Beyond Direct Fibrinolysis: Novel Approaches to Thrombolysis
Abstract
1. Introduction
1.1. Blood Clots: Structure and Composition
1.2. Biochemical Mechanisms of Thrombolysis Regulation
1.3. Thrombolysis: Definition and Objectives
1.4. From Classical to Novel Strategies: Rationale for Innovation
2. Classical Approaches to Fibrinolysis: Plasminogen Activators
2.1. Streptokinase: The First-Generation Plasminogen Activator
2.2. Urokinase: A Human-Derived Direct Plasminogen Activator
2.3. Tissue-Type Plasminogen Activator: The Gold Standard
2.4. Next-Generation Variants
3. Strategies to Improve Thrombolytic Therapy: Expanding Indications and Reducing Side Effects
3.1. Targeting Neutrophil Extracellular Traps to Improve Thrombolysis
3.2. Targeting Von Willebrand Factor to Improve Thrombolysis
3.3. Targeting Extracellular Matrix Components and Proteoglycans to Enhance Thrombolysis
3.4. Destabilase: Targeting Fibrin Isopeptide Cross-Links to Facilitate Thrombolysis
3.5. Inhibition of Fibrinolysis Inhibitors as a Strategy to Enhance Thrombolytic Efficacy
3.6. Reduction of Plasminogen Activator Therapy Side Effects
3.7. Personalizing Thrombolysis Based on Clot Composition, Origin, and Age
| Therapy | Target | Disease | Side Effects | Advantage | Status | Refs |
|---|---|---|---|---|---|---|
| Streptokinase (SK) | Fibrin | AMI | Immunogenicity systemic activation of plasminogen bleeding | Low cost | Not used in developed countries but used in developing countries | [47,48,49] |
| uPA | Fibrin | PE AMI AIS | depletion of fibrinogen bleeding | No immunogenicity Lower bleeding | Limited use in AIS | [55,57,158] |
| tPA | Fibrin | AMI AIS PE | ICH bleeding neurotoxicity | Higher efficacy Lower systemic action | Worldwide standard | [3,60,61] |
| Tenecteplase (TNK) | Fibrin | AIS AMI | Bleeding | Lower bleeding Better administration profile | Ongoing clinical trials limited use | [37,159] |
| Desmoteplase | Fibrin | AIS | Bleeding | No neurotoxicity Lower bleeding | Completed clinical trials | [160] |
| DNAse I DNAse I + tPA DNAse I + TNK | NETs NETs + fibrin NETs + fibrin | AIS | No significant | Better neurological outcome, lower bleeding | In vitro and in vivo studies Clinical trial | [79,80] NCT05203224 |
| Adamts13 | vWF | AIS | No significant | Better neurological outcome Lower bleeding | In vivo studies | [88] |
| caADAMTS13 + tPA | vWF + fibrin | AIS | No significant | Enhanced clot lysis | In vivo studies | [91] |
| NAC + tPA | Multimer vWF formation + fibrin | AIS | Bleeding in patients with antiplatelet therapy | Enhanced clot lysis | Small group studies | [95] |
| Destabilase + SK | Fibrin isopeptids cross-links + fibrin | Arterial and venous thrombosis | Enhanced clot lysis | In vitro Animal models | [122,123] | |
| Tiplaxtinin, TM5275 + tPA | PAI-1, fibrin | Arterial thrombosis | Enhanced clot lysis, similar to increased tPA dose | Animal models | [129,130] | |
| MA33H1 | PAI-1 | AIS | Enhanced endogeneous fibrinolysis, reduced ischemia volume | Animal models | [131] | |
| MA-TCK26D6 | TAFI | AIS | Enhanced endogeneous fibrinolysis, reduced ischemia volume | Animal models | [131,136] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DNA | deoxyribonucleic acid |
| ADAMTS13 | a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 |
| NETs | neutrophil extracellular traps |
| DNAse | deoxyribonuclease |
| vWF | von Willebrand factor |
| PAI-1 | plasminogen activator inhibitor-1 |
| tPA | tissue-type plasminogen activator |
| uPA | urokinase plasminogen activator |
| SK | streptokinase |
| TAFI | thrombin-activatable fibrinolysis inhibitor |
| RBC | red blood cell |
| AMI | acute myocardial infarction |
| PE | pulmonary embolism |
| AIS | acute ischemic stroke |
| DVT | deep-vein thrombosis |
| ICH | intracranial hemorrhage |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Ho-Tin-Noé, B.; Desilles, J.-P.; Mazighi, M. Thrombus composition and thrombolysis resistance in stroke. Res. Pract. Thromb. Haemost. 2023, 7, 100178. [Google Scholar] [CrossRef]
- National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1581–1587. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Saqqur, M.; Tsivgoulis, G.; Molina, C.A.; Demchuk, A.M.; Siddiqui, M.; Alvarez-Sabín, J.; Uchino, K.; Calleja, S.; Alexandrov, A.V. Symptomatic intracerebral hemorrhage and recanalization after IV rt-PA. Neurology 2008, 71, 1304–1312. [Google Scholar] [CrossRef]
- Mackman, N. Triggers, targets and treatments for thrombosis. Nature 2008, 451, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Dale, G.L.; Friese, P.; Batar, P.; Hamilton, S.F.; Reed, G.L.; Jackson, K.W.; Clemetson, K.J.; Alberio, L. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 2002, 415, 175–179. [Google Scholar] [CrossRef]
- Panteleev, M.A.; Ananyeva, N.M.; Greco, N.J.; Ataullakhanov, F.I.; Saenko, E.L. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 2005, 3, 2545–2553. [Google Scholar] [CrossRef]
- Abaeva, A.A.; Canault, M.; Kotova, Y.N.; Obydennyy, S.I.; Yakimenko, A.O.; Podoplelova, N.A.; Kolyadko, V.N.; Chambost, H.; Mazurov, A.V.; Ataullakhanov, F.I.; et al. Procoagulant Platelets Form an α-Granule Protein-covered “Cap” on Their Surface That Promotes Their Attachment to Aggregates. J. Biol. Chem. 2013, 288, 29621–29632. [Google Scholar] [CrossRef]
