Neuroprotective Potential of SGLT2 Inhibitors in Animal Models of Alzheimer’s Disease and Type 2 Diabetes Mellitus: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment Method
2.5. Statistical Analysis
3. Results
3.1. Literature Screening
3.2. Characteristics of Reviewed Studies
3.3. Quality Assessment Results
3.4. Meta-Analysis of Morris Water Maze Results
3.4.1. Escape Latency in T2dm Models
3.4.2. Escape Latency in AD Models
3.4.3. Time in Target Quadrant for T2DM Models
3.4.4. Time in Target Quadrant for AD Models
3.5. Key Molecular Outcomes
3.6. Publication Bias
4. Discussion
4.1. Insulin Resistance Is Central in AD Development
4.2. SGLT2i Improves Spatial Memory Function
4.3. SGLT2i Inhibits Aβ Accumulation
4.4. SGLT2i Targets Neuroinflammation and Oxidative Stress
4.5. Additional Pleiotropic Effect by SGLT2i
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef] [PubMed]
- W.H.O. World Failing to Address Dementia Challenge. Available online: https://www.who.int/news/item/02-09-2021-world-failing-to-address-dementia-challenge# (accessed on 12 August 2024).
- Arumugam, T. Dementia Cases Set to Rise 312 Per Cent by 2050: Is Malaysia Prepared? Available online: https://adfm.org.my/dementia-cases-set-to-rise-312-per-cent-by-2050-is-malaysia-prepared/ (accessed on 1 March 2024).
- Kim, B.H.; Kim, S.; Nam, Y.; Park, Y.H.; Shin, S.M.; Moon, M. Second-generation anti-amyloid monoclonal antibodies for Alzheimer’s disease: Current landscape and future perspectives. Transl. Neurodegener. 2025, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Lonkar, N.; Latz, E.; McManus, R.M. Neuroinflammation and immunometabolism in neurodegenerative diseases. Curr. Opin. Neurol. 2025, 38, 163–171. [Google Scholar] [CrossRef]
- Ortega, A.; Chernicki, B.; Ou, G.; Parmar, M.S. From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer’s Disease. Mol. Neurobiol. 2024, 62, 1112–1135. [Google Scholar] [CrossRef]
- Padda, I.S.; Parmar, M. Aducanumab. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimer’s Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef]
- Hobday, A.L.; Parmar, M.S. The Link Between Diabetes Mellitus and Tau Hyperphosphorylation: Implications for Risk of Alzheimer’s Disease. Cureus 2021, 13, e18362. [Google Scholar] [CrossRef]
- Jennifer, Y.Y.S.; Simon, J.G.L. Current Treatment Options for Alzheimer’s Disease and Parkinson’s Disease Dementia. Curr. Neuropharmacol. 2016, 14, 326–338. [Google Scholar] [CrossRef]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef]
- De Felice, F.G.; Ferreira, S.T. Inflammation, Defective Insulin Signaling, and Mitochondrial Dysfunction as Common Molecular Denominators Connecting Type 2 Diabetes to Alzheimer Disease. Diabetes 2014, 63, 2262–2272. [Google Scholar] [CrossRef]
- Hamzé, R.; Delangre, E.; Tolu, S.; Moreau, M.; Janel, N.; Bailbé, D.; Movassat, J. Type 2 diabetes mellitus and Alzheimer’s disease: Shared molecular mechanisms and potential common therapeutic targets. Int. J. Mol. Sci. 2022, 23, 15287. [Google Scholar] [CrossRef]
- Ardura-Fabregat, A.; Boddeke, E.; Boza-Serrano, A.; Brioschi, S.; Castro-Gomez, S.; Ceyzériat, K.; Dansokho, C.; Dierkes, T.; Gelders, G.; Heneka, M.T. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 2017, 31, 1057–1082. [Google Scholar] [CrossRef]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef]
- Gunawan, P.Y.; Gunawan, P.A.; Hariyanto, T.I. Risk of Dementia in Patients with Diabetes Using Sodium-Glucose Transporter 2 Inhibitors (SGLT2i): A Systematic Review, Meta-Analysis, and Meta-Regression. Diabetes Ther. 2024, 15, 663–675. [Google Scholar] [CrossRef]
- Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE 2014, 9, e112394. [Google Scholar] [CrossRef] [PubMed]
