Effect of Vitamin D Supplementation on Risk of Fractures and Falls According to Dosage and Interval: A Meta-Analysis. Endocrinol. Metab. 2022, 37, 344–358. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Willett, W.C.; Wong, J.B.; Giovannucci, E.L.; Dietrich, T.; Dawson-Hughes, B. Fracture prevention with vitamin D supplementation: A meta-analysis of randomized controlled trials. JAMA 2005, 293, 2257–2264. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Orav, E.J.; Staehelin, H.B.; Meyer, O.W.; Theiler, R.; Dick, W.; Willett, W.C.; Egli, A. Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 175–183. [Google Scholar] [CrossRef]
- Smith, L.M.; Gallagher, J.C.; Suiter, C. Medium doses of daily vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: A randomized clinical trial. J. Steroid Biochem. Mol. Biol. 2017, 173, 317–322. [Google Scholar] [CrossRef]
- Sutherland, J.P.; Zhou, A.; Hyppönen, E. Vitamin D, C-Reactive Protein, and Increased Fall Risk: A Genetic Epidemiological Study. Nutrients 2025, 17, 38. [Google Scholar] [CrossRef]
- Anagnostis, P.; Bosdou, J.K.; Kenanidis, E.; Potoupnis, M.; Tsiridis, E.; Goulis, D.G. Vitamin D supplementation and fracture risk: Evidence for a U-shaped effect. Maturitas 2020, 141, 63–70. [Google Scholar] [CrossRef]
- Takács, I.; Dank, M.; Majnik, J.; Nagy, G.; Szabó, A.; Szabó, B.; Szekanecz, Z.; Sziller, I.; Toldy, E.; Tislér, A.; et al. Magyarországi konszenzusajánlás a D-vitamin szerepéről a betegségek megelőzésében és kezelésében. Orvosi Hetil. 2022, 163, 575–584. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Eur. J. Endocrinol. 2023, 189, G43–G64. [Google Scholar] [CrossRef]
- Lai, J.K.C.; Lucas, R.M.; Clements, M.S.; Roddam, A.W.; Banks, E. Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: A systematic review and meta-analysis of randomised controlled trials and observational studies. BMC Public Health 2010, 10, 331. [Google Scholar] [CrossRef]
- Kahwati, L.C.; Weber, R.P.; Pan, H.; Gourlay, M.; LeBlanc, E.; Coker-Schwimmer, M.; Viswanathan, M. Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 319, 1600–1612. [Google Scholar] [CrossRef]
- Manson, J.E.; Bassuk, S.S.; Buring, J.E. Principal results of the VITamin D and OmegA-3 TriaL (VITAL) and updated meta-analyses of relevant vitamin D trials. J. Steroid Biochem. Mol. Biol. 2020, 198, 105522. [Google Scholar] [CrossRef]
- Neale, R.E.; Baxter, C.; Romero, B.D.; McLeod, D.S.A.; English, D.R.; Armstrong, B.K.; Ebeling, P.R.; Hartel, G.; Kimlin, M.G.; O’Connell, R.; et al. The D-Health Trial: A randomised controlled trial of the effect of vitamin D on mortality. Lancet Diabetes Endocrinol. 2022, 10, 120–128. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef]
- Grant, W.B.; Wimalawansa, S.J.; Pludowski, P.; Cheng, R.Z. Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients 2025, 17, 277. [Google Scholar] [CrossRef]
- Walker, M.D.; Cong, E.; Lee, J.A.; Kepley, A.; Zhang, C.; McMahon, D.J.; Silverberg, S.J. Vitamin D in Primary Hyperparathyroidism: Effects on Clinical, Biochemical, and Densitometric Presentation. J. Clin. Endocrinol. Metab. 2015, 100, 3443–3451. [Google Scholar] [CrossRef]
- Tassone, F.; Gianotti, L.; Baffoni, C.; Visconti, G.; Pellegrino, M.; Cassibba, S.; Croce, C.G.; Magro, G.; Cesario, F.; Attanasio, R.; et al. Vitamin D status in primary hyperparathyroidism: A Southern European perspective. Clin. Endocrinol. 2013, 79, 784–790. [Google Scholar] [CrossRef]
- Moosgaard, B.; Vestergaard, P.; Heickendorff, L.; Melsen, F.; Christiansen, P.; Mosekilde, L. Vitamin D status, seasonal variations, parathyroid adenoma weight and bone mineral density in primary hyperparathyroidism. Clin. Endocrinol. 2005, 63, 506–513. [Google Scholar] [CrossRef]
- Gillis, A.; Zmijewski, P.; Ramonell, K.; Lindeman, B.; Chen, H.; Fazendin, J. Vitamin D deficiency is associated with single gland parathyroid disease. Am. J. Surg. 2022, 224, 914–917. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Bandeira, L.; Khan, A.; Cusano, N.E. Hyperparathyroidism. Lancet 2018, 391, 168–178. [Google Scholar] [CrossRef]
- Kabadi, U.M. Low 25 Hydroxyvitamin D in Primary Hyperparathyroidism: Enhanced Conversion Into 1,25 Hydroxyvitamin D May Not Be “True” Deficiency. JBMR Plus 2020, 4, e10415. [Google Scholar] [CrossRef]
- Pelineagră, O.-E.; Golu, I.; Balaș, M.; Amzăr, D.; Plotuna, I.; Popa, O.; Vlad, M. Unraveling the Paradox of Vitamin D Status in Primary Hyperparathyroidism: An Incidental Finding or an Unexpected Consequence? Int. J. Mol. Sci. 2025, 26, 4434. [Google Scholar] [CrossRef]
- Meng, L.; Su, C.; Shapses, S.A.; Wang, X. Total and free vitamin D metabolites in patients with primary hyperparathyroidism. J. Endocrinol. Investig. 2022, 45, 301–307. [Google Scholar] [CrossRef]
- Jones, K.S.; Assar, S.; Vanderschueren, D.; Bouillon, R.; Prentice, A.; Schoenmakers, I. Predictors of 25(OH)D half-life and plasma 25(OH)D concentration in The Gambia and the UK. Osteoporos. Int. 2015, 26, 1137–1146. [Google Scholar] [CrossRef]
- Gray, R.W.; Caldas, A.E.; Wilz, D.R.; Lemann, J., Jr.; Smith, G.A.; DeLuca, H.F. Metabolism and excretion of 3H-1,25-(OH)2-vitamin D3 in healthy adults. J. Clin. Endocrinol. Metab. 1978, 46, 756–765. [Google Scholar] [CrossRef]
- Mawer, E.B.; Backhouse, J.; Davies, M.; Hill, L.F.; Taylor, C.M. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet 1976, 1, 1203–1206. [Google Scholar] [CrossRef]
- Song, A.; Zhao, H.; Yang, Y.; Liu, S.; Nie, M.; Wang, O.; Xing, X. Safety and efficacy of common vitamin D supplementation in primary hyperparathyroidism and coexistent vitamin D deficiency and insufficiency: A systematic review and meta-analysis. J. Endocrinol. Investig. 2021, 44, 1667–1677. [Google Scholar] [CrossRef]
- Wang, X.; Shapses, S.A.; Al-Hraishawi, H. Free and Bioavailable 25-Hydroxyvitamin D Levels in Patients with Primary Hyperparathyroidism. Endocr. Pract. 2017, 23, 66–71. [Google Scholar] [CrossRef]
