Mesoporous Silica Nanoparticles as Drug Delivery Systems
Abstract
1. Introduction
2. Effect of the Physicochemical Properties
2.1. Particle Size
2.2. Particle Morphology
2.3. Pore Size and Pore Structure
2.4. Surface Chemistry
3. Toxicity
4. Drug Loading
4.1. Solvent-Free Methods
4.2. Solvent-Based Methods
5. Drug Release
6. Drug Administration
6.1. Targeted Therapy
6.2. Advantages of MSNs in Various Administration Routes
6.2.1. Dermal Drug Administration
6.2.2. Pulmonary Drug Administration
6.2.3. Oral Drug Administration
7. Oral Dosage Forms
7.1. Tablets
7.1.1. Low-Dose Tablets
7.1.2. Freeze-Dried Tablets
7.2. Granules/Pellets
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abeer, M.M.; Rewatkar, P.; Qu, Z.; Talekar, M.; Kleitz, F.; Schmid, R.; Lindén, M.; Kumeria, T.; Popat, A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J. Control. Release 2020, 326, 544–555. [Google Scholar] [CrossRef]
- Karaman, D.Ş.; Kettiger, H. Silica-based nanoparticles as drug delivery systems: Chances and challenges. In Inorganic Frameworks as Smart Nanomedicines; William Andrew: Norwich, NY, USA, 2018; pp. 1–40. [Google Scholar]
- Farzan, M.; Roth, R.; Schoelkopf, J.; Huwyler, J.; Puchkov, M. The processes behind drug loading and release in porous drug delivery systems. Eur. J. Pharm. Biopharm. 2023, 189, 133–151. [Google Scholar] [CrossRef]
- Pednekar, P.P.; Godiyal, S.C.; Jadhav, K.R.; Kadam, V.J. Chapter 23—Mesoporous silica nanoparticles: A promising multifunctional drug delivery system. In Nanostructures for Cancer Therapy; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Fatima, R.; Katiyar, P.; Kushwaha, K. Recent advances in mesoporous silica nanoparticle: Synthesis, drug loading, release mechanisms, and diverse applications. Front. Nanotechnol. 2025, 7, 1564188. [Google Scholar] [CrossRef]
- Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015, 5, 124–133. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Rámila, A.; Del Real, R.P.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater. 2001, 13, 308–311. [Google Scholar] [CrossRef]
- Ahmed, H.; Gomte, S.S.; Prathyusha, E.; A, P.; Agrawal, M.; Alexander, A. Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J. Drug Deliv. Sci. Technol. 2022, 76, 103729. [Google Scholar] [CrossRef]
- Mitran, R.A.; Deaconu, M.; Matei, C.; Berger, D. Mesoporous Silica as Carrier for Drug-Delivery Systems. In Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2018; pp. 351–374. [Google Scholar]
- Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous silica nanoparticles in medicine-Recent advances. Adv. Drug Deliv. Rev. 2013, 65, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.C.; Jackson, N.; Buelvas, N.; Jerez, A.; López-Muñoz, R.A.; Morales, J.; Arriagada, F. Release kinetics approach of stimuli-responsive mesoporous silica nanocarriers: pH-sensitive linker versus pH-sensitive framework. J. Drug Deliv. Sci. Technol. 2024, 91, 105212. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Zhao, Y.; Zhao, Q.; He, B.; Zhang, Q.; Wang, S. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. J. Colloid Interface Sci. 2018, 513, 736–747. [Google Scholar] [CrossRef]
- Lamson, N.G.; Berger, A.; Fein, K.C.; Whitehead, K.A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 2020, 4, 84–96. [Google Scholar] [CrossRef]
- Ndayishimiye, J.; Cao, Y.; Kumeria, T.; Blaskovich, M.A.T.; Falconer, J.R.; Popat, A. Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin. J. Mater. Chem. B 2021, 9, 7145–7166. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Zhong, X.; Du, G.; Hou, Y.; Zhang, Y.; Zhang, Z.; Gong, T.; Zhang, L.; Sun, X. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci. Adv. 2020, 6, eaaz4462. [Google Scholar] [CrossRef]
- Izquierdo-Barba, I.; Martinez, Á.; Doadrio, A.L.; Pérez-Pariente, J.; Vallet-Regí, M. Release evaluation of drugs from ordered three-dimensional silica structures. Eur. J. Pharm. Sci. 2005, 26, 365–373. [Google Scholar] [CrossRef]