- Kotova, Y.N.; Podoplelova, N.A.; Obydennyy, S.I.; Kostanova, E.A.; Ryabykh, A.A.; Demyanova, A.S.; Biriukova, M.I.; Rosenfeld, M.A.; Sokolov, A.V.; Chambost, H.; et al. Binding of Coagulation Factor XIII Zymogen to Activated Platelet Subpopulations: Roles of Integrin αIIbβ3 and Fibrinogen. Thromb. Haemost. 2019, 119, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Artemenko, E.O.; Yakimenko, A.O.; Pichugin, A.V.; Ataullakhanov, F.I.; Panteleev, M.A. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. Biochem. J. 2016, 473, 435–448. [Google Scholar] [CrossRef]
- Yakimenko, A.O.; Verholomova, F.Y.; Kotova, Y.N.; Ataullakhanov, F.I.; Panteleev, M.A. Identification of Different Proaggregatory Abilities of Activated Platelet Subpopulations. Biophys. J. 2012, 102, 2261–2269. [Google Scholar] [CrossRef]
- Nechipurenko, D.Y.; Receveur, N.; Yakimenko, A.O.; Shepelyuk, T.O.; Yakusheva, A.A.; Kerimov, R.R.; Obydennyy, S.I.; Eckly, A.; Léon, C.; Gachet, C.; et al. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 37–47. [Google Scholar] [CrossRef]
- Stalker, T.J.; Traxler, E.A.; Wu, J.; Wannemacher, K.M.; Cermignano, S.L.; Voronov, R.; Diamond, S.L.; Brass, L.F. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013, 121, 1875–1885. [Google Scholar] [CrossRef]
- Weisel, J.W. Structure of fibrin: Impact on clot stability. J. Thromb. Haemost. 2007, 5, 116–124. [Google Scholar] [CrossRef]
- Dohle, E.; Ashok, A.H.; Bhakta, S.; Induruwa, I.; Evans, N.R. Thrombus composition in ischaemic stroke: Histological and radiological evaluation, and implications for acute clinical management. J. Thromb. Thrombolysis 2025, 58, 355–369. [Google Scholar] [CrossRef]
- Cines, D.B.; Lebedeva, T.; Nagaswami, C.; Hayes, V.; Massefski, W.; Litvinov, R.I.; Rauova, L.; Lowery, T.J.; Weisel, J.W. Clot contraction: Compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014, 123, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Booth, N.A.; Simpson, A.J.; Croll, A.; Bennett, B.; MacGregor, I.R. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br. J. Haematol. 1988, 70, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Mosnier, L.O.; Buijtenhuijs, P.; Marx, P.F.; Meijers, J.C.M.; Bouma, B.N. Identification of thrombin activatable fibrinolysis inhibitor (TAFI) in human platelets. Blood 2003, 101, 4844–4846. [Google Scholar] [CrossRef]
- Hosokawa, K.; Ohnishi-Wada, T.; Sameshima-Kaneko, H.; Nagasato, T.; Miura, N.; Kikuchi, K.; Koide, T.; Maruyama, I.; Urano, T. Plasminogen activator inhibitor type 1 in platelets induces thrombogenicity by increasing thrombolysis resistance under shear stress in an in-vitro flow chamber model. Thromb. Res. 2016, 146, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Sano, H.; Mochizuki, L.; Honkura, N.; Urano, T. Activated platelet-based inhibition of fibrinolysis via thrombin-activatable fibrinolysis inhibitor activation system. Blood Adv. 2020, 4, 5501–5511. [Google Scholar] [CrossRef]
- Ruggeri, Z.M.; Dent, J.A.; Saldívar, E. Contribution of Distinct Adhesive Interactions to Platelet Aggregation in Flowing Blood. Blood 1999, 94, 172–178. [Google Scholar] [CrossRef]
- Savchenko, A.S.; Martinod, K.; Seidman, M.A.; Wong, S.L.; Borissoff, J.I.; Piazza, G.; Libby, P.; Goldhaber, S.Z.; Mitchell, R.N.; Wagner, D.D. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J. Thromb. Haemost. 2014, 12, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Longstaff, C.; Varjú, I.; Sótonyi, P.; Szabó, L.; Krumrey, M.; Hoell, A.; Bóta, A.; Varga, Z.; Komorowicz, E.; Kolev, K. Mechanical Stability and Fibrinolytic Resistance of Clots Containing Fibrin, DNA, and Histones. J. Biol. Chem. 2013, 288, 6946–6956. [Google Scholar] [CrossRef]
- Staessens, S.; Denorme, F.; Francois, O.; Desender, L.; Dewaele, T.; Vanacker, P.; Deckmyn, H.; Vanhoorelbeke, K.; Andersson, T.; De Meyer, S.F. Structural analysis of ischemic stroke thrombi: Histological indications for therapy resistance. Haematologica 2020, 105, 498–507. [Google Scholar] [CrossRef]
- Shi, Y.; Gauer, J.S.; Baker, S.R.; Philippou, H.; Connell, S.D.; Ariëns, R.A.S. Neutrophils can promote clotting via FXI and impact clot structure via neutrophil extracellular traps in a distinctive manner in vitro. Sci. Rep. 2021, 11, 1718. [Google Scholar] [CrossRef] [PubMed]
- Staessens, S.; François, O.; Desender, L.; Vanacker, P.; Dewaele, T.; Sciot, R.; Vanhoorelbeke, K.; Andersson, T.; De Meyer, S.F. Detailed histological analysis of a thrombectomy-resistant ischemic stroke thrombus: A case report. Thromb. J. 2021, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Franchini, M.; Targher, G. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 502–512. [Google Scholar] [CrossRef]
- Alkarithi, G.; Duval, C.; Shi, Y.; Macrae, F.L.; Ariëns, R.A.S. Thrombus Structural Composition in Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2370–2383. [Google Scholar] [CrossRef]
- Undas, A.; Stępień, E.; Rudziński, P.; Sadowski, J. Architecture of a pulmonary thrombus removed during embolectomy in a patient with acute pulmonary embolism. J. Thorac. Cardiovasc. Surg. 2010, 140, e40–e41. [Google Scholar] [CrossRef]
- Walton, B.L.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J. Thromb. Haemost. 2015, 13, S208–S215. [Google Scholar] [CrossRef] [PubMed]
- Silvain, J.; Collet, J.-P.; Nagaswami, C.; Beygui, F.; Edmondson, K.E.; Bellemain-Appaix, A.; Cayla, G.; Pena, A.; Brugier, D.; Barthelemy, O.; et al. Composition of Coronary Thrombus in Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2011, 57, 1359–1367. [Google Scholar] [CrossRef]