- Rykova, E.Y.; Klimontov, V.V.; Shmakova, E.; Korbut, A.I.; Merkulova, T.I.; Kzhyshkowska, J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int. J. Mol. Sci. 2025, 26, 1670. [Google Scholar] [CrossRef]
- Hierro-Bujalance, C.; Infante-Garcia, C.; del Marco, A.; Herrera, M.; Carranza-Naval, M.J.; Suarez, J.; Alves-Martinez, P.; Lubian-Lopez, S.; Garcia-Alloza, M. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimer’s Res. Ther. 2020, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, H.; Ismail, A.; Abdelsalam, R.M.; El-Sahar, A.E.; Saad, M.A. Dapagliflozin diminishes memory and cognition impairment in Streptozotocin induced diabetes through its effect on Wnt/β-Catenin and CREB pathway. Brain Res. Bull. 2022, 181, 109–120. [Google Scholar] [CrossRef]
- Shah, K.; DeSilva, S.; Abbruscato, T. The role of glucose transporters in brain disease: Diabetes and Alzheimer’s disease. Int. J. Mol. Sci. 2012, 13, 12629–12655. [Google Scholar] [CrossRef] [PubMed]
- Jurcovicova, J. Glucose transport in brain-effect of inflammation. Endocr. Regul. 2014, 48, 35–48. [Google Scholar] [CrossRef]
- Enerson, B.E.; Drewes, L.R. The rat blood—Brain barrier transcriptome. J. Cereb. Blood Flow. Metab. 2006, 26, 959–973. [Google Scholar] [CrossRef]
- Heimke, M.; Lenz, F.; Rickert, U.; Lucius, R.; Cossais, F. Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells 2022, 11, 3107. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav. Modif. 2017, 41, 323–339. [Google Scholar] [CrossRef]
- Macleod, M.R.; O’Collins, T.; Howells, D.W.; Donnan, G.A. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 2004, 35, 1203–1208. [Google Scholar] [CrossRef]
- Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol. 2014, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Khan, S.; Akhtar, M.; Ali, J.; Najmi, A.K. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem. Int. 2021, 150, 105158. [Google Scholar] [CrossRef] [PubMed]
- Gui, Z.; Wang, J.; Zhang, Y.; Wan, B.; Ke, Z.; Ren, Z.; Yang, X.; Lei, M.; Guo, X.; Liu, X.; et al. Dapagliflozin improves diabetic cognitive impairment via indirectly modulating the mitochondria homeostasis of hippocampus in diabetic mice. Biofactors 2024, 50, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Sim, A.Y.; Choi, D.H.; Kim, J.Y.; Kim, E.R.; Goh, A.R.; Lee, Y.H.; Lee, J.E. SGLT2 and DPP4 inhibitors improve Alzheimer’s disease-like pathology and cognitive function through distinct mechanisms in a T2D-AD mouse model. Biomed. Pharmacother. 2023, 168, 115755. [Google Scholar] [CrossRef]
- Hazaryavuz, A.; Yildiz, S.; Kaya, R.; Çam, M.; Kabasakal, L. Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. J. Res. Pharm. 2022, 26, 298–310. [Google Scholar] [CrossRef]
- Ibrahim, W.W.; Kamel, A.S.; Wahid, A.; Abdelkader, N.F. Dapagliflozin as an autophagic enhancer via LKB1/AMPK/SIRT1 pathway in ovariectomized/d-galactose Alzheimer’s rat model. Inflammopharmacology 2022, 30, 2505–2520. [Google Scholar] [CrossRef]
- Arafa, N.M.S.; Ali, E.H.A.; Hassan, M.K. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem. Biol. Interact. 2017, 277, 195–203. [Google Scholar] [CrossRef]
- Arab, H.H.; Eid, A.H.; Alsufyani, S.E.; Ashour, A.M.; El-Sheikh, A.A.K.; Darwish, H.W.; Sabry, F.M. Targeting Autophagy, Apoptosis, and Oxidative Perturbations with Dapagliflozin Mitigates Cadmium-Induced Cognitive Dysfunction in Rats. Biomedicines 2023, 11, 3000. [Google Scholar] [CrossRef]
- Borikar, S.P.; Sonawane, D.S.; Tapre, D.N.; Jain, S.P. Exploring the neuropharmacological potential of empagliflozin on nootropic and scopolamine-induced amnesic model of Alzheimer’s like conditions in rats. Int. J. Neurosci. 2024, 135, 1010–1022. [Google Scholar] [CrossRef]