- Bavnhøj, C.G.; Knopp, M.M.; Madsen, C.M.; Löbmann, K. The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. Int. J. Pharm. X 2019, 1, 100008. [Google Scholar] [CrossRef]
- Mebert, A.M.; Evelson, P.A.; Desimone, M.F.; Maysinger, D. Human lung cell cytotoxicity of antibacterial-loaded silica nanoparticles. J. Drug Deliv. Sci. Technol. 2024, 92, 105298. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Ran, F.; Cui, Y.; Liu, C.; Zhao, Q.; Gao, Y.; Wang, D.; Wang, S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. 2017, 7, 4131. [Google Scholar] [CrossRef] [PubMed]
- Šoltys, M.; Zůza, D.; Boleslavská, T.; Akhlasová, S.M.; Balouch, M.; Kovačík, P.; Beránek, J.; Škalko-Basnet, N.; Flaten, G.E.; Štěpánek, F. Drug loading to mesoporous silica carriers by solvent evaporation: A comparative study of amorphization capacity and release kinetics. Int. J. Pharm. 2021, 607, 120982. [Google Scholar] [CrossRef] [PubMed]
- Talekar, S.; Dave, R. Solubility Enhancement of a BCS Class II Drug Using Granulated Fumed Silica as an Adsorbent. J. Pharm. Res. Int. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Tahir, H.; Shahzad, Y.; Waters, L.J.; Hussain, T.; Yousaf, A.M.; Mahmood, T.; Sheikh, R. Impact of processing methods on the dissolution of artemether from two non-ordered mesoporous silicas. Eur. J. Pharm. Sci. 2018, 112, 139–145. [Google Scholar] [CrossRef]
- Annika Mareike Gramatke, I.-L.H. Size and Cell Type Dependent Uptake of Silica Nanoparticles. J. Nanomed. Nanotechnol. 2014, 5, 1000248. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Bai, X.; Jiang, T.; Zhang, Q.; Wang, S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol. Pharm. 2012, 9, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Janjua, T.I.; Cao, Y.; Kleitz, F.; Linden, M.; Yu, C.; Popat, A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv. Drug Deliv. Rev. 2023, 203, 115115. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lei, C.; Yu, C. Mesoporous silica nanoparticles for protein protection and delivery. Front. Chem. 2019, 7, 290. [Google Scholar] [CrossRef] [PubMed]
- Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 2014, 26, 435–451. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Ge, M.; Zhou, G.; Sun, W.; Liu, D.; Liang, X.-J.; Zhang, J. A Distinct Endocytic Mechanism of Functionalized-Silica Nanoparticles in Breast Cancer Stem Cells. Sci. Rep. 2017, 7, 16236. [Google Scholar] [CrossRef]
- Porrang, S.; Davaran, S.; Rahemi, N.; Allahyari, S.; Mostafavi, E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int. J. Nanomed. 2022, 17, 1803–1827. [Google Scholar] [CrossRef]
- Xu, W.; Riikonen, J.; Lehto, V.P. Mesoporous systems for poorly soluble drugs. Int. J. Pharm. 2013, 453, 181–197. [Google Scholar] [CrossRef]
- Ismail, A.; Sial, N.; Rehman, R.; Abid, S.; Ismail, M.S. Survival, growth, behavior, hematology and serum biochemistry of mice under different concentrations of orally administered amorphous silica nanoparticle. Toxicol. Rep. 2023, 10, 659–668. [Google Scholar] [CrossRef]
- Voicu, S.N.P.; Dinu, D.; Sima, C.; Hermenean, A.; Ardelean, A.; Codrici, E.; Stan, M.S.; Zărnescu, O.; Dinischiotu, A. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int. J. Mol. Sci. 2015, 16, 29398–29416. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, Y.; Liu, X.; Jin, H.; Wang, S.; An, N.; Wang, L. Effective myocardial infarction treatment by targeted accumulation of Sulforaphane using porous magnetic silica nanoparticles. Int. J. Pharm. 2023, 645, 123389. [Google Scholar] [CrossRef]
- MacCuaig, W.M.; Samykutty, A.; Foote, J.; Luo, W.; Filatenkov, A.; Li, M.; Houchen, C.; Grizzle, W.E.; McNally, L.R. Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics 2022, 14, 969. [Google Scholar] [CrossRef] [PubMed]