- Bajzar, L.; Manuel, R.; Nesheim, M.E. Purification and Characterization of TAFI, a Thrombin-activable Fibrinolysis Inhibitor. J. Biol. Chem. 1995, 270, 14477–14484. [Google Scholar] [CrossRef]
- Kluft, C.; Sidelmann, J.; Gram, J. Assessing Safety of Thrombolytic Therapy. Semin. Thromb. Hemost. 2016, 43, 300–310. [Google Scholar] [CrossRef]
- Rosell, A.; Foerch, C.; Murata, Y.; Lo, E.H. Mechanisms and markers for hemorrhagic transformation after stroke. Acta Neurochir. Suppl. 2008, 105, 173–178. [Google Scholar] [CrossRef]
- Kaur, J.; Zhao, Z.; Klein, G.M.; Lo, E.H.; Buchan, A.M. The Neurotoxicity of Tissue Plasminogen Activator? J. Cereb. Blood Flow Metab. 2004, 24, 945–963. [Google Scholar] [CrossRef]
- Meng, X.; Li, S.; Dai, H.; Lu, G.; Wang, W.; Che, F.; Geng, Y.; Sun, M.; Li, X.; Li, H.; et al. Tenecteplase vs Alteplase for Patients With Acute Ischemic Stroke. JAMA 2024, 332, 1437. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, T.-F.; Chen, J.; Liu, L. Tenecteplase versus alteplase for patients with acute ischemic stroke: A meta-analysis of randomized controlled trials. Aging 2023, 15, 14889–14899. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed]
- Marti, C.; John, G.; Konstantinides, S.; Combescure, C.; Sanchez, O.; Lankeit, M.; Meyer, G.; Perrier, A. Systemic thrombolytic therapy for acute pulmonary embolism: A systematic review and meta-analysis. Eur. Heart J. 2015, 36, 605–614. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Kakkos, S.K.; Gohel, M.; Baekgaard, N.; Bauersachs, R.; Bellmunt-Montoya, S.; Black, S.A.; ten Cate-Hoek, A.J.; Elalamy, I.; Enzmann, F.K.; Geroulakos, G.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2021 Clinical Practice Guidelines on the Management of Venous Thrombosis. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 9–82. [Google Scholar] [CrossRef]
- Cliffton, E.E. The use of plasmin in humans. Ann. N. Y. Acad. Sci. 1957, 68, 209–229. [Google Scholar] [CrossRef]
- Marder, V.J. Historical perspective and future direction of thrombolysis research: The re-discovery of plasmin. J. Thromb. Haemost. 2011, 9, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, M.; Vermylen, J.; Amery, A. Enzymatic Clot Dissolution in Man a New Therapeutic Approach. Acta Clin. Belg 1964, 19, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Boxrud, P.D.; Verhamme, I.M.A.; Fay, W.P.; Bock, P.E. Streptokinase Triggers Conformational Activation of Plasminogen through Specific Interactions of the Amino-terminal Sequence and Stabilizes the Active Zymogen Conformation. J. Biol. Chem. 2001, 276, 26084–26089. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Marshall, H.W.; Bray, B.E.; Lutz, J.R.; Frederick, P.R.; Yanowitz, F.G.; Datz, F.L.; Klausner, S.C.; Hagan, A.D. A Randomized Trial of Intracoronary Streptokinase in the Treatment of Acute Myocardial Infarction. N. Engl. J. Med. 1983, 308, 1312–1318. [Google Scholar] [CrossRef]
- Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986, 327, 397–402. [Google Scholar] [CrossRef]
- ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 1988, 2, 349–360. [Google Scholar] [CrossRef]
- Squire, I.B.; Lawley, W.; Fletcher, S.; Holme, E.; Hillis, W.S.; Hewitt, C.; Woods, K.L. Humoral and cellular immune responses up to 7·5 years after administration of streptokinase for acute myocardial infarction. Eur. Heart J. 1999, 20, 1245–1252. [Google Scholar] [CrossRef]
- Peuhkurinen, K.J.; Risteli, L.; Melkko, J.T.; Linnaluoto, M.; Jounela, A.; Risteli, J. Thrombolytic therapy with streptokinase stimulates collagen breakdown. Circulation 1991, 83, 1969–1975. [Google Scholar] [CrossRef]
- Hirsh, J.; Buchanan, M.; Glynn, M.F.; Mustard, J.F. Effect of Streptokinase on Hemostasis. Blood 1968, 32, 726–737. [Google Scholar] [CrossRef]
- Butcher, K.; Shuaib, A.; Saver, J.; Donnan, G.; Davis, S.M.; Norrving, B.; Wong, K.S.L.; Abd-Allah, F.; Bhatia, R.; Khan, A. Thrombolysis in the Developing World: Is There a Role for Streptokinase? Int. J. Stroke 2013, 8, 560–565. [Google Scholar] [CrossRef]
- Collen, D.; Zamarron, C.; Lijnen, H.R.; Hoylaerts, M. Activation of plasminogen by pro-urokinase. II. Kinetics. J. Biol. Chem. 1986, 261, 1259–1266. [Google Scholar] [CrossRef]
- Tennant, S.N.; Dixon, J.; Venable, T.C.; Page, H.L.; Roach, A.; Kaiser, A.B.; Frederiksen, R.; Tacogue, L.; Kaplan, P.; Babu, N.S. Intracoronary thrombolysis in patients with acute myocardial infarction: Comparison of the efficacy of urokinase with streptokinase. Circulation 1984, 69, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Camiolo, S.M.; Thorsen, S.; Astrup, T. Fibrinogenolysis and Fibrinolysis with Tissue Plasminogen Activator, Urokinase, Streptokinase-Activated Human Globulin, and Plasmin. Exp. Biol. Med. 1971, 138, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Kharel, S.; Nepal, G.; Joshi, P.R.; Yadav, J.K.; Shrestha, T.M. Safety and efficacy of low-cost alternative urokinase in acute ischemic stroke: A systematic review and meta-analysis. J. Clin. Neurosci. 2022, 106, 103–109. [Google Scholar] [CrossRef]
- Neuhaus, K.-L.; Tebbe, U.; Gottwik, M.; Weber, M.A.J.; Feuerer, W.; Niederer, W.; Haerer, W.; Praetorius, F.; Grosser, K.-D.; Huhmann, W.; et al. Intravenous Recombinant Tissue Plasminogen Activator (rt-PA) and Urokinase in Acute Myocardial Infarction: Results of the German Activator Urokinase Study (GAUS). J. Am. Coll. Cardiol. 1988, 12, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Pennica, D.; Holmes, W.E.; Kohr, W.J.; Harkins, R.N.; Vehar, G.A.; Ward, C.A.; Bennett, W.F.; Yelverton, E.; Seeburg, P.H.; Heyneker, H.L.; et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 1983, 301, 214–221. [Google Scholar] [CrossRef]
- GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N. Engl. J. Med. 1993, 329, 673–682. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chakraborty, A.; Weinberg, I.; Kadakia, M.; Wilensky, R.L.; Sardar, P.; Kumbhani, D.J.; Mukherjee, D.; Jaff, M.R.; Giri, J. Thrombolysis for Pulmonary Embolism and Risk of All-Cause Mortality, Major Bleeding, and Intracranial Hemorrhage. JAMA 2014, 311, 2414. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, J.; Kirch, W.; Koch, R.; Elix, H.; Hellner, G.; Forkmann, L.; Graf, A. Short- and long-term results after thrombolytic treatment of deep venous thrombosis. J. Am. Coll. Cardiol. 2000, 36, 1336–1343. [Google Scholar] [CrossRef]
- Fanne, R.A.; Nassar, T.; Yarovoi, S.; Rayan, A.; Lamensdorf, I.; Karakoveski, M.; Vadim, P.; Jammal, M.; Cines, D.B.; Al-Roof Higazi, A. Blood–brain barrier permeability and tPA-mediated neurotoxicity. Neuropharmacology 2010, 58, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Nicole, O.; Docagne, F.; Ali, C.; Margaill, I.; Carmeliet, P.; MacKenzie, E.T.; Vivien, D.; Buisson, A. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 2001, 7, 59–64. [Google Scholar] [CrossRef]
- Kohnert, U.; Rudolph, R.; Verheijen, J.H.; Jacoline, E.; Weening-Verhoeff, D.; Stern, A.; Opitz, U.; Martin, U.; Lill, H.; Prinz, H.; et al. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng. Des. Sel. 1992, 5, 93–100. [Google Scholar] [CrossRef]
- Bode, C.; Smalling, R.W.; Berg, G.; Burnett, C.; Lorch, G.; Kalbfleisch, J.M.; Chernoff, R.; Christie, L.G.; Feldman, R.L.; Seals, A.A.; et al. Randomized comparison of coronary thrombolysis achieved with double-bolus reteplase (recombinant plasminogen activator) and front-loaded, accelerated alteplase (recombinant tissue plasminogen activator) in patients with acute myocardial infarction. Circulation 1996, 94, 891–898. [Google Scholar] [CrossRef]
- Keyt, B.A.; Paoni, N.F.; Refino, C.J.; Berleau, L.; Nguyen, H.; Chow, A.; Lai, J.; Peña, L.; Pater, C.; Ogez, J. A faster-acting and more potent form of tissue plasminogen activator. Proc. Natl. Acad. Sci. USA 1994, 91, 3670–3674. [Google Scholar] [CrossRef]
- Kvistad, C.E.; Novotny, V.; Kurz, M.W.; Rønning, O.M.; Thommessen, B.; Carlsson, M.; Waje-Andreassen, U.; Næss, H.; Thomassen, L.; Logallo, N. Safety and Outcomes of Tenecteplase in Moderate and Severe Ischemic Stroke. Stroke 2019, 50, 1279–1281. [Google Scholar] [CrossRef]
- Zhang, Z.; Xi, L.; Zhang, S.; Zhang, Y.; Fan, G.; Tao, X.; Gao, Q.; Xie, W.; Yang, P.; Zhai, Z.; et al. Tenecteplase in Pulmonary Embolism Patients: A Meta-Analysis and Systematic Review. Front. Med. 2022, 9, 860565. [Google Scholar] [CrossRef]
- Krätzschmar, J.; Haendler, B.; Langer, G.; Boidol, W.; Bringmann, P.; Alagon, A.; Donner, P.; Schleuning, W.D. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: Cloning and expression. Gene 1991, 105, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Reddrop, C.; Moldrich, R.X.; Beart, P.M.; Farso, M.; Liberatore, G.T.; Howells, D.W.; Petersen, K.-U.; Schleuning, W.-D.; Medcalf, R.L. Vampire Bat Salivary Plasminogen Activator (Desmoteplase) Inhibits Tissue-Type Plasminogen Activator-Induced Potentiation of Excitotoxic Injury. Stroke 2005, 36, 1241–1246. [Google Scholar] [CrossRef]
- Tebbe, U.; Bramlage, P.; Graf, A.; Lechleitner, P.; Bode, C.; Riess, F.-C.; Clemens, N.; Al-Rawi, Y.; Konstantinides, S.; Goldhaber, S.Z. Desmoteplase in acute massive pulmonary thromboembolism. Thromb. Haemost. 2009, 101, 557–562. [Google Scholar] [CrossRef]
- von Kummer, R.; Mori, E.; Truelsen, T.; Jensen, J.-K.S.; Grønning, B.A.; Fiebach, J.B.; Lovblad, K.-O.; Pedraza, S.; Romero, J.M.; Chabriat, H.; et al. Desmoteplase 3 to 9 Hours After Major Artery Occlusion Stroke. Stroke 2016, 47, 2880–2887. [Google Scholar] [CrossRef] [PubMed]
- Kawai, C.; Yui, Y.; Hosoda, S.; Nobuyoshi, M.; Suzuki, S.; Sato, H.; Takatsu, F.; Motomiya, T.; Kanmatsuse, K.; Kodama, K.; et al. A Prospective, Randomized, Double-Blind Multicenter Trial of a Single Bolus Injection of the Novel Modified t-PA E6010 in the Treatment of Acute Myocardial Infarction: Comparison With Native t-PA. J. Am. Coll. Cardiol. 1997, 29, 1447–1453. [Google Scholar] [CrossRef]
- den Heijer, P.; Vermeer, F.; Ambrosioni, E.; Sadowski, Z.; López-Sendón, J.L.; von Essen, R.; Beaufils, P.; Thadani, U.; Adgey, J.; Pierard, L.; et al. Evaluation of a Weight-Adjusted Single-Bolus Plasminogen Activator in Patients With Myocardial Infarction. Circulation 1998, 98, 2117–2125. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kawasaki, T.; Katoh, M.; Kaku, S.; Gushima, H.; Takenaka, T.; Yui, Y.; Kawai, C. Thrombolytic Activity of a Novel Modified Tissue-Type Plasminogen Activator, YM866, in a Canine Model of Coronary Artery Thrombosis. Jpn. J. Pharmacol. 1993, 63, 9–16. [Google Scholar] [CrossRef][Green Version]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef]
- Vandelanotte, S.; François, O.; Desender, L.; Staessens, S.; Vanhoorne, A.; Van Gool, F.; Tersteeg, C.; Vanhoorelbeke, K.; Vanacker, P.; Andersson, T.; et al. R-tPA Resistance Is Specific for Platelet-Rich Stroke Thrombi and Can Be Overcome by Targeting Nonfibrin Components. Stroke 2024, 55, 1181–1190. [Google Scholar] [CrossRef]