- Samman, W.A.; Selim, S.M.; El Fayoumi, H.M.; El-Sayed, N.M.; Mehanna, E.T.; Hazem, R.M. Dapagliflozin Ameliorates Cognitive Impairment in Aluminum-Chloride-Induced Alzheimer’s Disease via Modulation of AMPK/mTOR, Oxidative Stress and Glucose Metabolism. Pharmaceuticals 2023, 16, 753. [Google Scholar] [CrossRef]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.B.; Velosky, A.G.; McCabe, J.T. Applications of the Morris water maze in translational traumatic brain injury research. Neurosci. Biobehav. Rev. 2018, 88, 187–200. [Google Scholar] [CrossRef]
- Mitra, S.; Banik, A.; Saurabh, S.; Maulik, M.; Khatri, S.N. Neuroimmunometabolism: A new pathological nexus underlying neurodegenerative disorders. J. Neurosci. 2022, 42, 1888–1907. [Google Scholar] [CrossRef]
- Neto, A.; Fernandes, A.; Barateiro, A. The complex relationship between obesity and neurodegenerative diseases: An updated review. Front. Cell. Neurosci. 2023, 17, 1294420. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.J.d.O.; Oliveira, L.M.d.; Bittencourt, A.M.V.; Lourenço, L.G.d.C.; Oliveira, G.C.M.d. Brain insulin resistance and Alzheimer’s disease: A systematic review. Dement. Neuropsychol. 2024, 18, e20230032. [Google Scholar] [CrossRef]
- Yoon, J.H.; Hwang, J.; Son, S.U.; Choi, J.; You, S.-W.; Park, H.; Cha, S.-Y.; Maeng, S. How can insulin resistance cause Alzheimer’s disease? Int. J. Mol. Sci. 2023, 24, 3506. [Google Scholar] [CrossRef]
- Meakin, P.J.; Mezzapesa, A.; Benabou, E.; Haas, M.E.; Bonardo, B.; Grino, M.; Brunel, J.-M.; Desbois-Mouthon, C.; Biddinger, S.B.; Govers, R. The beta secretase BACE1 regulates the expression of insulin receptor in the liver. Nat. Commun. 2018, 9, 1306. [Google Scholar] [CrossRef]
- Kim, B.; Elzinga, S.E.; Henn, R.E.; McGinley, L.M.; Feldman, E.L. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiol. Dis. 2019, 132, 104541. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, G. BACE1 function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer’s disease pathology. Molecules 2017, 22, 1723. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, A.; Pomilio, C.; Gregosa, A.; Bentivegna, M.; Presa, J.; Bellotto, M.; Saravia, F.; Beauquis, J. Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease. Front. Neurosci. 2021, 15, 653651. [Google Scholar] [CrossRef] [PubMed]
- Puthusseryppady, V.; Morrissey, S.; Spiers, H.; Patel, M.; Hornberger, M. Predicting real world spatial disorientation in Alzheimer’s disease patients using virtual reality navigation tests. Sci. Rep. 2022, 12, 13397. [Google Scholar] [CrossRef] [PubMed]
- Youn, Y.J.; Kim, S.; Jeong, H.J.; Ah, Y.M.; Yu, Y.M. Sodium-glucose cotransporter-2 inhibitors and their potential role in dementia onset and cognitive function in patients with diabetes mellitus: A systematic review and meta-analysis. Front. Neuroendocrinol. 2024, 73, 101131. [Google Scholar] [CrossRef]
- Low, S.; Goh, K.S.; Ng, T.P.; Moh, A.; Ang, S.F.; Wang, J.; Ang, K.; Tang, W.E.; Lim, Z.; Subramaniam, T.; et al. Association Between Use of Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors and Cognitive Function in a Longitudinal Study of Patients with Type 2 Diabetes. J. Alzheimers Dis. 2022, 87, 635–642. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef]
- Aran, K.R.; Singh, S. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease–A step towards mitochondria based therapeutic strategies. Aging Health Res. 2023, 3, 100169. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, S.; Zhu, P.; Hu, S.; Chen, Y.; Ren, J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018, 15, 335–346. [Google Scholar] [CrossRef]
- Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]
- Olesen, M.A.; Torres, A.K.; Jara, C.; Murphy, M.P.; Tapia-Rojas, C. Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biol. 2020, 34, 101558. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, J.; Yang, M.; Ke, X.; Dai, Y.; Lin, H.; Wang, S.; Chen, L.; Tao, J. Chemical genetic activation of the cholinergic basal forebrain hippocampal circuit rescues memory loss in Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Chaudhaery, S.S.; Roy, K.K.; Shakya, N.; Saxena, G.; Sammi, S.R.; Nazir, A.; Nath, C.; Saxena, A.K. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: Pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem. 2010, 53, 6490–6505. [Google Scholar] [CrossRef] [PubMed]