- Barguilla, I.; Candela-Noguera, V.; Oliver, P.; Annangi, B.; Díez, P.; Aznar, E.; Martínez-Máñez, R.; Marcos, R.; Hernández, A.; Marcos, M.D. Toxicological Profiling and Long-Term Effects of Bare, PEGylated- and Galacto-Oligosaccharide-Functionalized Mesoporous Silica Nanoparticles. Int. J. Mol. Sci. 2023, 24, 16158. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Planinšek, O. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery. Eur. J. Pharm. Sci. 2021, 167, 106015. [Google Scholar] [CrossRef] [PubMed]
- Seljak, K.B.; Kocbek, P.; Gašperlin, M. Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J. Drug Deliv. Sci. Technol. 2020, 59, 101906. [Google Scholar] [CrossRef]
- Kheirkhah, S.; Abedi, M.; Zare, F.; Salmanpour, M.; Abolmaali, S.S.; Tamaddon, A.M. Surface engineered palmitoyl-mesoporous silica nanoparticles with supported lipid bilayer coatings for high-capacity loading and prolonged release of dexamethasone: A factorial design approach. J. Drug Deliv. Sci. Technol. 2022, 78, 103943. [Google Scholar] [CrossRef]
- Kim, D.; Koo, J.; Yang, E.-J.; Shim, K.; Tin, Y.Y.; Lin, Z.; Oh, K.T.; Na, D.H. Entrapment of celecoxib into mesoporous silica particles for tablets with improved dissolution through amorphization. J. Drug Deliv. Sci. Technol. 2023, 84, 104485. [Google Scholar] [CrossRef]
- Szewczyk, A.; Prokopowicz, M. Mesoporous silica pellets—A promising oral drug delivery system? J. Drug Deliv. Sci. Technol. 2020, 56, 101491. [Google Scholar] [CrossRef]
- Elmowafy, M.; Alruwaili, N.K.; Ahmad, N.; Kassem, A.M.; Ibrahim, M.F. Quercetin-Loaded Mesoporous Silica Nanoparticle–Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation. AAPS PharmSciTech 2023, 24, 6. [Google Scholar] [CrossRef]
- Ortega, E.; Ruiz, M.A.; Peralta, S.; Russo, G.; Morales, M.E. Improvement of mesoporous silica nanoparticles: A new approach in the administration of NSAIDS. J. Drug Deliv. Sci. Technol. 2020, 58, 101833. [Google Scholar] [CrossRef]
- Tu, B.; Jonnalagadda, S. Amorphous stabilization of BCS II drugs using mesoporous silica. Int. J. Pharm. 2024, 663, 124555. [Google Scholar] [CrossRef]
- Trzeciak, K.; Chotera-Ouda, A.; Bak-Sypien, I.I.; Potrzebowski, M.J. Mesoporous silica particles as drug delivery systems—The state of the art in loading methods and the recent progress in analytical techniques for monitoring these processes. Pharmaceutics 2021, 13, 950. [Google Scholar] [CrossRef]
- Knapik-Kowalczuk, J.; Kramarczyk, D.; Chmiel, K.; Romanova, J.; Kawakami, K.; Paluch, M. Importance of mesoporous silica particle size in the stabilization of amorphous pharmaceuticals—The case of simvastatin. Pharmaceutics 2020, 12, 384. [Google Scholar] [CrossRef]
- Bavnhøj, C.G.; Knopp, M.M.; Löbmann, K. Effect of Drug Loading in Mesoporous Silica on Amorphous Stability and Performance. Pharmaceutics 2024, 16, 163. [Google Scholar] [CrossRef]
- Aulifa, D.L.; Saepudin, A.H.; Margaretha, P.; Khairinisa, M.A.; Budiman, A. Characterization of Alpha Mangostin Loaded-Mesoporous Silica Nanoparticle and the Impact on Dissolution and Physical Stability. Nanotechnol. Sci. Appl. 2025, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Szegedi, Á.; Trendafilova, I.; Mihály, J.; Lázár, K.; Németh, P.; Momekov, G.; Momekova, D.; Marinov, L.; Nikolova, I.; Popova, M. New insight on prednisolone polymorphs in mesoporous silica/maghemite nanocomposites. J. Drug Deliv. Sci. Technol. 2020, 60, 102092. [Google Scholar] [CrossRef]
- Dwyer, L.M.; Michaelis, V.K.; O’Mahony, M.; Griffin, R.G.; Myerson, A.S. Confined crystallization of fenofibrate in nanoporous silica. CrystEngComm 2015, 17, 7922–7929. [Google Scholar] [CrossRef] [PubMed]
- Porras, M.; Adrover, M.E.; Pedernera, M.; Bucalá, V.; Gallo, L. Novel techniques for drug loading quantification in mesoporous SBA-15 using chemometric-assisted UV and FT-IR data. J. Pharm. Biomed. Anal. 2022, 216, 114830. [Google Scholar] [CrossRef]
- Ditzinger, F.; Price, D.J.; Nair, A.; Becker-Baldus, J.; Glaubitz, C.; Dressman, J.B.; Saal, C.; Kuentz, M. Opportunities for successful stabilization of poor glass-forming drugs: A stability-based comparison of mesoporous silica versus hot melt extrusion technologies. Pharmaceutics 2019, 11, 577. [Google Scholar] [CrossRef]