- Meng, L.; Su, C.; Shapses, S.A.; Al-Dayyeni, A.; He, Y.; Wang, X. Lower total 25-hydroxyvitamin D but no difference in calculated or measured free 25-hydroxyvitamin D serum levels in patients with primary hyperparathyroidism. J. Steroid Biochem. Mol. Biol. 2020, 199, 105616. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.H.; Hong, A.R.; Kim, S.W.; Shin, C.S. Skeletal effects of vitamin D deficiency among patients with primary hyperparathyroidism. Osteoporos. Int. 2017, 28, 1667–1674. [Google Scholar] [CrossRef]
- Rao, S.D.; Miragaya, J.; Parikh, N.; Honasoge, M.; Springer, K.; Van Harn, M.; Divine, G.W. Effect of vitamin D nutrition on disease indices in patients with primary hyperparathyroidism. J. Steroid Biochem. Mol. Biol. 2020, 201, 105695. [Google Scholar] [CrossRef]
- Rolighed, L.; Rejnmark, L.; Sikjaer, T.; Heickendorff, L.; Vestergaard, P.; Mosekilde, L.; Christiansen, P. Vitamin D treatment in primary hyperparathyroidism: A randomized placebo controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, 1072–1080. [Google Scholar] [CrossRef]
- Walker, M.D.; Nishiyama, K.K.; Zhou, B.; Cong, E.; Wang, J.; Lee, J.A.; Kepley, A.; Zhang, C.; Guo, X.E.; Silverberg, S.J. Effect of Low Vitamin D on Volumetric Bone Mineral Density, Bone Microarchitecture, and Stiffness in Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2016, 101, 905–913. [Google Scholar] [CrossRef]
- Powers, J.; Joy, K.; Ruscio, A.; Lagast, H. Prevalence and incidence of hypoparathyroidism in the United States using a large claims database. J. Bone Miner. Res. 2013, 28, 2570–2576. [Google Scholar] [CrossRef]
- Gafni Rachel, I.; Collins Michael, T. Hypoparathyroidism. N. Engl. J. Med. 2019, 380, 1738–1747. [Google Scholar] [CrossRef]
- Shoback, D.M.; Bilezikian, J.P.; Costa, A.G.; Dempster, D.; Dralle, H.; Khan, A.A.; Peacock, M.; Raffaelli, M.; Silva, B.C.; Thakker, R.V.; et al. Presentation of Hypoparathyroidism: Etiologies and Clinical Features. J. Clin. Endocrinol. Metab. 2016, 101, 2300–2312. [Google Scholar] [CrossRef]
- Mannstadt, M.; Bilezikian, J.P.; Thakker, R.V.; Hannan, F.M.; Clarke, B.L.; Rejnmark, L.; Mitchell, D.M.; Vokes, T.J.; Winer, K.K.; Shoback, D.M. Hypoparathyroidism. Nat. Rev. Dis. Primers 2017, 3, 17055. [Google Scholar] [CrossRef]
- Pasieka, J.L.; Wentworth, K.; Yeo, C.T.; Cremers, S.; Dempster, D.; Fukumoto, S.; Goswami, R.; Houillier, P.; Levine, M.A.; Pasternak, J.D.; et al. Etiology and Pathophysiology of Hypoparathyroidism: A Narrative Review. J. Bone Miner. Res. 2022, 37, 2586–2601. [Google Scholar] [CrossRef]
- Peacock, M. Hypoparathyroidism and the Kidney. Endocrinol. Metab. Clin. 2018, 47, 839–853. [Google Scholar] [CrossRef]
- Clarke, B.L.; Brown, E.M.; Collins, M.T.; Jüppner, H.; Lakatos, P.; Levine, M.A.; Mannstadt, M.M.; Bilezikian, J.P.; Romanischen, A.F.; Thakker, R.V. Epidemiology and Diagnosis of Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2016, 101, 2284–2299. [Google Scholar] [CrossRef]
- Santa Rosa, R.G.; Polonine, S.; Pichone, A.; Gomes, C.P.; Lima, L.F.C.; de Paula Paranhos Neto, F.; de Mendonça, L.M.C.; Farias, M.L.F.; Madeira, M. Chronic hypoparathyroidism is associated with increased cortical bone density evaluated using high-resolution peripheral quantitative computed tomography. Endocrine 2023, 82, 673–680. [Google Scholar] [CrossRef]
- di Filippo, L.; Bilezikian, J.P.; Canalis, E.; Terenzi, U.; Giustina, A. New insights into the vitamin D/PTH axis in endocrine-driven metabolic bone diseases. Endocrine 2024, 85, 1007–1019. [Google Scholar] [CrossRef]
- Cusano, N.E.; Nishiyama, K.K.; Zhang, C.; Rubin, M.R.; Boutroy, S.; McMahon, D.J.; Guo, X.E.; Bilezikian, J.P. Noninvasive Assessment of Skeletal Microstructure and Estimated Bone Strength in Hypoparathyroidism. J. Bone Miner. Res. 2016, 31, 308–316. [Google Scholar] [CrossRef]
- Silva, B.C.; Rubin, M.R.; Cusano, N.E.; Bilezikian, J.P. Bone imaging in hypoparathyroidism. Osteoporos. Int. 2017, 28, 463–471. [Google Scholar] [CrossRef]
- Rubin, M.R.; Dempster, D.W.; Zhou, H.; Shane, E.; Nickolas, T.; Sliney, J., Jr.; Silverberg, S.J.; Bilezikian, J.P. Dynamic and structural properties of the skeleton in hypoparathyroidism. J. Bone Miner. Res. 2008, 23, 2018–2024. [Google Scholar] [CrossRef]
- Carvalho, A.; Freire, D.H.D.; Sobrinho, A.B.; Amato, A.A. Predictors of lumbar spine trabecular bone score in women with postsurgical hypoparathyroidism. Bone 2025, 190, 117274. [Google Scholar] [CrossRef]
- Björnsdottir, S.; Kamal, W.; Mannstadt, M.; Mäkitie, O.; Spelman, T.; Kämpe, O.; Langdahl, B.L. Increased risk of vertebral fractures and reduced risk of femur fractures in patients with chronic hypoparathyroidism: A nationwide cohort study in Sweden. J. Bone Miner. Res. 2025, 40, 860–867. [Google Scholar] [CrossRef]
- Pal, R.; Bhadada, S.K.; Mukherjee, S.; Banerjee, M.; Kumar, A. Fracture risk in hypoparathyroidism: A systematic review and meta-analysis. Osteoporos. Int. 2021, 32, 2145–2153. [Google Scholar] [CrossRef]
- Bollerslev, J.; Buch, O.; Cardoso, L.M.; Gittoes, N.; Houillier, P.; van Hulsteijn, L.; Makay, O.; Marcocci, C.; Pallais, J.C.; Pilz, S.; et al. Revised European Society of Endocrinology Clinical Practice Guideline: Treatment of Chronic Hypoparathyroidism in Adults. Eur. J. Endocrinol. 2025, 193, G83–G112. [Google Scholar] [CrossRef]
- Orloff, L.A.; Wiseman, S.M.; Bernet, V.J.; Fahey, T.J.; Shaha, A.R.; Shindo, M.L.; Snyder, S.K.; Stack, B.C.; Sunwoo, J.B.; Wang, M.B. American Thyroid Association Statement on Postoperative Hypoparathyroidism: Diagnosis, Prevention, and Management in Adults. Thyroid 2018, 28, 830–841. [Google Scholar] [CrossRef]
- Streeten, E.A.; Mohtasebi, Y.; Konig, M.; Davidoff, L.; Ryan, K. Hypoparathyroidism: Less Severe Hypocalcemia With Treatment With Vitamin D2 Compared With Calcitriol. J. Clin. Endocrinol. Metab. 2017, 102, 1505–1510. [Google Scholar] [CrossRef]
- Cipriani, C.; Cianferotti, L. Vitamin D in hypoparathyroidism: Insight into pathophysiology and perspectives in clinical practice. Endocrine 2023, 81, 216–222. [Google Scholar] [CrossRef]