- Shakil, S. Molecular interaction of anti-diabetic drugs with acetylcholinesterase and sodium glucose co-transporter 2. J. Cell. Biochem. 2017, 118, 3855–3865. [Google Scholar] [CrossRef]






| Study | Disease Model | Induction Method | Species | Sex | Age (Week) | Group Size | Experimental Design | Outcomes Measured | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ctrl | Treatment | SGLT2i | Dose | Route | Spatial Memory Function (MWM) | Aβ Markers | Inflammatory and Oxidative Stress Markers | ||||||
| Lin et al. (2014) [29] | T2DM | Not reported | db/db mice | M | 7 | 9 | 9 | EMPA | 0.03% | Oral | Escape latency | Not reported |
|
| Khan et al. (2021) [30] | T2DM | HFD | C57BL/6 mice | M | 3–4 | 11 | 8 | EMPA | 4.4 mg/kg/day | Oral | Escape latency |
|
|
| Gui et al. (2024) [31] | T2DM | STZ + HFD | C57BL/6 mice | M | 6–8 | 10 | 10 | DAPA | 25 mg/kg/day | Oral |
| Morphological changes in the hippocampus | Not reported |
| El-Safty et al. (2022) [21] | T2DM | STZ | Wistar rats | M | Not reported | 10 | 10 | DAPA | 1 mg/kg/day | Oral |
| Not reported | Not reported |
| Sim et al. (2023) [32] | T2DM | STZ (100 mg/kg, IP) + HFD | C57BL/6 mice | M | 8 | 8 | 10 | EMPA | 25 mg/kg/day | Oral | Escape latency | Aβ accumulation Aβ/β actin ratio | Not reported |
| Hazaryavuz et al. (2022) [33] | AD | icv-STZ intracerebrovascular | Wistar rats | E | Not reported | 8 | 8 | DAPA | 1 mg/kg | Oral | Escape latency | Not reported | Not reported |
| Samman et al. (2023) [38] | AD | AlCl3 | Swiss rats | M | Not reported | 6 | 6 | DAPA | 1 and 5 mg/kg | Oral | Escape latency | Aβ levels | MDA, SOD, CAT |
| Ibrahim et al. (2022) [34] | AD | Ovariectomised/D-galactose | Wistar rat | F | 12–16 | 10 | 10 | DAPA | 1 mg/kg/day | Oral | Time spent in the target quadrant | Not reported | Not reported |
| Arafa et al. (2017) [35] | AD | SCO | Wistar rats | M | 5–6 | 9 | 9 | CANA | 10 mg/kg | Oral | Escape latency | Not reported | Not reported |
| Borikar et al. (2024) [37] | AD | SCO | Wistar rats | M | 12–16 | 12 | 12 | EMPA | 5 and 10 mg/kg/day | Oral |
| Not reported | GSH, LPO, CAT |
| Arab et al. (2023) [36] | AD | CdCl2 | Wistar rats | NR | 8–10 | 6 | 6 | DAPA | 1 mg/kg/day | Oral |
| Aβ42 expression | Not reported |
| Hierro-Bujalance et al. (2020) [20] | AD | Transgenic mice | APP/PS1 db/db mice | E | 4 | 11 | 11 | EMPA | 10 mg/kg | Oral |
| Soluble and insoluble Aβ40 and Aβ42 | Microglia burden |
| No. | Author | CAMARADES Study Quality Checklist | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | Quality Score | ||
| 1 | Hierro-Bujalance et al. (2020) [20] | Y | N | Y | N | N | Y | Y | N | Y | Y | 6 |
| 2 | Lin et al. (2014) [29] | Y | N | Y | N | Y | Y | Y | N | Y | Y | 7 |
| 3 | Khan et al. (2021) [30] | Y | Y | N | N | N | Y | Y | Y | Y | Y | 7 |
| 4 | Hazaryavuz et al. (2022) [33] | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
| 5 | Samman et al. (2023) [38] | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
| 6 | Ibrahim et al. (2022) [34] | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
| 7 | Gui et al. (2024) [31] | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
| 8 | Sim et al. (2023) [32] | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
| 9 | El-Safty et al. (2022) [21] | Y | Y | Y | N | N | Y | Y | Y | Y | Y | 8 |
| 10 | Arafa et al. (2017) [35] | Y | Y | N | N | N | Y | Y | N | Y | Y | 6 |
| 11 | Borikar et al. (2024) [37] | Y | Y | N | N | N | Y | Y | N | Y | Y | 6 |