- Minecka, A.; Tarnacka, M.; Jurkiewicz, K.; Żakowiecki, D.; Kamiński, K.; Kamińska, E. Mesoporous Matrices as a Promising New Generation of Carriers for Multipolymorphic Active Pharmaceutical Ingredient Aripiprazole. Mol. Pharm. 2023, 20, 5655–5667. [Google Scholar] [CrossRef]
- Kramarczyk, D.; Knapik-Kowalczuk, J.; Smolka, W.; Monteiro, M.F.; Tajber, L.; Paluch, M. Inhibition of celecoxib crystallization by mesoporous silica—Molecular dynamics studies leading to the discovery of the stabilization origin. Eur. J. Pharm. Sci. 2022, 171, 106132. [Google Scholar] [CrossRef]
- Richter, M.; Welzmiller, S.; Monsuur, F.; Völp, A.R.; Quadflieg, J. Dry Amorphization of Itraconazole Using Mesoporous Silica and Twin-Screw Technology. Pharmaceutics 2024, 16, 1368. [Google Scholar] [CrossRef]
- Antonino, R.S.; Ruggiero, M.; Song, Z.; Nascimento, T.L.; Lima, E.M.; Bohr, A.; Knopp, M.M.; Löbmann, K. Impact of drug loading in mesoporous silica-amorphous formulations on the physical stability of drugs with high recrystallization tendency. Int. J. Pharm. X 2019, 1, 100026. [Google Scholar] [CrossRef]
- Patel, R.J.; Pandey, P.; Patel, A.A.; Prajapati, B.G.; Alexander, A.; Pandya, V.; Trivedi, N.; Shah, S.; Patel, V. Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. J. Drug Deliv. Sci. Technol. 2023, 82, 104306. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Kinnari, P.; Mäkilä, E.; Heikkilä, T.; Salonen, J.; Hirvonen, J.; Santos, H.A. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm. 2011, 414, 148–156. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert. Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Tzankov, B.; Voycheva, C.; Tosheva, A.; Stefanova, D.; Tzankova, V.; Spassova, I.; Kovacheva, D.; Avramova, K.; Tzankova, D.; Yoncheva, K. Novel oleogels for topical delivery of quercetin based on mesoporous silica MCM-41 and HMS particles. J. Drug Deliv. Sci. Technol. 2023, 86, 104727. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Li, R.; Lv, C.; Xu, Y.; Xiong, Y. Polydopamine-coated mesoporous silica nanoparticles co-loaded with Ziyuglycoside I and Oseltamivir for synergistic treatment of viral pneumonia. Int. J. Pharm. 2023, 645, 123412. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, D.; Patel, V.; Mohanan, S.; Ramadass, K.; Karakoti, A.; Vinu, A. Folic acid functionalised mesoporous core-shell silica nanoparticles loaded with carboplatin for lung cancer therapy. Microporous Mesoporous Mater. 2023, 360, 112708. [Google Scholar] [CrossRef]
- Yin, S.; Cai, L.; Li, X.; Lin, K.; Shi, X.; Zhang, H.; Wang, L.; Li, J. Small molecules modified mesoporous silica nanoparticles orally deliver indomethacin with synergistic effect. Eur. J. Pharm. Sci. 2024, 195, 106719. [Google Scholar] [CrossRef]
- Mal, A.; Prabhuraj, R.; Malhotra, R.; Valvi, S.K.; Ingle, A.; Srivastava, R.; De, A.; Bandyopadhyaya, R. pH-responsive sustained delivery of doxorubicin using aminated and PEGylated mesoporous silica nanoparticles leads to enhanced antitumor efficacy in pre-clinical orthotopic breast cancer model. J. Drug Deliv. Sci. Technol. 2022, 77, 103800. [Google Scholar] [CrossRef]
- Szewczyk, A.; Skwira, A.; Konopacka, A.; Sądej, R.; Walker, G.; Prokopowicz, M. Mesoporous silica pellets as bifunctional bone drug delivery system for cefazolin. Int. J. Pharm. 2020, 588, 119718. [Google Scholar] [CrossRef]
- Shahbaz, S.; Esmaeili, M.; Nasab, M.H.F.; Imani, Z.; Bafkary, R.; Amini, M.; Atyabi, F.; Dinarvand, R. PEGylated mesoporous silica core–shell redox-responsive nanoparticles for delivering paclitaxel to breast cancer cells. Int. J. Pharm. 2024, 655, 124024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, Z.; He, R.; Li, Y.; Xiong, B.; Yi, M.; Chen, Y.; Liu, J.; Lu, B. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf. B Biointerfaces 2023, 224, 113201. [Google Scholar] [CrossRef]