- Fenn, J.S.; Lorde, N.; Ward, J.M.; Borovickova, I. Hypophosphatasia. J. Clin. Pathol. 2021, 74, 635–640. [Google Scholar] [CrossRef]
- Cianferotti, L. Osteomalacia Is Not a Single Disease. Int. J. Mol. Sci. 2022, 23, 14896. [Google Scholar] [CrossRef]
- Takashi, Y.; Kawanami, D.; Fukumoto, S. FGF23 and Hypophosphatemic Rickets/Osteomalacia. Curr. Osteoporos. Rep. 2021, 19, 669–675. [Google Scholar] [CrossRef]
- Shimada, T.; Mizutani, S.; Muto, T.; Yoneya, T.; Hino, R.; Takeda, S.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Yamashita, T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl. Acad. Sci. USA 2001, 98, 6500–6505. [Google Scholar] [CrossRef]
- Jan de Beur, S.M. Tumor-Induced Osteomalacia. JAMA 2005, 294, 1260–1267. [Google Scholar] [CrossRef]
- Fukumoto, S. FGF23 and Bone and Mineral Metabolism. Handb. Exp. Pharmacol. 2020, 262, 281–308. [Google Scholar] [CrossRef]
- Macleod, A.D.; Bolland, M.J.; Balfour, A.; Grey, A.; Newmark, J.; Avenell, A. Biochemical osteomalacia in adults undergoing vitamin D testing in the North-East of Scotland. Ann. Clin. Biochem. 2025, 62, 303–311. [Google Scholar] [CrossRef]
- Bolland, M.J.; Avenell, A.; Grey, A. Prevalence of biochemical osteomalacia in adults undergoing vitamin D testing. Clin. Endocrinol. 2021, 95, 74–83. [Google Scholar] [CrossRef]
- Uday, S.; Högler, W. Spot the silent sufferers: A call for clinical diagnostic criteria for solar and nutritional osteomalacia. J. Steroid Biochem. Mol. Biol. 2019, 188, 141–146. [Google Scholar] [CrossRef]
- Priemel, M.; von Domarus, C.; Klatte, T.O.; Kessler, S.; Schlie, J.; Meier, S.; Proksch, N.; Pastor, F.; Netter, C.; Streichert, T.; et al. Bone mineralization defects and vitamin D deficiency: Histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res. 2010, 25, 305–312. [Google Scholar] [CrossRef]
- Reid, I.R. Short-term and long-term effects of osteoporosis therapies. Nat. Rev. Endocrinol. 2015, 11, 418–428. [Google Scholar] [CrossRef]
- Odvina, C.V.; Zerwekh, J.E.; Rao, D.S.; Maalouf, N.; Gottschalk, F.A.; Pak, C.Y. Severely suppressed bone turnover: A potential complication of alendronate therapy. J. Clin. Endocrinol. Metab. 2005, 90, 1294–1301. [Google Scholar] [CrossRef]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2020 Update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Qaseem, A.; Forciea, M.A.; McLean, R.M.; Denberg, T.D.; Clinical Guidelines Committee of the American College of Physicians; Barry, M.J.; Cooke, M.; Fitterman, N.; Harris, R.P.; Humphrey, L.L.; et al. Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians. Ann. Intern. Med. 2017, 166, 818–839. [Google Scholar] [CrossRef]
- Florenzano, P.; Cipriani, C.; Roszko, K.L.; Fukumoto, S.; Collins, M.T.; Minisola, S.; Pepe, J. Approach to patients with hypophosphataemia. Lancet Diabetes Endocrinol. 2020, 8, 163–174. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global prevalence and epidemiological trends of Hashimoto’s thyroiditis in adults: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1020709. [Google Scholar] [CrossRef]
- Zaletel, K.; Gaberšček, S. Hashimoto’s Thyroiditis: From Genes to the Disease. Curr. Genom. 2011, 12, 576–588. [Google Scholar] [CrossRef]
- Caturegli, P.; Kimura, H. A nonclassical model of autoimmune hypothyroidism. Thyroid 2010, 20, 3–5. [Google Scholar] [CrossRef]
- Del Prete, G.F.; Vercelli, D.; Tiri, A.; Maggi, E.; Mariotti, S.; Pinchera, A.; Ricci, M.; Romagnani, S. In vivo activated cytotoxic T cells in the thyroid infiltrate of patients with Hashimoto’s thyroiditis. Clin. Exp. Immunol. 1986, 65, 140–147. [Google Scholar]
- Palazzo, F.F.; Hammond, L.J.; Goode, A.W.; Mirakian, R. Death of the autoimmune thyrocyte: Is it pushed or does it jump? Thyroid 2000, 10, 561–572. [Google Scholar] [CrossRef]
- Strikić Đula, I.; Pleić, N.; Babić Leko, M.; Gunjača, I.; Torlak, V.; Brdar, D.; Punda, A.; Polašek, O.; Hayward, C.; Zemunik, T. Epidemiology of Hypothyroidism, Hyperthyroidism and Positive Thyroid Antibodies in the Croatian Population. Biology 2022, 11, 394. [Google Scholar] [CrossRef]
- Vanderpump, M.P.; Tunbridge, W.M.; French, J.M.; Appleton, D.; Bates, D.; Clark, F.; Grimley Evans, J.; Hasan, D.M.; Rodgers, H.; Tunbridge, F.; et al. The incidence of thyroid disorders in the community: A twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. 1995, 43, 55–68. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, W.; Ma, C.; Zhao, Y.; Xiong, R.; Wang, H.; Chen, W.; Zheng, S.G. Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Front. Immunol. 2021, 12, 574967. [Google Scholar] [CrossRef]
- Štefanić, M.; Tokić, S. Serum 25-hydoxyvitamin D concentrations in relation to Hashimoto’s thyroiditis: A systematic review, meta-analysis and meta-regression of observational studies. Eur. J. Nutr. 2020, 59, 859–872. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Chen, G.; Gao, C.; He, J.; Zhong, H.; Xu, Y. Meta-Analysis of the Association between Vitamin D and Autoimmune Thyroid Disease. Nutrients 2015, 7, 2485–2498. [Google Scholar] [CrossRef]
- Mazokopakis, E.E.; Papadomanolaki, M.G.; Tsekouras, K.C.; Evangelopoulos, A.D.; Kotsiris, D.A.; Tzortzinis, A.A. Is vitamin D related to pathogenesis and treatment of Hashimoto’s thyroiditis? Hell. J. Nucl. Med. 2015, 18, 222–227. [Google Scholar]
- Mirhosseini, N.; Brunel, L.; Muscogiuri, G.; Kimball, S. Physiological serum 25-hydroxyvitamin D concentrations are associated with improved thyroid function-observations from a community-based program. Endocrine 2017, 58, 563–573. [Google Scholar] [CrossRef]
- Chahardoli, R.; Saboor-Yaraghi, A.-A.; Amouzegar, A.; Khalili, D.; Vakili, A.Z.; Azizi, F. Can Supplementation with Vitamin D Modify Thyroid Autoantibodies (Anti-TPO Ab, Anti-Tg Ab) and Thyroid Profile (T3, T4, TSH) in Hashimoto’s Thyroiditis? A Double Blind, Randomized Clinical Trial. Horm. Metab. Res. 2019, 51, 296–301. [Google Scholar] [CrossRef]