- Peña-Martínez, C.; Durán-Laforet, V.; García-Culebras, A.; Ostos, F.; Hernández-Jiménez, M.; Bravo-Ferrer, I.; Pérez-Ruiz, A.; Ballenilla, F.; Díaz-Guzmán, J.; Pradillo, J.M.; et al. Pharmacological Modulation of Neutrophil Extracellular Traps Reverses Thrombotic Stroke tPA (Tissue-Type Plasminogen Activator) Resistance. Stroke 2019, 50, 3228–3237. [Google Scholar] [CrossRef] [PubMed]
- Di, G.; Vázquez-Reyes, S.; Díaz, B.; Peña-Martinez, C.; García-Culebras, A.; Cuartero, M.I.; Moraga, A.; Pradillo, J.M.; Esposito, E.; Lo, E.H.; et al. Daytime DNase-I Administration Protects Mice From Ischemic Stroke Without Inducing Bleeding or tPA-Induced Hemorrhagic Transformation, Even With Aspirin Pretreatment. Stroke 2025, 56, 527–532. [Google Scholar] [CrossRef]
- Xu, S.; Yang, Z.; Jia, J.; Zhang, S.; Huang, S.; Zhang, L.; Guan, M.; Chen, G.; Leng, X.; Huang, L. Enhancement of Tenecteplase Thrombolytic Actions Ex Vivo and In Vivo by Deoxyribonuclease I. J. Am. Heart Assoc. 2025, 14, e039199. [Google Scholar] [CrossRef] [PubMed]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef] [PubMed]
- Elaskalani, O.; Abdol Razak, N.B.; Metharom, P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun. Signal. 2018, 16, 24. [Google Scholar] [CrossRef]
- Wang, S.; Xie, T.; Sun, S.; Wang, K.; Liu, B.; Wu, X.; Ding, W. DNase-1 Treatment Exerts Protective Effects in a Rat Model of Intestinal Ischemia-Reperfusion Injury. Sci. Rep. 2018, 8, 17788. [Google Scholar] [CrossRef]
- Yang, C.; Montgomery, M. Dornase alfa for cystic fibrosis. Cochrane Database Syst. Rev. 2021, 3, CD001127. [Google Scholar] [CrossRef]
- Denorme, F.; Langhauser, F.; Desender, L.; Vandenbulcke, A.; Rottensteiner, H.; Plaimauer, B.; François, O.; Andersson, T.; Deckmyn, H.; Scheiflinger, F.; et al. ADAMTS13-mediated thrombolysis of t-PA–resistant occlusions in ischemic stroke in mice. Blood 2016, 127, 2337–2345. [Google Scholar] [CrossRef]
- Prochazka, V.; Jonszta, T.; Czerny, D.; Krajca, J.; Roubec, M.; Macak, J.; Kovar, P.; Kovarova, P.; Pulcer, M.; Zoubkova, R.; et al. The Role of von Willebrand Factor, ADAMTS13, and Cerebral Artery Thrombus Composition in Patient Outcome Following Mechanical Thrombectomy for Acute Ischemic Stroke. Med. Sci. Monit. 2018, 24, 3929–3945. [Google Scholar] [CrossRef]
- Zhao, B.-Q.; Chauhan, A.K.; Canault, M.; Patten, I.S.; Yang, J.J.; Dockal, M.; Scheiflinger, F.; Wagner, D.D. von Willebrand factor–cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 2009, 114, 3329–3334. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, C.; Motto, D.G.; Jensen, M.; Lentz, S.R.; Chauhan, A.K. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischemia/reperfusion injury in mice. Blood 2012, 120, 5224–5230. [Google Scholar] [CrossRef]
- Wang, L.; Fan, W.; Cai, P.; Fan, M.; Zhu, X.; Dai, Y.; Sun, C.; Cheng, Y.; Zheng, P.; Zhao, B. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann. Neurol. 2013, 73, 189–198. [Google Scholar] [CrossRef]
- South, K.; Saleh, O.; Lemarchand, E.; Coutts, G.; Smith, C.J.; Schiessl, I.; Allan, S.M. Robust thrombolytic and anti-inflammatory action of a constitutively active ADAMTS13 variant in murine stroke models. Blood 2022, 139, 1575–1587. [Google Scholar] [CrossRef]
- Roberts, L.; Coutts, G.; Dickie, B.R.; Smith, C.J.; South, K.; Allan, S.M. Comparison of the Novel Thrombolytic Constitutively Active ADAMTS13 With Clinical Thrombolytics in a Murine Stroke Model. Stroke 2025, 56, 1589–1595. [Google Scholar] [CrossRef]
- Nimjee, S.M.; Dornbos, D.; Pitoc, G.A.; Wheeler, D.G.; Layzer, J.M.; Venetos, N.; Huttinger, A.; Talentino, S.E.; Musgrave, N.J.; Moody, H.; et al. Preclinical Development of a vWF Aptamer to Limit Thrombosis and Engender Arterial Recanalization of Occluded Vessels. Mol. Ther. 2019, 27, 1228–1241. [Google Scholar] [CrossRef]
- Martinez de Lizarrondo, S.; Gakuba, C.; Herbig, B.A.; Repessé, Y.; Ali, C.; Denis, C.V.; Lenting, P.J.; Touzé, E.; Diamond, S.L.; Vivien, D.; et al. Potent Thrombolytic Effect of N-Acetylcysteine on Arterial Thrombi. Circulation 2017, 136, 646–660. [Google Scholar] [CrossRef]
- Vivien, D.; Lebatard, S.; Mazighi, M.; Brikci-Nigass, N.; Desilles, J.P.; Tomadesso, C.; Vallée, E.; Legros, H.; Saint-Paul, L.P.; Touzé, E.; et al. N-acetylcysteine (NAC) as an adjunct to intravenous fibrinolysis in patients with acute ischemic stroke: A single group study (NAC-Safety). Neuroscience 2025, 584, 107–112. [Google Scholar] [CrossRef]
- de Maat, S.; Clark, C.C.; Barendrecht, A.D.; Smits, S.; van Kleef, N.D.; El Otmani, H.; Waning, M.; van Moorsel, M.; Szardenings, M.; Delaroque, N.; et al. Microlyse: A thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood 2022, 139, 597–607. [Google Scholar] [CrossRef] [PubMed]
- van Moorsel, M.V.A.; de Maat, S.; Vercruysse, K.; van Leeuwen, E.M.; Jacqmarcq, C.; Bonnard, T.; Vivien, D.; van der Worp, H.B.; Dijkhuizen, R.M.; Maas, C. VWF-targeted thrombolysis to overcome rh-tPA resistance in experimental murine ischemic stroke models. Blood 2022, 140, 2844–2848. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Abrahams, J.P.; Skinner, R.; Petitou, M.; Pike, R.N.; Carrell, R.W. The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. USA 1997, 94, 14683–14688. [Google Scholar] [CrossRef] [PubMed]
- Mimuro, J.; Loskutoff, D.J. Purification of a Protein from Bovine Plasma That Binds to Type 1 Plasminogen Activator Inhibitor and Prevents Its Interaction with Extracellular Matrix. J. Biol. Chem. 1989, 264, 936–939. [Google Scholar] [CrossRef]