- Qi, G.; Shi, G.; Wang, S.; Hu, H.; Zhang, Z.; Yin, Q.; Li, Z.; Hao, L. A Novel pH-Responsive Iron Oxide Core-Shell Magnetic Mesoporous Silica Nanoparticle (M-MSN) System Encapsulating Doxorubicin (DOX) and Glucose Oxidase (Gox) for Pancreatic Cancer Treatment. Int. J. Nanomed. 2023, 18, 7133–7147. [Google Scholar] [CrossRef]
- Shirani, M.P.; Ensafi, A.A.; Rezaei, B.; Amirghofran, Z. Folic acid and carbon dots-capped mesoporous silica for pH-responsive targeted drug delivery and bioimaging. J. Iran. Chem. Soc. 2023, 20, 2257–2268. [Google Scholar] [CrossRef]
- Devangan, P.; Saini, A.; Patel, D.; Kolhe, U. Solubility Enhancement of Aripiprazole via Mesoporous Silica: Preparation, Characterization, In vitro Drug Release, and Solubility Determination. J. Pharm. Innov. 2023, 18, 1316–1327. [Google Scholar] [CrossRef]
- García-Fernández, A.; Sancho, M.; Bisbal, V.; Amorós, P.; Marcos, M.D.; Orzáez, M.; Sancenón, F.; Martínez-Máñez, R. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment. J. Control. Release 2021, 337, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles in nanomedicine applications. J. Mater. Sci. Mater. Med. 2018, 29, 65. [Google Scholar] [CrossRef]
- Yuan, F.; Quan Ldong Cui, L.; Goldring, S.R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205–1219. [Google Scholar] [CrossRef] [PubMed]
- Teruel, A.H.; Pérez-Esteve, É.; González-Álvarez, I.; González-Álvarez, M.; Costero, A.M.; Ferri, D.; Parra, M.; Gaviña, P.; Merino, V.; Martínez-Mañez, R.; et al. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. J. Control. Release 2018, 281, 58–69. [Google Scholar] [CrossRef]
- Jafarpour, N.; Nikpassand, M.; Faramarzi, M. Conjugation of folic acid onto poly (acrylic acid-co-allylamine)-grafted mesoporous silica nanoparticles for controlled methotrexate delivery. J. Drug Deliv. Sci. Technol. 2024, 96, 105667. [Google Scholar] [CrossRef]
- Duo, Y.; Li, Y.; Chen, C.; Liu, B.; Wang, X.; Zeng, X.; Chen, H. DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Adv. 2017, 7, 39641–39650. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, C.; Bai, Y.; Che, Q.; Cao, H.; Guo, J.; Su, Z. Synthesis of Chitosan Oligosaccharide-Loaded Glycyrrhetinic Acid Functionalized Mesoporous Silica Nanoparticles and In Vitro Verification of the Treatment of APAP-Induced Liver Injury. Molecules 2023, 28, 4147. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, W.; Zhu, J.; He, L.; Ren, W.; Bao, D.; Piao, J.-G. Programmed Co-delivery of tamoxifen and docetaxel using lipid-coated mesoporous silica nanoparticles for overcoming CYP3A4-mediated resistance in triple-negative breast cancer treatment. Biomed. Pharmacother. 2024, 170, 116084. [Google Scholar] [CrossRef] [PubMed]
- Ajit, J. Nanoparticles in Drug Delivery. Prem. J. Sci. 2025, 1, 100048. [Google Scholar] [CrossRef]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Kumarasamy, R.V.; Natarajan, P.M.; Umapathy, V.R.; Roy, J.R.; Mironescu, M.; Palanisamy, C.P. Clinical applications and therapeutic potentials of advanced nanoparticles: A comprehensive review on completed human clinical trials. Front. Nanotechnol. 2024, 6, 1479993. [Google Scholar] [CrossRef]
- Shendge, R.S.; Dimote, R.K. Formulation and optimization of mesoporous silica loaded gel containing extract of Rosmarinus officinalis for treatment of acute wound healing. Eur. J. Med. Chem. Rep. 2024, 11, 100155. [Google Scholar] [CrossRef]
- Badawi, N.M.; Amer, R.I.; Attia, D.A.; Fayez, A.M.; Dawoud, M.H.S. Chewing gum containing repaglinide solid dispersion using mesoporous silica nanoparticles for management of diabetes mellitus: In-vitro evaluation and clinical appraisal. J. Drug Deliv. Sci. Technol. 2024, 94, 105479. [Google Scholar] [CrossRef]
- Patiño-Herrera, R.; Louvier-Hernández, J.F.; Escamilla-Silva, E.M.; Chaumel, J.; Escobedo, A.G.P.; Pérez, E. Prolonged release of metformin by SiO2 nanoparticles pellets for type II diabetes control. Eur. J. Pharm. Sci. 2019, 131, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Quan, G.; Li, F.; Wu, Q.; Dian, L.; Dong, Y.; Li, G.; Wu, C. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica. Int. J. Nanomed. 2012, 7, 5807–5818. [Google Scholar]