| 12 | Arab et al. (2023) [36] | Y | Y | Y | N | N | Y | Y | N | Y | Y | 7 |
| AVERAGE SCORE | 6.83 | |||||||||||
| Study | Animal Model | Analysis Method | Effect of SGLT2i on Aβ |
|---|---|---|---|
| Hierro-Bujalance et al. (2020) [20] | AD | ELISA | Significant reduction in the level of insoluble Aβ40 in the cortex. |
| Arab et al. (2023) [36] | AD | ELISA | Significant reduction in the expression of Aβ42 in the hippocampus. |
| Samman et al. (2023) [38] | AD | ELISA | A trend of significant dose-dependent reduction in Aβ levels in the brain homogenate. |
| Khan et al. (2021) [30] | T2DM | ELISA | Significant reduction in hippocampus Aβ (1–40) and Aβ (1–42) levels. |
| Congo red staining | Reduced Aβ accumulation in the hippocampal section. | ||
| Gui et al. (2024) [31] | T2DM | Congo red staining | Limiting the production of Aβ in the hippocampus after treatment. |
| Sim et al. (2023) [32] | T2DM | IHC | Lower Aβ accumulation in the cortex and hippocampus. |
| WB | Lower Aβ/β actin ratio in the cortex and hippocampus. |
| Study | Animal Model | Effect of SGLT2i on Inflammatory and Oxidative Stress |
|---|---|---|
| Lin et al. (2014) [29] | T2DM | Significant reduction in cerebral superoxide and DNA damage. |
| Khan et al. (2021) [30] | T2DM | Significantly reduced inflammatory markers (IL6, IL1B, TNFa) and oxidative stress after SGLT2i treatment. The activity of cellular antioxidant defence capacity was increased by SGLT2i treatment. |
| El-Safty et al. (2022) [21] | T2DM | SGLT2i treatment significantly reversed the elevation of oxidative stress in the hippocampus. |
| Samman et al. (2023) [38] | AD | SGLT2i treatment significantly reversed the elevation of oxidative stress in the hippocampus and improved the antioxidant markers. |
| Borikar et al. (2024) [37] | AD | SGLT2i treatment significantly reversed the elevation of oxidative stress in the hippocampus and improved the antioxidant markers. |
| Arab et al. (2023) [36] | AD | Significant reduction in the hippocampal lipid peroxide level and an elevation in the antioxidant levels. |
| Hierro-Bujalance et al. (2020) [20] | AD | Significant reduction in the microglia burden in the cortex and hippocampus in all conditions after SGLT2i treatment. Reductions were especially evident in the area distant from the senile plaques. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Md Roslan, A.H.; Tengku Muhazan Shah, T.M.H.; Mohd Saffian, S.; John, L.J.; Che Ramli, M.D.; Nassir, C.M.N.C.M.; Mahadi, M.K.; Hein, Z.M. Neuroprotective Potential of SGLT2 Inhibitors in Animal Models of Alzheimer’s Disease and Type 2 Diabetes Mellitus: A Systematic Review. Pharmaceuticals 2026, 19, 166. https://doi.org/10.3390/ph19010166
Md Roslan AH, Tengku Muhazan Shah TMH, Mohd Saffian S, John LJ, Che Ramli MD, Nassir CMNCM, Mahadi MK, Hein ZM. Neuroprotective Potential of SGLT2 Inhibitors in Animal Models of Alzheimer’s Disease and Type 2 Diabetes Mellitus: A Systematic Review. Pharmaceuticals. 2026; 19(1):166. https://doi.org/10.3390/ph19010166
Chicago/Turabian StyleMd Roslan, Azim Haikal, Tengku Marsya Hadaina Tengku Muhazan Shah, Shamin Mohd Saffian, Lisha Jenny John, Muhammad Danial Che Ramli, Che Mohd Nasril Che Mohd Nassir, Mohd Kaisan Mahadi, and Zaw Myo Hein. 2026. "Neuroprotective Potential of SGLT2 Inhibitors in Animal Models of Alzheimer’s Disease and Type 2 Diabetes Mellitus: A Systematic Review" Pharmaceuticals 19, no. 1: 166. https://doi.org/10.3390/ph19010166
APA StyleMd Roslan, A. H., Tengku Muhazan Shah, T. M. H., Mohd Saffian, S., John, L. J., Che Ramli, M. D., Nassir, C. M. N. C. M., Mahadi, M. K., & Hein, Z. M. (2026). Neuroprotective Potential of SGLT2 Inhibitors in Animal Models of Alzheimer’s Disease and Type 2 Diabetes Mellitus: A Systematic Review. Pharmaceuticals, 19(1), 166. https://doi.org/10.3390/ph19010166