- Peng, B.; Wang, W.; Gu, Q.; Wang, P.; Teng, W.; Shan, Z. Effects of different supplements on Hashimoto’s thyroiditis: A systematic review and network meta-analysis. Front. Endocrinol. 2024, 15, 1445878. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, X.; Qian, X.; Shao, S. Effects of vitamin D treatment on thyroid function and autoimmunity markers in patients with Hashimoto’s thyroiditis-A meta-analysis of randomized controlled trials. J. Clin. Pharm. Ther. 2022, 47, 767–775. [Google Scholar] [CrossRef]
- Waterhouse, M.; Pham, H.; Rahman, S.T.; Baxter, C.; Duarte Romero, B.; Armstrong, B.K.; Ebeling, P.R.; English, D.R.; Hartel, G.; van der Pols, J.C.; et al. The Effect of Vitamin D Supplementation on Hypothyroidism in the Randomized Controlled D-Health Trial. Thyroid 2023, 33, 1302–1310. [Google Scholar] [CrossRef]
- Karakaya, R.E.; Tam, A.A.; Demir, P.; Karaahmetli, G.; Fakı, S.; Topaloğlu, O.; Ersoy, R. Unveiling the Link Between Vitamin D, Hashimoto’s Thyroiditis, and Thyroid Functions: A Retrospective Study. Nutrients 2025, 17, 1474. [Google Scholar] [CrossRef]
- Orefice, R. Immunology and the immunological response in pregnancy. Best. Pract. Res. Clin. Obstet. Gynaecol. 2021, 76, 3–12. [Google Scholar] [CrossRef]
- Kaaja, R.J.; Greer, I.A. Manifestations of Chronic Disease During Pregnancy. JAMA 2005, 294, 2751–2757. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Wilder, R.L.; Bakalov, V.K.; Link, A.A.; Dimitrov, M.A.; Fisher, S.; Crane, M.; Kanik, K.S.; Chrousos, G.P. IL-12, TNF-alpha, and hormonal changes during late pregnancy and early postpartum: Implications for autoimmune disease activity during these times. J. Clin. Endocrinol. Metab. 2001, 86, 4933–4938. [Google Scholar] [CrossRef]
- Pearce, E.N.; Farwell, A.P.; Braverman, L.E. Thyroiditis. N. Engl. J. Med. 2003, 348, 2646–2655. [Google Scholar] [CrossRef]
- Samuels, M.H. Subacute, silent, and postpartum thyroiditis. Med. Clin. 2012, 96, 223–233. [Google Scholar] [CrossRef]
- Nicholson, W.K.; Robinson, K.A.; Smallridge, R.C.; Ladenson, P.W.; Powe, N.R. Prevalence of postpartum thyroid dysfunction: A quantitative review. Thyroid 2006, 16, 573–582. [Google Scholar] [CrossRef]
- Premawardhana, L.D.; Parkes, A.B.; Ammari, F.; John, R.; Darke, C.; Adams, H.; Lazarus, J.H. Postpartum thyroiditis and long-term thyroid status: Prognostic influence of thyroid peroxidase antibodies and ultrasound echogenicity. J. Clin. Endocrinol. Metab. 2000, 85, 71–75. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalska, B.; Okopien, B. Serum 25-Hydroxyvitamin D and Parathyroid Hormone Levels in Non-Lactating Women with Post-Partum Thyroiditis: The Effect of l-Thyroxine Treatment. Basic. Clin. Pharmacol. Toxicol. 2015, 116, 503–507. [Google Scholar] [CrossRef]
- Kowalcze, K.; Kula-Gradzik, J.; Błaszczyk, A.; Krysiak, R. Sexual Functioning and Depressive Symptoms in Levothyroxine-Treated Women with Postpartum Thyroiditis and Different Vitamin D Status. Nutrients 2025, 17, 2091. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopien, B. The effect of vitamin D on thyroid autoimmunity in non-lactating women with postpartum thyroiditis. Eur. J. Clin. Nutr. 2016, 70, 637–639. [Google Scholar] [CrossRef]
- Bhasin, S.; Enzlin, P.; Coviello, A.; Basson, R. Sexual dysfunction in men and women with endocrine disorders. Lancet 2007, 369, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Albrecht, D.; Scholz, A.; Gutierrez-Buey, G.; Lazarus, J.H.; Dayan, C.M.; Okosieme, O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 2018, 14, 301–316. [Google Scholar] [CrossRef]
- McLeod, D.S.; Cooper, D.S. The incidence and prevalence of thyroid autoimmunity. Endocrine 2012, 42, 252–265. [Google Scholar] [CrossRef]
- Davies, T.F.; Andersen, S.; Latif, R.; Nagayama, Y.; Barbesino, G.; Brito, M.; Eckstein, A.K.; Stagnaro-Green, A.; Kahaly, G.J. Graves’ disease. Nat. Rev. Dis. Primers 2020, 6, 52. [Google Scholar] [CrossRef]
- Ban, Y.; Concepcion, E.S.; Villanueva, R.; Greenberg, D.A.; Davies, T.F.; Tomer, Y. Analysis of immune regulatory genes in familial and sporadic Graves’ disease. J. Clin. Endocrinol. Metab. 2004, 89, 4562–4568. [Google Scholar] [CrossRef]
- Burch, H.B.; Cooper, D.S. Management of Graves Disease: A Review. JAMA 2015, 314, 2544–2554. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef]
- Tun, N.N.Z.; Zammitt, N.N.; Strachan, M.W.J.; Seckl, J.R.; Gibb, F.W. Ten Year Outcome of Anti-Thyroid Drug Treatment for First Episode Graves’ Thyrotoxicosis: The Predictive Importance of TRAb. Clin. Endocrinol. 2025, 103, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, D.; Li, C.; Fan, C.; Chao, N.; Liu, J.; Li, Y.; Wang, R.; Miao, W.; Guan, H.; et al. Lower Serum 25-Hydroxyvitamin D Level is Associated With 3 Types of Autoimmune Thyroid Diseases. Medicine 2015, 94, e1639. [Google Scholar] [CrossRef]
- Xu, M.Y.; Cao, B.; Yin, J.; Wang, D.F.; Chen, K.L.; Lu, Q.B. Vitamin D and Graves’ disease: A meta-analysis update. Nutrients 2015, 7, 3813–3827. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Li, L.; Liu, X.; Cao, Z.; Pang, T.; Wang, Q.; Wei, J. Association between serum vitamin D level and Graves’ disease: A systematic review and meta-analysis. Nutr. J. 2024, 23, 60. [Google Scholar] [CrossRef]
- Yamashita, H.; Noguchi, S.; Takatsu, K.; Koike, E.; Murakami, T.; Watanabe, S.; Uchino, S.; Yamashita, H.; Kawamoto, H. High prevalence of vitamin D deficiency in Japanese female patients with Graves’ disease. Endocr. J. 2001, 48, 63–69. [Google Scholar] [CrossRef]
- Ghanam, M.M.; Abouelmagd, M.; Mesbah, A.; Shaaban, A.N.; Shaaban, N.M. Vitamin D Level in Graves’ Disease and Effect of Vitamin D Supplements on Associated Autoimmunity. Egypt. J. Hosp. Med. 2024, 94, 456–464. [Google Scholar] [CrossRef]
- Sheriba, N.A.; Elewa, A.A.A.; Mahdy, M.M.; Bahaa El Din, A.M.; Ibrahim, N.A.; Marawan, D.A.; Abd El Moneim, T.M. Effect of vitamin D3 in treating hyperthyroidism in patients with graves’ disease. Egypt. J. Intern. Med. 2017, 29, 64–70. [Google Scholar] [CrossRef]