- Ji, J.H.; Yu, I.J. Estimation of human equivalent exposure from rat inhalation toxicity study of silver nanoparticles using multi-path particle dosimetry model. Toxicol. Res. 2012, 1, 206–210. [Google Scholar] [CrossRef]
- Ali, M.; Gutting, B.W.; Van Hoek, M.L. Multiple Path Particle Dosimetry for Prediction of Mouse Lung Deposition of Nanoaerosol Particles. Int. J. Adv. Res. Eng. Technol. 2017, 8, 10–20. [Google Scholar]
- Costa, A.; Pinheiro, M.; Magalhães, J.; Ribeiro, R.; Seabra, V.; Reis, S.; Sarmento, B. The formulation of nanomedicines for treating tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xue, M.; Raabe, O.G.; Aaron, H.L.; Eisen, E.A.; Evans, J.E.; Hayes, F.A.; Inaga, S.; Tagmount, A.; Takeuchi, M.; et al. Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine 2015, 11, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Pamshong, S.R.; Bhatane, D.; Sarnaik, S.; Alexander, A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf. B Biointerfaces 2023, 232, 113613. [Google Scholar] [CrossRef]
- Paul, S.; Guo, Y.; Wang, C.; Dun, J.; Calvin Sun, C. Enabling direct compression tablet formulation of celecoxib by simultaneously eliminating punch sticking, improving manufacturability, and enhancing dissolution through co-processing with a mesoporous carrier. Int. J. Pharm. 2023, 641, 123041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, G.; Xiao, C.; Chang, X.; Sun, Y.; Fan, W.; Tian, B.; Gao, D.; Xiao, Y.; Wu, X.; et al. Mesoporous Silica Carrier-Based Composites for Taste-Masking of Bitter Drug: Fabrication and Palatability Evaluation. AAPS PharmSciTech 2022, 23, 75. [Google Scholar] [CrossRef]
- Lyytikäinen, J.; Kyllönen, S.; Ervasti, T.; Komulainen, E.; Pekarek, T.; Slunečková, J.; Leskinen, J.; Ketolainen, J.; Kubelka, T.; Stasiak, P.; et al. Challenges encountered in the transfer of atorvastatin tablet manufacturing—Commercial batch-based production as a basis for small-scale continuous tablet manufacturing tests. Int. J. Pharm. 2023, 647, 123509. [Google Scholar] [CrossRef]
- Sun, W.J.; Aburub, A.; Sun, C.C. A mesoporous silica based platform to enable tablet formulations of low dose drugs by direct compression. Int. J. Pharm. 2018, 539, 184–189. [Google Scholar] [CrossRef]
- Sun, W.J.; Aburub, A.; Sun, C.C. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. J. Pharm. Sci. 2017, 106, 1772–1777. [Google Scholar] [CrossRef]
- Tahvanainen, M.; Rotko, T.; Mäkilä, E.; Santos, H.A.; Neves, D.; Laaksonen, T.; Kallonen, A.; Hämäläinen, K.; Peura, M.; Serimaa, R.; et al. Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. Int. J. Pharm. 2012, 422, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Vialpando, M.; Albertini, B.; Passerini, N.; Bergers, D.; Rombaut, P.; Martens, J.A.; Mooter, G.V.D. Agglomeration of mesoporous silica by melt and steam granulation: Part I: A comparison between disordered and ordered mesoporous silica. J. Pharm. Sci. 2013, 102, 3966–3977. [Google Scholar] [CrossRef]
- Doadrio, A.L.; Sánchez-Montero, J.M.; Doadrio, J.C.; Salinas, A.J.; Vallet-Regí, M. Mesoporous silica nanoparticles as a new carrier methodology in the controlled release of the active components in a polypill. Eur. J. Pharm. Sci. 2017, 97, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Karaman, D.Ṣ.; Patrignani, G.; Rosqvist, E.; Smått, J.-H.; Orłowska, A.; Mustafa, R.; Preis, M.; Rosenholm, J.M. Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. Eur. J. Pharm. Sci. 2018, 122, 152–159. [Google Scholar] [CrossRef]
- Fonte, P.; Reis, S.; Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Control. Release 2016, 225, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.L.; Lee, B.J.; Tran, T.T.D. Strategies and formulations of freeze-dried tablets for controlled drug delivery. Int. J. Pharm. 2021, 597, 120373. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Smått, J.-H.; Govardhanam, N.P.; Ibrahim, H.M.; Ismael, H.R.; Afouna, M.I.; Samy, A.M.; Rosenholm, J.M. Formulation and optimization of drug-loaded mesoporous silica nanoparticle-based tablets to improve the dissolution rate of the poorly water-soluble drug silymarin. Eur. J. Pharm. Sci. 2020, 142, 105103. [Google Scholar] [CrossRef]