- Cho, J.; Mosher, D.F. Role of fibronectin assembly in platelet thrombus formation. J. Thromb. Haemost. 2006, 4, 1461–1469. [Google Scholar] [CrossRef]
- Böhm, T.; Geiger, M.; Binder, B.R. Isolation and Characterization of Tissue-Type Plasminogen Activator–Binding Proteoglycans From Human Umbilical Vein Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 665–672. [Google Scholar] [CrossRef]
- Knudsen, B.S.; Silverstein, R.L.; Leung, L.L.; Harpel, P.C.; Nachman, R.L. Binding of plasminogen to extracellular matrix. J. Biol. Chem. 1986, 261, 10765–10771. [Google Scholar] [CrossRef]
- Andrade-Gordon, P.; Strickland, S. Interaction of heparin with plasminogen activators and plasminogen: Effects on the activation of plasminogen. Biochemistry 1986, 25, 4033–4040. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komáromi, I.; Katona, É. Factor XIII: A Coagulation Factor With Multiple Plasmatic and Cellular Functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef] [PubMed]
- Abbadini, M.; Zhu, G.; Maggi, A.; Pangrazzi, J.; Donati, M.; Mussoni, L. Dermatan sulphate induces plasminogen activator release in the perfused rat hindquarters. Blood 1987, 70, 1858–1860. [Google Scholar] [CrossRef]
- Marsh, N.A.; Minter, A.J.; Chesterman, C.N. The effect of heparin and other glycosaminoglycans on levels of tissue plasminogen activator and plasminogen activator inhibitor in cultured human umbilical vein endothelial cells. Blood Coagul. Fibrinolysis 1990, 1, 133–138. [Google Scholar]
- Kyogashima, M.; Onaya, J.; Miyauchi, S.; Arai, M.; Shibata, Y.; Suda, A.; Sakai, T.; Takada, Y.; Takada, A. Antithrombotic Activity of Avian Crown Dermatan Sulfate. Thromb. Res. 1999, 96, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Watson, S. Platelet Activation by Extracellular Matrix Proteins in Haemostasis and Thrombosis. Curr. Pharm. Des. 2009, 15, 1358–1372. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-U.; Lee, A.Y.; Humphrey, J.D.; Rausch, M.K. Histological and biomechanical changes in a mouse model of venous thrombus remodeling. Biorheology 2015, 52, 235–245. [Google Scholar] [CrossRef]
- Maruyama, M.; Sugiki, M.; Yoshida, E.; Shimaya, K.; Mihara, H. Broad substrate specificity of snake venom fibrinolytic enzymes: Possible role in haemorrhage. Toxicon 1992, 30, 1387–1397. [Google Scholar] [CrossRef]
- Lucena, S.; Guerrero, B.; Salazar, A.M.; Gil, A.; Arocha-Piñango, C.L. Degradation of extracellular matrix proteins (fibronectin, vitronectin and laminin) by serine-proteinases isolated from Lonomia achelous caterpillar hemolymph. Blood Coagul. Fibrinolysis 2006, 17, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, B.; Arocha-Piñango, C.L.; Pinto, M.A.; Müller, C.A.; Juan, A.G.S.; Amorim, S.; Perales, J. Thrombolytic effect of lonomin V in a rabbit jugular vein thrombosis model. Blood Coagul. Fibrinolysis 2001, 12, 521–529. [Google Scholar] [CrossRef]
- Jacob-Ferreira, A.L.; Menaldo, D.L.; Bernardes, C.P.; Sartim, M.A.; de Angelis, C.D.; Tanus-Santos, J.E.; Sampaio, S.V. Evaluation of the in vivo thrombolytic activity of a metalloprotease from Bothrops atrox venom using a model of venous thrombosis. Toxicon 2016, 109, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Baskova, I.P.; Khalil’, S.; Nikonov, G.I. Effect of the salivary gland secretion of medicinal leeches Hirudo medicinalis on the external and internal mechanisms of blood coagulation. Biull. Eksp. Biol. Med. 1984, 98, 142–143. [Google Scholar] [CrossRef]
- Baskova, I.P.; Nikonov, G.I. Destabilase: An enzyme of medicinal leech salivary gland secretion hydrolyzes the isopeptide bonds in stabilized fibrin. Biokhimiia 1985, 50, 424–431. [Google Scholar]
- Zavalova, L.; Lukyanov, S.; Baskova, I.; Snezhkov, E.; Akopov, S.; Berezhnoy, S.; Bogdanova, E.; Barsova, E.; Sverdlov, E.D. Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-ɛ(γ-Glu)-Lys isopeptide bonds and help to dissolve blood clots. Mol. Gen. Genet. MGG 1996, 253, 20–25. [Google Scholar] [CrossRef]
- Fradkov, A.; Berezhnoy, S.; Barsova, E.; Zavalova, L.; Lukyanov, S.; Baskova, I.; Sverdlov, E.D. Enzyme from the medicinal leech (Hirudo medicinalis) that specifically splits endo-ϵ(-γ-Glu)-Lys isopeptide bonds: cDNA cloning and protein primary structure. FEBS Lett. 1996, 390, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Zavalova, L.L.; Baskova, I.P.; Lukyanov, S.A.; Sass, A.V.; Snezhkov, E.V.; Akopov, S.B.; Artamonova, I.I.; Archipova, V.S.; Nesmeyanov, V.A.; Kozlov, D.G.; et al. Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim. Biophys. Acta-Protein Struct. Mol. Enzymol. 2000, 1478, 69–77. [Google Scholar] [CrossRef]
- Kurdyumov, A.S.; Manuvera, V.A.; Baskova, I.P.; Lazarev, V.N. A comparison of the enzymatic properties of three recombinant isoforms of thrombolytic and antibacterial protein—Destabilase-Lysozyme from medicinal leech. BMC Biochem. 2015, 16, 27. [Google Scholar] [CrossRef]
- Manuvera, V.A.; Kurdyumov, A.S.; Filonova, K.A.; Lazarev, V.N. Generation of recombinant destabilase-lysozyme from medicinal leeches in three different expression systems. Protein Expr. Purif. 2015, 116, 50–58. [Google Scholar] [CrossRef]
- Marin, E.; Kornilov, D.A.; Bukhdruker, S.S.; Aleksenko, V.A.; Manuvera, V.A.; Zinovev, E.V.; Kovalev, K.V.; Shevtsov, M.B.; Talyzina, A.A.; Bobrovsky, P.A.; et al. Structural insights into thrombolytic activity of destabilase from medicinal leech. Sci. Rep. 2023, 13, 6641. [Google Scholar] [CrossRef] [PubMed]