- Grove-Laugesen, D.; Ebbehoj, E.; Watt, T.; Riis, A.L.; Østergård, T.; Bruun, B.J.; Juel Christiansen, J.; Hansen, K.W.; Rejnmark, L. Effect of Vitamin D Supplementation on Graves’ Disease: The DAGMAR Trial. Thyroid 2023, 33, 1110–1118. [Google Scholar] [CrossRef]
- Grove-Laugesen, D.; Ebbehøj, E.; Hansen, K.; Watt, T.; Rejnmark, L. A randomized, double-blind, placebo-controlled trial of Vitamin D supplementation in patients newly diagnosed with graves’ disease. In Proceedings of the 44th Annual Meeting of the European Thyroid Association (ETA) 2022, Brussels, Belgium, 10–13 September 2022. [Google Scholar] [CrossRef]
- Grove-Laugesen, D.; Ebbehoj, E.; Watt, T.; Hansen, K.W.; Rejnmark, L. Changes in bone density and microarchitecture following treatment of Graves’ disease and the effects of vitamin D supplementation. A randomized clinical trial. Osteoporos. Int. 2024, 35, 2153–2164. [Google Scholar] [CrossRef]
- Grove-Laugesen, D.; Cramon, P.K.; Malmstroem, S.; Ebbehoj, E.; Watt, T.; Hansen, K.W.; Rejnmark, L. Effects of Supplemental Vitamin D on Muscle Performance and Quality of Life in Graves’ Disease: A Randomized Clinical Trial. Thyroid 2020, 30, 661–671. [Google Scholar] [CrossRef]
- Grove-Laugesen, D.; Malmstroem, S.; Ebbehoj, E.; Riis, A.L.; Watt, T.; Hansen, K.W.; Rejnmark, L. Effect of 9 months of vitamin D supplementation on arterial stiffness and blood pressure in Graves’ disease: A randomized clinical trial. Endocrine 2019, 66, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.Y.; Chung, Y.J. Vitamin D supplementation does not prevent the recurrence of Graves’ disease. Sci. Rep. 2020, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Gallo, D.; Mortara, L.; Veronesi, G.; Cattaneo, S.A.; Genoni, A.; Gallazzi, M.; Peruzzo, C.; Lasalvia, P.; Moretto, P.; Bruno, A.; et al. Add-On Effect of Selenium and Vitamin D Combined Supplementation in Early Control of Graves’ Disease Hyperthyroidism During Methimazole Treatment. Front. Endocrinol. 2022, 13, 886451. [Google Scholar] [CrossRef] [PubMed]
- Forma, A.; Kłodnicka, K.; Pająk, W.; Flieger, J.; Teresińska, B.; Januszewski, J.; Baj, J. Thyroid Cancer: Epidemiology, Classification, Risk Factors, Diagnostic and Prognostic Markers, and Current Treatment Strategies. Int. J. Mol. Sci. 2025, 26, 5173. [Google Scholar] [CrossRef] [PubMed]
- Sajisevi, M.; Caulley, L.; Eskander, A.; Du, Y.; Auh, E.; Karabachev, A.; Callas, P.; Conradie, W.; Martin, L.; Pasternak, J.; et al. Evaluating the Rising Incidence of Thyroid Cancer and Thyroid Nodule Detection Modes: A Multinational, Multi-institutional Analysis. JAMA Otolaryngol. Head. Neck Surg. 2022, 148, 811–818. [Google Scholar] [CrossRef]
- Chen, D.W.; Haymart, M.R. Unravelling the rise in thyroid cancer incidence and addressing overdiagnosis. Nat. Rev. Endocrinol. 2026, 22, 10–20. [Google Scholar] [CrossRef]
- Schipor, S.; Publik, M.A.; Manda, D.; Ceausu, M. Aggressive Thyroid Carcinomas Clinical and Molecular Features: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 5535. [Google Scholar] [CrossRef] [PubMed]
- Boudina, M.; Zisimopoulou, E.; Xirou, P.; Chrisoulidou, A. Aggressive Types of Malignant Thyroid Neoplasms. J. Clin. Med. 2024, 13, 6119. [Google Scholar] [CrossRef]
- Coperchini, F.; Greco, A.; Croce, L.; Petrosino, E.; Grillini, B.; Magri, F.; Chiovato, L.; Rotondi, M. Vitamin D Reduces Thyroid Cancer Cells Migration Independently From the Modulation of CCL2 and CXCL8 Chemokines Secretion. Front. Endocrinol. 2022, 13, 876397. [Google Scholar] [CrossRef]
- Peng, W.; Wang, K.; Zheng, R.; Derwahl, M. 1,25 dihydroxyvitamin D3 inhibits the proliferation of thyroid cancer stem-like cells via cell cycle arrest. Endocr. Res. 2016, 41, 71–80. [Google Scholar] [CrossRef]
- Dackiw, A.P.B.; Ezzat, S.; Huang, P.; Liu, W.; Asa, S.L. Vitamin D3 Administration Induces Nuclear p27 Accumulation, Restores Differentiation, and Reduces Tumor Burden in a Mouse Model of Metastatic Follicular Thyroid Cancer. Endocrinology 2004, 145, 5840–5846. [Google Scholar] [CrossRef]
- Yang, L.; Yun, P.; Li, F. Association between vitamin D serum levels and thyroid cancer: A meta-analysis. Front. Endocrinol. 2025, 16, 1602844. [Google Scholar] [CrossRef]
- Danilovic, D.L.; Ferraz-de-Souza, B.; Fabri, A.W.; Santana, N.O.; Kulcsar, M.A.; Cernea, C.R.; Marui, S.; Hoff, A.O. 25-Hydroxyvitamin D and TSH as Risk Factors or Prognostic Markers in Thyroid Carcinoma. PLoS ONE 2016, 11, e0164550. [Google Scholar] [CrossRef] [PubMed]
- Lanitis, S.; Gkanis, V.; Peristeraki, S.; Chortis, P.; Kalogeris, N.; Vryonidou, A. Vitamin D deficiency and thyroid cancer: Is there a true association? A prospective observational study. Ann. R. Coll. Surg. Engl. 2025, 107, 423–428. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, J.; Zhao, Q.; Mo, H.; Su, Z.; Feng, S.; Li, S.; Ruan, X. Global, regional, and national prevalence and trends of infertility among individuals of reproductive age (15–49 years) from 1990 to 2021, with projections to 2040. Hum. Reprod. 2025, 40, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef]
- Bourrion, B.; Panjo, H.; Bithorel, P.L.; de La Rochebrochard, E.; François, M.; Pelletier-Fleury, N. The economic burden of infertility treatment and distribution of expenditures overtime in France: A self-controlled pre-post study. BMC Health Serv. Res. 2022, 22, 512. [Google Scholar] [CrossRef]
- Chen, Y.; Zhi, X. Roles of Vitamin D in Reproductive Systems and Assisted Reproductive Technology. Endocrinology 2020, 161, bqaa023. [Google Scholar] [CrossRef]
- Lerchbaum, E.; Obermayer-Pietsch, B. Vitamin D and fertility: A systematic review. Eur. J. Endocrinol. 2012, 166, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Grzeczka, A.; Graczyk, S.; Skowronska, A.; Skowronski, M.T.; Kordowitzki, P. Relevance of Vitamin D and Its Deficiency for the Ovarian Follicle and the Oocyte: An Update. Nutrients 2022, 14, 3712. [Google Scholar] [CrossRef]