- Vialpando, M.; Backhuijs, F.; Martens, J.A.; Van Den Mooter, G. Risk assessment of premature drug release during wet granulation of ordered mesoporous silica loaded with poorly soluble compounds itraconazole, fenofibrate, naproxen, and ibuprofen. Eur. J. Pharm. Biopharm. 2012, 81, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Planinšek, O. Effect of process parameters in high shear granulation on characteristics of a novel co-processed mesoporous silica material. Eur. J. Pharm. Sci. 2023, 188, 106528. [Google Scholar] [CrossRef]
- Shanmugam, S. Granulation techniques and technologies: Recent progresses. BioImpacts 2015, 5, 55–63. [Google Scholar] [CrossRef]
- Iveson, S.M.; Litster, J.D.; Hapgood, K.; Ennis, B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 2001, 117, 3–39. [Google Scholar] [CrossRef]
- Vialpando, M.; Albertini, B.; Passerini, N.; Heyden, Y.V.; Rombaut, P.; Martens, J.A.; Mooter, G.V.D. Agglomeration of mesoporous silica by melt and steam granulation: Part II: Screening of steam granulation process variables using a factorial design. J. Pharm. Sci. 2013, 102, 3978–3986. [Google Scholar] [CrossRef] [PubMed]
Particle Size (nm) | Functional Groups | Drug | Pore Size (nm) | Zeta Potential (mV) | References |
---|---|---|---|---|---|
100 250 480 | Unfunctionalized MSN-PCD MSN-PCD-PEG | Fenofibrate | - | - +26.1 +5.44 | [12] |
20 50 100 200 500 1200 | Unfunctionalized-COOH | Insulin | - | −57.6 −41.4 −41.2 −57.6 −68.9 −84.0 | [13] |
128, 152 232, 212 292, 158 779, 329 | Unfunctionalized -NH2 -PO3 -CH3 | Vancomycin | 2 9 | −26.33, −23.03 +32.67, +22.97 −34.1, −26.27 −17.83, −13.57 | [14] |
82.6 84.3 86.6 | - | Antigen ovalbumin | 7.8 10.3 12.9 | approx. from −27 to −34 | [15] |
150 300 | Unfunctionalized C8 C18 | Ibuprofen, Erythromycin | 3.6 5.7 | - | [16] |
- | - | Celecoxib Cinnarizine Paracetamol | 2.5 7 17 21 24 | - | [17] |
60 100 300 | Unfunctionalized -NH2 -SH | Rifampicin Vancomycin Isoniazid | - | - | [18] |
278 289 250 | Unfunctionalized -NH2 -COOH | - | 2.5 2.3 2.4 | −21 +30 −30 | [19] |
600 6000 11,000 35,000 | - | Amlodipine Apixaban Deferasirox Ezetimibe Ibuprofen Lacosamide Valsartan | 2.5 12.2 6.3 4.7 | - | [20] |
30,000–40,000 | - | Ibuprofen | - | - | [21] |
7500 3500 | - | Artemether | 2.9 16 | - | [22] |
15 60 200 | - | - | - | −28.1 −30.6 −31.8 | [23] |
API | Drug Loading Content (%) | Duration | Released Drug (%) | References |
---|---|---|---|---|
Ibuprofen | 30.01 | 45 min | 100 | [21] |
22.71 | ||||
28.45 | ||||
22.82 | ||||
Itraconazole | 32.8 | 5 min | 80 | [58] |
21.9 | ||||
25.1 | ||||
21 | ||||
Doxorubicin | 6.4 | 24 h | 60 | [11] |
6 | ||||
Quercetin | 50 | 7 h | 100 | [61] |
Ziyuglycoside I | 49.6 | 72 h | 82.51 | [62] |
Oseltamivir | 85.5 | 24 h | 82.86 | |
Rifampicin | 31 | 24 h | 68.5 | [18] |
Vancomycin | 33 | |||
Isoniazid | 85 | |||
Carboplatin | 26.7 | 6 h | 60 | [63] |
Indomethacin | 10.57 | 1.5 h | 100 | [64] |
8.94 | ||||
Doxorubicin | 15.13 | 168 h | 87.5 | [65] |
14.76 | ||||
14.48 | ||||
14.33 | ||||
Cefazolin | 11.2 | 5 days | 100 | [66] |
Dexamethasone | 35 | 122 h | 100 | [38] |
Paclitaxel | 16.86 | 48 h | 65 | [67] |
16.87 | ||||
16.13 | ||||
16.72 | ||||
Ibuprofen | 35.96 | 48 h | 61 | [42] |
Doxorubicin | 39.31 | 72 h | 85.3 | [68] |
Methylene blue | 27.37 | 72 h | 51.5 | |
Doxorubicin | 7.61 | 48 h | 82.78 | [69] |
Glucose Oxidase | 12.65 | |||
Gemcitabine | 1.49 | 168 h | 77 | [70] |
Aripiprazole | 29.7 | 1 h | 69 | [71] |
37.1 | ||||
34.7 |
Particle Size (nm) | Surface Functionalization | Specific Target Receptor | Drug | Treatment of | Pore Size (nm) | Zeta Potential (mV) | Refs. |
---|---|---|---|---|---|---|---|
100–200 | pH-responsive linker (Transferrin) | - | Doxorubicin | Cancer | - | −22.8 (bare) −35.4 | [11] |