- Bobrovsky, P.; Manuvera, V.; Baskova, I.; Nemirova, S.; Medvedev, A.; Lazarev, V. Recombinant Destabilase from Hirudo medicinalis Is Able to Dissolve Human Blood Clots In Vitro. Curr. Issues Mol. Biol. 2021, 43, 2068–2081. [Google Scholar] [CrossRef]
- Baskova, I.P.; Kalabushev, S.N.; Akhaev, D.N.; Bobrovsky, P.A.; Manuvera, V.A.; Lazarev, V.N. Role of isopeptidolysis in the process of thrombolysis. Thromb. Res. 2018, 165, 18–23. [Google Scholar] [CrossRef]
- Khan, M.S.; Müller, C.; Zhou, B. Chromosome-level genome assembly and anticoagulant protein annotation of the buffalo leech Hirudinaria bpling (Hirudinea: Hirudinidae). BMC Genom. 2025, 26, 558. [Google Scholar] [CrossRef]
- Gao, T.; Wang, Y.; Zhang, T.; Li, R.; Sun, Y.; Zhang, K.; Xu, M.; Liu, F.; Cheng, B. Molecular cloning and functional analysis of a destabilase from Hirudinaria manillensis. Protein Expr. Purif. 2025, 232, 106703. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhao, Z. Inhibition of PAI-1: A New Anti-thrombotic Approach. Curr. Drug Target-Cardiovasc. Hematol. Disord. 2002, 2, 27–42. [Google Scholar] [CrossRef]
- Elokdah, H.; Abou-Gharbia, M.; Hennan, J.K.; McFarlane, G.; Mugford, C.P.; Krishnamurthy, G.; Crandall, D.L. Tiplaxtinin, a Novel, Orally Efficacious Inhibitor of Plasminogen Activator Inhibitor-1: Design, Synthesis, and Preclinical Characterization. J. Med. Chem. 2004, 47, 3491–3494. [Google Scholar] [CrossRef]
- Hennan, J.K.; Morgan, G.A.; Swillo, R.E.; Antrilli, T.M.; Mugford, C.; Vlasuk, G.P.; Gardell, S.J.; Crandall, D.L. Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. J. Thromb. Haemost. 2008, 6, 1558–1564. [Google Scholar] [CrossRef]
- Hennan, J.K.; Elokdah, H.; Leal, M.; Ji, A.; Friedrichs, G.S.; Morgan, G.A.; Swillo, R.E.; Antrilli, T.M.; Hreha, A.; Crandall, D.L. Evaluation of PAI-039 [{1-Benzyl-5-[4-(trifluoromethoxy)phenyl]-1 H-indol-3-yl}(oxo)acetic Acid], a Novel Plasminogen Activator Inhibitor-1 Inhibitor, in a Canine Model of Coronary Artery Thrombosis. J. Pharmacol. Exp. Ther. 2005, 314, 710–716. [Google Scholar] [CrossRef]
- Izuhara, Y.; Yamaoka, N.; Kodama, H.; Dan, T.; Takizawa, S.; Hirayama, N.; Meguro, K.; van Ypersele de Strihou, C.; Miyata, T. A Novel Inhibitor of Plasminogen Activator Inhibitor-1 Provides Antithrombotic Benefits Devoid of Bleeding Effect in Nonhuman Primates. J. Cereb. Blood Flow Metab. 2010, 30, 904–912. [Google Scholar] [CrossRef]
- Denorme, F.; Wyseure, T.; Peeters, M.; Vandeputte, N.; Gils, A.; Deckmyn, H.; Vanhoorelbeke, K.; Declerck, P.J.; De Meyer, S.F. Inhibition of Thrombin-Activatable Fibrinolysis Inhibitor and Plasminogen Activator Inhibitor-1 Reduces Ischemic Brain Damage in Mice. Stroke 2016, 47, 2419–2422. [Google Scholar] [CrossRef]
- van Tilburg, N.H.; Rosendaal, F.R.; Bertina, R.M. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 2000, 95, 2855–2859. [Google Scholar] [CrossRef]
- Leebeek, F.W.G.; Goor, M.P.J.; Guimaraes, A.H.C.; Brouwers, G.-J.; Maat, M.P.M.; Dippel, D.W.J.; Rijken, D.C. High functional levels of thrombin-activatable fibrinolysis inhibitor are associated with an increased risk of first ischemic stroke. J. Thromb. Haemost. 2005, 3, 2211–2218. [Google Scholar] [CrossRef]
- Bouma, B.N.; Meijers, J.C.M. Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J. Thromb. Haemost. 2003, 1, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Buelens, K.; Hassanzadeh-Ghassabeh, G.; Muyldermans, S.; Gils, A.; Declerck, P.J. Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. J. Thromb. Haemost. 2010, 8, 1302–1312. [Google Scholar] [CrossRef]
- Vercauteren, E.; Emmerechts, J.; Peeters, M.; Hoylaerts, M.F.; Declerck, P.J.; Gils, A. Evaluation of the profibrinolytic properties of an anti-TAFI monoclonal antibody in a mouse thromboembolism model. Blood 2011, 117, 4615–4622. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Atalaya, J.P.; Roussel, B.D.; Levrat, D.; Parcq, J.; Nicole, O.; Hommet, Y.; Benchenane, K.; Castel, H.; Leprince, J.; To Van, D.; et al. Toward Safer Thrombolytic Agents in Stroke: Molecular Requirements for NMDA Receptor-Mediated Neurotoxicity. J. Cereb. Blood Flow Metab. 2008, 28, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Armstead, W.M.; Nassar, T.; Akkawi, S.; Smith, D.H.; Chen, X.-H.; Cines, D.B.; Higazi, A.A.-R. Neutralizing the neurotoxic effects of exogenous and endogenous tPA. Nat. Neurosci. 2006, 9, 1150–1155. [Google Scholar] [CrossRef]
- Tan, Z.; Li, X.; Kelly, K.A.; Rosen, C.L.; Huber, J.D. Plasminogen activator inhibitor type 1 derived peptide, EEIIMD, diminishes cortical infarct but fails to improve neurological function in aged rats following middle cerebral artery occlusion. Brain Res. 2009, 1281, 84–90. [Google Scholar] [CrossRef][Green Version]
- Furlan, A.; Higashida, R.; Wechsler, L.; Gent, M.; Rowley, H.; Kase, C.; Pessin, M.; Ahuja, A.; Callahan, F.; Clark, W.M.; et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: A randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 1999, 282, 2003–2011. [Google Scholar] [CrossRef]