- van Tienhoven, X.A.; Ruiz de Chávez Gascón, J.; Cano-Herrera, G.; Sarkis Nehme, J.A.; Souroujon Torun, A.A.; Bautista Gonzalez, M.F.; Esparza Salazar, F.; Sierra Brozon, A.; Rivera Rosas, E.G.; Carbajal Ocampo, D.; et al. Vitamin D in Reproductive Health Disorders: A Narrative Review Focusing on Infertility, Endometriosis, and Polycystic Ovarian Syndrome. Int. J. Mol. Sci. 2025, 26, 2256. [Google Scholar] [CrossRef]
- Chu, J.; Gallos, I.; Tobias, A.; Tan, B.; Eapen, A.; Coomarasamy, A. Vitamin D and assisted reproductive treatment outcome: A systematic review and meta-analysis. Human. Reprod. 2017, 33, 65–80. [Google Scholar] [CrossRef]
- Simpson, S.; Pal, L. Vitamin D and infertility. Curr. Opin. Obstet. Gynecol. 2023, 35, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Moolhuijsen, L.M.E.; Visser, J.A. Anti-Müllerian Hormone and Ovarian Reserve: Update on Assessing Ovarian Function. J. Clin. Endocrinol. Metab. 2020, 105, 3361–3373. [Google Scholar] [CrossRef]
- Kuroshli, Z.; Novin, M.G.; Nazarian, H.; Abdollahifar, M.A.; Zademodarres, S.; Pirani, M.; Jahvani, F.A.; Fathabady, F.F.; Mofarahe, Z.S. The Efficacy of Vitamin D Supplement in the Expression and Protein Levels of Endometrial Decidualization Factors in Women with Recurrent Implantation Failure. Reprod. Sci. 2024, 31, 675–686. [Google Scholar] [CrossRef]
- Maaherra Armstrong, P.; Augustin, H.; Bärebring, L.; Osmancevic, A.; Bullarbo, M.; Thurin-Kjellberg, A.; Tsiartas, P. Prevalence of Vitamin D Insufficiency and Its Determinants among Women Undergoing In Vitro Fertilization Treatment for Infertility in Sweden. Nutrients 2023, 15, 2820. [Google Scholar] [CrossRef]
- Dressler, N.; Chandra, A.; Aguirre Dávila, L.; Spineli, L.M.; Schippert, C.; von Versen-Höynck, F. BMI and season are associated with vitamin D deficiency in women with impaired fertility: A two-centre analysis. Arch. Gynecol. Obstet. 2016, 293, 907–914. [Google Scholar] [CrossRef]
- Lumme, J.; Morin-Papunen, L.; Pesonen, P.; Sebert, S.; Hyppönen, E.; Järvelin, M.-R.; Herzig, K.-H.; Ojaniemi, M.; Niinimäki, M. Vitamin D Status in Women with a History of Infertility and Decreased Fecundability: A Population-Based Study. Nutrients 2023, 15, 2522. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, J.; Wan, Q.; Huang, J.; Han, T.; Qu, T.; Yu, L.L. Influence of Vitamin D supplementation on reproductive outcomes of infertile patients: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2023, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.; Maunder, A.; Liu, J.; Vaddiparthi, V.; Costello, M.F.; Bahri-Khomami, M.; Mousa, A.; Ee, C. The Role of Nutrient Supplements in Female Infertility: An Umbrella Review and Hierarchical Evidence Synthesis. Nutrients 2024, 17, 57. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, X.; Luo, X.; Shao, J.; Guo, D.; Deng, B.; Wu, Z. Effect of Vitamin D Supplementation on In Vitro Fertilization Outcomes: A Trial Sequential Meta-Analysis of 5 Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 852428. [Google Scholar] [CrossRef]
- Somigliana, E.; Sarais, V.; Reschini, M.; Ferrari, S.; Makieva, S.; Cermisoni, G.C.; Paffoni, A.; Papaleo, E.; Vigano, P. Single oral dose of vitamin D3 supplementation prior to in vitro fertilization and embryo transfer in normal weight women: The SUNDRO randomized controlled trial. Am. J. Obstet. Gynecol. 2021, 225, 283.e1–283.e10. [Google Scholar] [CrossRef]
- Salari, N.; Nankali, A.; Ghanbari, A.; Jafarpour, S.; Ghasemi, H.; Dokaneheifard, S.; Mohammadi, M. Global prevalence of polycystic ovary syndrome in women worldwide: A comprehensive systematic review and meta-analysis. Arch. Gynecol. Obstet. 2024, 310, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- The Rotterdam ESHRE/ASRM—Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef]
- Ciampelli, M.; Fulghesu, A.M.; Cucinelli, F.; Pavone, V.; Ronsisvalle, E.; Guido, M.; Caruso, A.; Lanzone, A. Impact of insulin and body mass index on metabolic and endocrine variables in polycystic ovary syndrome. Metabolism 1999, 48, 167–172. [Google Scholar] [CrossRef]
- Dunaif, A.; Xia, J.; Book, C.B.; Schenker, E.; Tang, Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J. Clin. Investig. 1995, 96, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.L.; Siow, Y.; Brenner, A.G.; Fallat, M.E. Relationship between serum müllerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil. Steril. 2002, 77, 141–146. [Google Scholar] [CrossRef]
- Zerrouki, D.; Rami, I.; Assarrar, I.; Bouichrat, N.; Rouf, S.; Latrech, H. Is there any association between vitamin D status and PCOS disease? Gynecol. Endocrinol. 2024, 40, 2381501. [Google Scholar] [CrossRef]
- Chauhan, R.; Sahani, S.; Garg, A. Evaluation of vitamin D3 in patients of polycystic ovary syndrome and their correlation. Int. J. Reprod. Contracept. Obstet. Gynecol. 2017, 6, 2010–2016. [Google Scholar] [CrossRef]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef]
- Masjedi, F.; Keshtgar, S.; Zal, F.; Talaei-Khozani, T.; Sameti, S.; Fallahi, S.; Kazeroni, M. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. J. Steroid Biochem. Mol. Biol. 2020, 197, 105521. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Policola, C.; Prioletta, A.; Sorice, G.; Mezza, T.; Lassandro, A.; Della Casa, S.; Pontecorvi, A.; Giaccari, A. Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clin. Nutr. 2012, 31, 476–480. [Google Scholar] [CrossRef]
- Pal, L.; Zhang, H.; Williams, J.; Santoro, N.F.; Diamond, M.P.; Schlaff, W.D.; Coutifaris, C.; Carson, S.A.; Steinkampf, M.P.; Carr, B.R.; et al. Vitamin D Status Relates to Reproductive Outcome in Women With Polycystic Ovary Syndrome: Secondary Analysis of a Multicenter Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2016, 101, 3027–3035. [Google Scholar] [CrossRef]
- Lerchbaum, E.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Pilz, S.; Obermayer-Pietsch, B.; Trummer, C. Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial. Nutrients 2021, 13, 547. [Google Scholar] [CrossRef] [PubMed]
- Karadağ, C.; Yoldemir, T.; Yavuz, D.G. Effects of vitamin D supplementation on insulin sensitivity and androgen levels in vitamin-D-deficient polycystic ovary syndrome patients. J. Obstet. Gynaecol. Res. 2018, 44, 270–277. [Google Scholar] [CrossRef]