171 | Magnetic surface (Fe3O4) | - | Sulforaphane | Myocardial infarction | 2 | - | [33] |
88 | palmitoyl (MSN-PALM) PEG- Phospholipids (MSN-PALM-LC) | - | Dexamethasone | - | 2.4 | −2.1 −6.3 | [38] |
100–250 | - | Tumor necrosis factor receptor 1 (TNFR1) | Dexamethasone Rhodamine B | Acute lung injury (ALI) | 2.5 | −32 (bare) +7 +8 | [72] |
- | Magnetic particles (Fe3O4) coated with oleic acid | - | Hydrocortisone Safranin O | Inflammatory bowel disease | 2.66 | - | [75] |
300–320 | Folic acid | Folate receptors | Carboplatin | Lung cancer | 2 | −23.2 (bare) +36.3 (amine) | [63] |
100–200 | Folic acid | Folate receptors | Methotrexate | Cancer | 3 | −15.53 | [76] |
90–111 | Folic acid (FA), hyaluronic acid (HA) | Folate and CD44 receptors | Doxorubicin | Breast cancer | −27.6 (bare) +2.09 (HA) | [65] | |
170–190 | pH-responsive Carbon dots Folic acid | Folate receptors | Gemcitabine | Cancer | 3.1 | −16.2 | [70] |
125–200 | pH- sensitive (polydopamine PEG) | - | Doxorubicin | Breast cancer | 2.89 | −19.43 (bare) −2.11 | [77] |
170–460 | redox-responsive non-porous silica shell PEG coated | - | Paclitaxel | Breast cancer | 2.42 | −24.5 (bare) −10.4 | [67] |
210–245 | pH/redox dual-responsive Bovine serum albumin Folic acid | Folate receptors | Doxorubicin | Breast cancer | - | approx. −28 | [68] |
190 | Glycyrrhetinic acid | Glycyrrhetinc acid receptors | Chitosan oligosaccharide | acute drug-induced liver injury | 6.15 | −40.42 (bare) +7.013 | [78] |
66 | pH-Responsive (polydopamine) Magnetic (Fe3O4) | - | Doxorubicin Glucose Oxidase | Pancreatic Cancer | 5 | −26.23 (bare) −14.24 | [69] |
180 | Lipid coated | - | Docetaxel Tamoxifen | Breast cancer | 2.27 | - | [79] |
Particle Size (nm) | Pore Size (nm) | Zeta Potential (mV) | Route of Administration | Release Rate | Drug | Treatment of | Refs. |
---|---|---|---|---|---|---|---|
128, 152 232, 212 292, 158 779, 329 | 2 9 | −26.33, −23.03 +32.67, +22.97 −34.1, −26.27 −17.83, −13.57 | Oral | controlled Prolonged | Vancomycin | systemic MRSA infections | [14] |
60 100 300 | - | - | Pulmonary | - | Rifampicin Vancomycin Isoniazid | - | [18] |
20 60 90 | - | - | Oral Tablet | - | Telmisartan | Hypertension | [24] |
1000–4000 | 7.34 | - | Oral pellets | Prolonged | Doxycycline | bacterial infection | [40] |
150 | 2.4 | −12.3 to −29.0 | Oral | Sustained | Ibuprofen | Musculoskeletal pain | [42] |
100–250 | 2.5 | −32 (bare) +7 +8 | Pulmonary | Targeted Controlled | Dexamethasone Rhodamine B | Acute lung injury (ALI) | [72] |
430–470 | 3.3–4.1 | −27 (bare) −18 | Dermal Transdermal Oleogel | Sustained | Quercetin | benign, malignant skin formations | [61] |
- | - | - | Dermal Gel | Sustained | Rosmarinus officinalis extract | acute wound healing | [83] |
760 | 10.9 | - | Pulmonary | Immediate (OST) Sustained (ZgI) | Ziyuglycoside I Oseltamivir | viral pneumonia | [62] |
- | 4 | - | Oral Chewing gum Solid dispersion | - | Repaglinide | diabetes mellitus | [84] |
200,000–500,000 | - | - | Oral pellets | Prolonged | Cefazolin | Osteomyelitis | [66] |
220 | 6.1 | approx. from −6 to −55 pH-dependent manner | Oral pellets | Prolonged | Metformin | type II diabetes | [85] |
500–1500 | 6.5 | - | Oral pellets | Immediate | Carbamazepine | Epilepsy | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkő, F.; Kristó, K.; Sovány, T. Mesoporous Silica Nanoparticles as Drug Delivery Systems. Pharmaceuticals 2025, 18, 1392. https://doi.org/10.3390/ph18091392
Benkő F, Kristó K, Sovány T. Mesoporous Silica Nanoparticles as Drug Delivery Systems. Pharmaceuticals. 2025; 18(9):1392. https://doi.org/10.3390/ph18091392
Chicago/Turabian StyleBenkő, Flórián, Katalin Kristó, and Tamás Sovány. 2025. "Mesoporous Silica Nanoparticles as Drug Delivery Systems" Pharmaceuticals 18, no. 9: 1392. https://doi.org/10.3390/ph18091392
APA StyleBenkő, F., Kristó, K., & Sovány, T. (2025). Mesoporous Silica Nanoparticles as Drug Delivery Systems. Pharmaceuticals, 18(9), 1392. https://doi.org/10.3390/ph18091392