- Higashida, R.T.; Furlan, A.J. Trial Design and Reporting Standards for Intra-Arterial Cerebral Thrombolysis for Acute Ischemic Stroke. Stroke 2003, 34, e109–e137. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Jing, H.; O’Reilly, D. Intra-Arterial Thrombolysis vs. Standard Treatment or Intravenous Thrombolysis in Adults with Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Int. J. Stroke 2015, 10, 13–22. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Lodhi, A.; Akhtar, I.N.; Ma, X.; Kherani, D.; Kwok, C.S.; Ford, D.E.; Hanley, D.F.; Hassan, A.E.; Nguyen, T.N.; et al. Mechanical thrombectomy with intra-arterial thrombolysis versus mechanical thrombectomy alone in patients with acute ischemic stroke: A systematic review and meta-analysis. Int. J. Stroke 2024, 19, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, T.M.; Ahmed, M.; Ashraf, H.; Ahmed, R.; Ahmed, F.; Aized, M.T.; Fonarow, G.C. Intra-Arterial Thrombolysis After Mechanical Thrombectomy in Patients with Acute Ischemic Stroke: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. Stroke Vasc. Interv. Neurol. 2025, 5, e001784. [Google Scholar] [CrossRef]
- Braaten, J.V.; Goss, R.A.; Francis, C.W. Ultrasound Reversibly Disaggregates Fibrin Fibers. Thromb. Haemost. 1997, 78, 1063–1068. [Google Scholar] [CrossRef]
- Piazza, G.; Hohlfelder, B.; Jaff, M.R.; Ouriel, K.; Engelhardt, T.C.; Sterling, K.M.; Jones, N.J.; Gurley, J.C.; Bhatheja, R.; Kennedy, R.J.; et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism. JACC Cardiovasc. Interv. 2015, 8, 1382–1392. [Google Scholar] [CrossRef]
- Tapson, V.F.; Sterling, K.; Jones, N.; Elder, M.; Tripathy, U.; Brower, J.; Maholic, R.L.; Ross, C.B.; Natarajan, K.; Fong, P.; et al. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism. JACC Cardiovasc. Interv. 2018, 11, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Kucher, N.; Boekstegers, P.; Müller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Müller, R.; Blessing, E.; et al. Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef]
- Prilepskii, A.Y.; Fakhardo, A.F.; Drozdov, A.S.; Vinogradov, V.V.; Dudanov, I.P.; Shtil, A.A.; Bel’tyukov, P.P.; Shibeko, A.M.; Koltsova, E.M.; Nechipurenko, D.Y.; et al. Urokinase-Conjugated Magnetite Nanoparticles as a Promising Drug Delivery System for Targeted Thrombolysis: Synthesis and Preclinical Evaluation. ACS Appl. Mater. Interfaces 2018, 10, 36764–36775. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Wu, S.-Y.; Wu, T.; Chang, Y.-J.; Hua, M.-Y.; Chen, J.-P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 2009, 30, 3343–3351. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Lan, S.; Huang, Y.; Liu, J.; Li, J.; Liu, X.; Yang, H. Near-Infrared Light Activated Thermosensitive Ion Channel to Remotely Control Transgene System for Thrombolysis Therapy. Small 2019, 15, 1901176. [Google Scholar] [CrossRef] [PubMed]
- Stanton, K.; Philippou, H.; Ariëns, R.A. Ischaemic Stroke, Thromboembolism and Clot Structure. Neuroscience 2024, 550, 3–10. [Google Scholar] [CrossRef]
- Marta-Enguita, J.; Machado, F.J.D.; Orbe, J.; Muñoz, R. Thrombus composition and its implication in ischemic stroke assessment and revascularization treatments. Neurología 2025, 40, 77–88. [Google Scholar] [CrossRef]
- Boeckh-Behrens, T.; Schubert, M.; Förschler, A.; Prothmann, S.; Kreiser, K.; Zimmer, C.; Riegger, J.; Bauer, J.; Neff, F.; Kehl, V.; et al. The Impact of Histological Clot Composition in Embolic Stroke. Clin. Neuroradiol. 2016, 26, 189–197. [Google Scholar] [CrossRef]
- Chernysh, I.N.; Mukhopadhyay, S.; Johnson, T.A.; Brooks, J.A.; Sarkar, R.; Weisel, J.W.; Antalis, T.M. Time-dependent ultrastructural changes during venous thrombogenesis and thrombus resolution. J. Thromb. Haemost. 2024, 22, 1675–1688. [Google Scholar] [CrossRef]
- Bækgaard, N.; Foegh, P.; Wittens, C.; Arnoldussen, C. Thrombus age is ideally measured by history or MRV prior to thrombus removal. Phlebol. J. Venous Dis. 2015, 30, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Risman, R.A.; Abdelhamid, A.; Weisel, J.W.; Bannish, B.E.; Tutwiler, V. Effects of clot contraction on clot degradation: A mathematical and experimental approach. Biophys. J. 2022, 121, 3271–3285. [Google Scholar] [CrossRef]
- Tow, D.E.; Wagner, H.N.; Holmes, R.A.; Harrison, K.S.; Scheffel, U.; Langan, J.K.; Longo, R. Urokinase in Pulmonary Embolism. N. Engl. J. Med. 1967, 277, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Gibson, C.M.; McCabe, C.H.; Adgey, A.A.J.; Schweiger, M.J.; Sequeira, R.F.; Grollier, G.; Giugliano, R.P.; Frey, M.; Mueller, H.S.; et al. TNK–Tissue Plasminogen Activator Compared With Front-Loaded Alteplase in Acute Myocardial Infarction. Circulation 1998, 98, 2805–2814. [Google Scholar] [CrossRef]
- Hacke, W.; Albers, G.; Al-Rawi, Y.; Bogousslavsky, J.; Davalos, A.; Eliasziw, M.; Fischer, M.; Furlan, A.; Kaste, M.; Lees, K.R.; et al. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS). Stroke 2005, 36, 66–73. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shibeko, A.M.; Nikitin, N.S.; Podoplelova, N.A.; Manuvera, V.A.; Lazarev, V.N. Beyond Direct Fibrinolysis: Novel Approaches to Thrombolysis. Pharmaceuticals 2026, 19, 10. https://doi.org/10.3390/ph19010010
Shibeko AM, Nikitin NS, Podoplelova NA, Manuvera VA, Lazarev VN. Beyond Direct Fibrinolysis: Novel Approaches to Thrombolysis. Pharmaceuticals. 2026; 19(1):10. https://doi.org/10.3390/ph19010010
Chicago/Turabian StyleShibeko, Alexey M., Nikita S. Nikitin, Nadezhda A. Podoplelova, Valentin A. Manuvera, and Vassili N. Lazarev. 2026. "Beyond Direct Fibrinolysis: Novel Approaches to Thrombolysis" Pharmaceuticals 19, no. 1: 10. https://doi.org/10.3390/ph19010010
APA StyleShibeko, A. M., Nikitin, N. S., Podoplelova, N. A., Manuvera, V. A., & Lazarev, V. N. (2026). Beyond Direct Fibrinolysis: Novel Approaches to Thrombolysis. Pharmaceuticals, 19(1), 10. https://doi.org/10.3390/ph19010010

