Baicalin–Myricetin-Coated Selenium Nanoparticles Mitigate Pathology in an Aβ1-42 Mice Model of Alzheimer’s Disease
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of BM/Se@BSA NPs
2.1.1. UV/Vis Spectrophotometer
2.1.2. Intermolecular Interaction
2.1.3. Particle Size Distribution Using Zeta Potential and Dynamic Light Scattering
2.1.4. Morphological Characterization of BM/Se@BSA Using Transmission Electron Microscopy
2.1.5. X-Ray Diffraction (XRD) Analysis of BM/Se@BSA
2.1.6. Encapsulation Efficiency (EE, %) and Loading Capacity (LC, %) of BM in BM/Se@BSA
2.2. Cell Viability Assay of Nanoparticles in RAW 264.7 Cells and PC12 Cell Line
2.3. Effect of BM, Se@BSA and BM/Se@BSA on Behavioral Condition in Treated Aβ1-42 Mice
2.3.1. Effect on Space Perceptive Ability
2.3.2. Nanoparticles Enhanced Cognitive Abilities of AD Mice, in Open Field Test
2.3.3. Effect on Object Recognition Ability
2.4. Alterations of the Morphologies of Amyloid Aβ1-42
2.5. Effect of BM/Se@BSA on Microglia Activation in the Cerebral Cortex
2.6. Effects of BM/Se@BSA on IL-β, IL-6, TNF-α, and Il-10 Expressions
3. Materials and Methods
3.1. Selenium Nanoparticle Synthesis
3.2. Conjugation of BM with /Se@BSA
3.3. Characterization of SeNPs and BM/Se@BSA Nanoparticles
3.3.1. UV–Vis Spectrophotometer
3.3.2. Fourier Transform Infrared (FTIR) Spectroscopy
3.3.3. Fourier Transform Infrared Spectroscopy
3.3.4. Transmission Electron Microscope (TEM)
3.3.5. Dynamic Light Scattering Spectroscopy
3.3.6. Energy Dispersive X-Ray Study
3.3.7. Encapsulation Efficiency (EE, %) and Loading Capacity (LC, %) of BM in Se@BSA Nanoparticles
3.4. Cytotoxicity of BM/Se@BSA
3.5. Experimental Animals and Protocol
- Group I: normal
- Group II: Aβ1-42 peptide
- Group III: Aβ1-42 peptide + SeNPs (30 mg/kg)
- Group IV: Aβ1-42 peptide + BM/Se@BSA (30 mg/kg)
- Group V: Aβ1-42 peptide + Celebrex (10 mg)
3.6. Behavioral Studies
3.6.1. T-Maze Test
3.6.2. Novel Objection Recognition (NOR) Test
3.6.3. Exploratory Behavior in Open-Field Test
3.7. Atomic Force Microscopy (AFM) Assay
3.8. Brain Processing
3.9. Immunohistochemistry
3.10. Enzyme-Linked Immunosorbent Assay (ELISA)
3.11. Statistical Analysis
4. Conclusions, Limitations, and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Hayek, Y.H.; Wiley, R.E.; Khoury, C.P.; Daya, R.P.; Ballard, C.; Evans, A.R.; Karran, M.; Molinuevo, J.L.; Norton, M.; Atri, A. Tip of the iceberg: Assessing the global socioeconomic costs of Alzheimer’s Disease and related dementias and strategic implications for Stakeholders. J. Alzheimers Dis. 2019, 70, 323–341. [Google Scholar] [CrossRef]
- Dumurgier, J.; Sabia, S. Epidemiology of Alzheimer’s disease: Latest trends. Rev. Prat. 2020, 70, 149–151. [Google Scholar]
- Garre-Olmo, J. Epidemiology of Alzheimer’s disease and other dementias. Rev. Neurol. 2018, 66, 377–386. [Google Scholar]
- Forray, A.I.; Gavrilaș, L.; Craciun, A.E.; Borzan, C.M. The Global Burden of Disease: A Focus on Type II Diabetes. In Handbook of Public Health Nutrition; Preedy, V.R., Patel, V.B., Eds.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Adler, N.E.; Berkowitz, S.A.; Chin, M.H.; Gary-Webb, T.L.; Navas-Acien, A.; Thornton, P.L.; Haire-Joshu, D. Social Determinants of Health and Diabetes. Diabetes Care 2021, 44, 258–279. [Google Scholar] [CrossRef]
- Rostagno, A.A. Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 24, 107. [Google Scholar] [CrossRef]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent advancement in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef]