- Jamilian, M.; Foroozanfard, F.; Rahmani, E.; Talebi, M.; Bahmani, F.; Asemi, Z. Effect of Two Different Doses of Vitamin D Supplementation on Metabolic Profiles of Insulin-Resistant Patients with Polycystic Ovary Syndrome. Nutrients 2017, 9, 1280. [Google Scholar] [CrossRef]
- Tóth, B.E.; Takács, I.; Valkusz, Z.; Jakab, A.; Fülöp, Z.; Kádár, K.; Putz, Z.; Kósa, J.P.; Lakatos, P. Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial. Nutrients 2025, 17, 1246. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, X.; Lv, S.; Tian, S.; Jiang, Y.; Yang, X. Effects of vitamin D supplementation on metabolic parameters of women with polycystic ovary syndrome: A meta-analysis of randomized controlled trials. Gynecol. Endocrinol. 2021, 37, 446–455. [Google Scholar] [CrossRef]
- Han, Y.; Cao, Q.; Qiao, X.; Huang, W. Effect of vitamin D supplementation on hormones and menstrual cycle regularization in polycystic ovary syndrome women: A systemic review and meta-analysis. J. Obstet. Gynaecol. Res. 2023, 49, 2232–2244. [Google Scholar] [CrossRef]
- Cochrane, K.M.; Bone, J.N.; Williams, B.A.; Karakochuk, C.D. Optimizing vitamin D status in polycystic ovary syndrome: A systematic review and dose-response meta-analysis. Nutr. Rev. 2024, 82, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Shafrir, A.L.; Farland, L.V.; Shah, D.K.; Harris, H.R.; Kvaskoff, M.; Zondervan, K.; Missmer, S.A. Risk for and consequences of endometriosis: A critical epidemiologic review. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018, 51, 1–15. [Google Scholar] [CrossRef]
- Simoens, S.; Dunselman, G.; Dirksen, C.; Hummelshoj, L.; Bokor, A.; Brandes, I.; Brodszky, V.; Canis, M.; Colombo, G.L.; DeLeire, T.; et al. The burden of endometriosis: Costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 2012, 27, 1292–1299. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Viganò, P. Endometriosis. Nat. Rev. Dis. Primers 2018, 4, 9. [Google Scholar] [CrossRef]
- Treatment of pelvic pain associated with endometriosis. Fertil. Steril. 2006, 86, S18–S27. [CrossRef]
- Ferrero, S.; Gillott, D.J.; Venturini, P.L.; Remorgida, V. Use of aromatase inhibitors to treat endometriosis-related pain symptoms: A systematic review. Reprod. Biol. Endocrinol. 2011, 9, 89. [Google Scholar] [CrossRef]
- Endometriosis and infertility: A committee opinion. Fertil. Steril. 2012, 98, 591–598. [CrossRef] [PubMed]
- Drechsel-Grau, A.; Grube, M.; Neis, F.; Schoenfisch, B.; Kommoss, S.; Rall, K.; Brucker, S.Y.; Kraemer, B.; Andress, J. Long-Term Follow-Up Regarding Pain Relief, Fertility, and Re-Operation after Surgery for Deep Endometriosis. J. Clin. Med. 2024, 13, 5039. [Google Scholar] [CrossRef]
- Ciavattini, A.; Serri, M.; Delli Carpini, G.; Morini, S.; Clemente, N. Ovarian endometriosis and vitamin D serum levels. Gynecol. Endocrinol. 2017, 33, 164–167. [Google Scholar] [CrossRef]
- Delbandi, A.A.; Torab, M.; Abdollahi, E.; Khodaverdi, S.; Rokhgireh, S.; Moradi, Z.; Heidari, S.; Mohammadi, T. Vitamin D deficiency as a risk factor for endometriosis in Iranian women. J. Reprod. Immunol. 2021, 143, 103266. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, M.; Koga, K.; Izumi, G.; Sue, F.; Makabe, T.; Taguchi, A.; Nagai, M.; Urata, Y.; Takamura, M.; Harada, M.; et al. Effects of 1,25-Dihydroxy Vitamin D3 on Endometriosis. J. Clin. Endocrinol. Metab. 2016, 101, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Pazhohan, A.; Amidi, F.; Akbari-Asbagh, F.; Seyedrezazadeh, E.; Aftabi, Y.; Abdolalizadeh, J.; Khodarahmian, M.; Khanlarkhani, N.; Sobhani, A. Expression and shedding of CD44 in the endometrium of women with endometriosis and modulating effects of vitamin D: A randomized exploratory trial. J. Steroid Biochem. Mol. Biol. 2018, 178, 150–158. [Google Scholar] [CrossRef]
- Mehdizadehkashi, A.; Rokhgireh, S.; Tahermanesh, K.; Eslahi, N.; Minaeian, S.; Samimi, M. The effect of vitamin D supplementation on clinical symptoms and metabolic profiles in patients with endometriosis. Gynecol. Endocrinol. 2021, 37, 640–645. [Google Scholar] [CrossRef]
- Nodler, J.L.; DiVasta, A.D.; Vitonis, A.F.; Karevicius, S.; Malsch, M.; Sarda, V.; Fadayomi, A.; Harris, H.R.; Missmer, S.A. Supplementation with vitamin D or ω-3 fatty acids in adolescent girls and young women with endometriosis (SAGE): A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2020, 112, 229–236. [Google Scholar] [CrossRef]
- Jensen, M.B. Vitamin D and male reproduction. Nat. Rev. Endocrinol. 2014, 10, 175–186. [Google Scholar] [CrossRef]
- de Angelis, C.; Galdiero, M.; Pivonello, C.; Garifalos, F.; Menafra, D.; Cariati, F.; Salzano, C.; Galdiero, G.; Piscopo, M.; Vece, A.; et al. The role of vitamin D in male fertility: A focus on the testis. Rev. Endocr. Metab. Disord. 2017, 18, 285–305. [Google Scholar] [CrossRef]
- Hochberg, Z.; Borochowitz, Z.; Benderli, A.; Vardi, P.; Oren, S.; Spirer, Z.; Heyman, I.; Weisman, Y. Does 1,25-dihydroxyvitamin D participate in the regulation of hormone release from endocrine glands? J. Clin. Endocrinol. Metab. 1985, 60, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Frisch, S.; Koertke, H.; Kuhn, J.; Dreier, J.; Obermayer-Pietsch, B.; Wehr, E.; Zittermann, A. Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 2011, 43, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Marnani, E.; Mollahosseini, M.; Gheflati, A.; Ghadiri-Anari, A.; Nadjarzadeh, A. The effect of vitamin D supplementation on the androgenic profile in men: A systematic review and meta-analysis of clinical trials. Andrologia 2019, 51, e13343. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Pilz, S.; Trummer, C.; Schwetz, V.; Pachernegg, O.; Heijboer, A.C.; Obermayer-Pietsch, B. Vitamin D and Testosterone in Healthy Men: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2017, 102, 4292–4302. [Google Scholar] [CrossRef]
- Adamczewska, D.; Słowikowska-Hilczer, J.; Walczak-Jędrzejowska, R. The Association between Vitamin D and the Components of Male Fertility: A Systematic Review. Biomedicines 2023, 11, 90. [Google Scholar]
- Arab, A.; Hadi, A.; Moosavian, S.P.; Askari, G.; Nasirian, M. The association between serum vitamin D, fertility and semen quality: A systematic review and meta-analysis. Int. J. Surg. 2019, 71, 101–109. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Bjerrum, P.J.; Jessen, T.E.; Nielsen, J.E.; Joensen, U.N.; Olesen, I.A.; Petersen, J.H.; Juul, A.; Dissing, S.; Jørgensen, N. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa. Hum. Reprod. 2011, 26, 1307–1317. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Lawaetz, J.G.; Petersen, J.H.; Juul, A.; Jørgensen, N. Effects of Vitamin D Supplementation on Semen Quality, Reproductive Hormones, and Live Birth Rate: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2018, 103, 870–881. [Google Scholar] [CrossRef] [PubMed]
| Endocrine Disorder | Vitamin D Status | Established Role of Supplementation | Controversial/Potential Role | Key Evidence Summary |
|---|---|---|---|---|
| Osteoporosis | Deficiency is a major risk factor | Supported. Combined with calcium, for high-risk patients and those on anti-resorptive therapy | Optimal dosing and use in the general population remain debated | Meta-analyses support fracture reduction at 800–1000 IU/day, but some large RCTs (e.g., VITAL) found no benefit in the general population |
| Primary Hyperparathyroidism | Deficiency/insufficiency is highly prevalent (up to 81%) | Supported. Maintain levels of 30–50 ng/mL | The low 25(OH)D3 may be due to increased conversion to 1,25(OH)D3, not a “true” deficiency. | Studies show repletion is safe, lowers PTH, and improves the biochemical profile without worsening hypercalcemia. |
| Hypoparathyroidism | Unknown | Supported. Active vitamin D supplementation is the cornerstone of therapy, alongside calcium supplementation. | The exact benefit of non-active vitamin D supplementation is still debated | Guidelines favor active forms for precise titration. Non-active forms are used as an adjunct. A 25(OH)D3 level of 30–50 ng/mL is recommended. |
| Osteomalacia | Deficiency is the most common cause. | Supported. Causality is proven. Therapy is directed at the underlying deficiency. | There are no controversies | Diagnosis is often missed. Guidelines recommend loading doses followed by maintenance therapy. |
| Hashimoto’s Thyroiditis (HT) | High prevalence of deficiency An inverse correlation was found in many studies. | Not Supported. | May reduce ATPO/ATG levels and risk of progression, but evidence is inconsistent. | Observational studies are promising, but the field lacks large RCTs, and some studies show no association. |
| Postpartum Thyroiditis (PPT) | Limited data: pilot studies suggest a correlation with low levels. | Not Supported. | May have an additive benefit to L-thyroxine in lowering ATPO levels. | Evidence is limited to a few small observational and pilot studies. |
| Basedow–Graves’ Disease (BGD) | Associated with lower 25(OH)D3 levels. | Not Supported. | Observational data suggested a link, but interventional trials failed to show benefit. | Large trials (e.g., DAGMAR) found no benefit from supplementation in preventing recurrence or improving TRAb titers. |
| Thyroid Cancer | Association described in in vitro and animal models. | Not Supported. | In vitro data are compelling (e.g., reduces cell migration) | No RCTs are available. |
| Female Infertility | High prevalence of deficiency (27–80%) in infertile women. | Not Supported. | May improve clinical pregnancy rates, especially in deficient patients, but the evidence is contradictory | Meta-analyses show mixed results. The SUNDRO trial found no benefit for clinical pregnancy rates in IVF |
| Polycystic Ovary Syndrome | High prevalence of deficiency (40–80%) | Supported (deficiency only). Preconception nutritional care. | May improve ovulation, cycle regularity, and androgen levels | Several meta-analyses and RCTs found benefits, but the exact dosing and effects remain debated. |
| Endometriosis | High prevalence of deficiency (70–85%) | Not Supported. | May reduce pelvic pain and inflammation | The evidence is insufficient and contradictory. The SAGE trial found no improvement in pelvic pain in vitamin D-sufficient patients |
| Male Infertility | Infertile men often have lower vitamin D levels. | Not Supported. | Positively correlated with sperm motility. | No consistent evidence for improving testosterone levels. A large RCT found no improvement in sperm quality or live births in the general group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lengyel, B.; Armos, R.; Bojtor, B.; Kiss, A.; Tobias, B.; Piko, H.; Illes, A.; Horvath, E.; Putz, Z.; Takacs, I.; et al. Vitamin D in Endocrine Disorders: A Broad Overview of Evidence in Musculoskeletal, Thyroid, Parathyroid, and Reproductive Disorders. Pharmaceuticals 2026, 19, 54. https://doi.org/10.3390/ph19010054
Lengyel B, Armos R, Bojtor B, Kiss A, Tobias B, Piko H, Illes A, Horvath E, Putz Z, Takacs I, et al. Vitamin D in Endocrine Disorders: A Broad Overview of Evidence in Musculoskeletal, Thyroid, Parathyroid, and Reproductive Disorders. Pharmaceuticals. 2026; 19(1):54. https://doi.org/10.3390/ph19010054
Chicago/Turabian StyleLengyel, Balazs, Richard Armos, Bence Bojtor, Andras Kiss, Balint Tobias, Henriett Piko, Anett Illes, Eszter Horvath, Zsuzsanna Putz, Istvan Takacs, and et al. 2026. "Vitamin D in Endocrine Disorders: A Broad Overview of Evidence in Musculoskeletal, Thyroid, Parathyroid, and Reproductive Disorders" Pharmaceuticals 19, no. 1: 54. https://doi.org/10.3390/ph19010054
APA StyleLengyel, B., Armos, R., Bojtor, B., Kiss, A., Tobias, B., Piko, H., Illes, A., Horvath, E., Putz, Z., Takacs, I., Kosa, J. P., & Lakatos, P. (2026). Vitamin D in Endocrine Disorders: A Broad Overview of Evidence in Musculoskeletal, Thyroid, Parathyroid, and Reproductive Disorders. Pharmaceuticals, 19(1), 54. https://doi.org/10.3390/ph19010054