- Graff-Radford, J.; Yong, K.X.X.; Apostolova, L.G.; Bouwman, F.H.; Carrillo, M.; Dickerson, B.C.; Rabinovici, G.D.; Schott, J.M.; Jones, D.T.; Murray, M.E. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021, 20, 222–234. [Google Scholar] [CrossRef]
- Albert, M.S.; Dekosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C. The diagnosis ofmild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Hyman, B.T.; Phelps, C.H.; Beach, T.G. National Institute on Aging—Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Busche, M.A.; Hyman, B.T. Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hong, F.; Yang, S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related Therapeutic Directions. Molecules 2022, 27, 1210. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Ghanem, A.W.; AbuMadi, S.; Thaher, D.; Jaghama, W.; Karaman, D.; Karaman, R. Recent Advances in Therapeutics for the Treatment of Alzheimer’s Disease. Molecules 2024, 29, 5131. [Google Scholar] [CrossRef]
- Moreta, M.P.G.; Burgos-Alonso, N.; Torrecilla, M.; Marco-Contelles, J.; Bruzos-Cidón, C. Efficacy of acetylcholinesterase inhibitors on cognitive function in alzheimer’s disease. Biomedicines 2021, 9, 1689. [Google Scholar] [CrossRef]
- Rolinski, M.; Fox, C.; Maidment, I.; McShane, R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst. Rev. 2012, 3, CD006504. [Google Scholar] [CrossRef]
- Matsunaga, S.; Kishi, T.; Iwata, N. Memantine monotherapy for Alzheimer’s disease: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0123289. [Google Scholar]
- Wu, W.; Ji, Y.; Wang, Z.; Wu, Z.; Li1, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Med. Res. 2023, 28, 544. [Google Scholar] [CrossRef]
- Lee, D.; Slomkowski, M.; Hefting, N.; Chen, D.; Larsen, K.G.; Kohegyi, E.; Hobart, M.; Cummings, J.L.; Grossberg, G.T. Brexpiprazole for the Treatment of Agitation in Alzheimer Dementia: A Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1307–1316. [Google Scholar] [CrossRef]
- Minocha, T.; Birla, H.; Obaid, A.A.; Rai, V.; Sushma, P.; Shivamallu, C.; Moustafa, M.; Al-Shehri, M.; Al-Emam, A.; Tikhonova, M.A. Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease. Cell Longev. 2022, 2022, 6038996. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022, 13, 1006434. [Google Scholar] [CrossRef]
- Bleibel, M.; Cheikh, A.; Sadier, N.S.; Abou-Abbas, L. The effect of music therapy on cognitive functions in patients with Alzheimer’s disease: A systematic review of randomized controlled trials. Alzheimers Res Ther. 2023, 15, 65. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Gao, P.; Tu, Y.; Zhao, M.; Li, J.; Zhang, S.; Liang, H. Baicalin attenuates alzheimer-like pathological changes and memory deficits induced by amyloid beta1- 42 protein. Metab. Brain Dis. 2015, 30, 537–544. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, S.; Yu, H.; Duan, S.; Zhao, J. Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer’s disease model rats. Brain Res. 2018, 1678, 187–194. [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, S.; Pereir, H. In Vitro screening for acetylcholinesterase Inhibition and antioxidant activity of Quercus suber cork and cork back extracts. Evid.-Based Complement. Altern. Med. 2020, 2020, 3825629. [Google Scholar] [CrossRef]
- Malyugina, S.; Skalickova, S.; Skladanka, J.; Slama, P.; Horky, P. Biogenic Selenium Nanoparticles in Animal Nutrition: A Review. Agriculture 2021, 11, 1244. [Google Scholar] [CrossRef]
- Kang, D.; Lee, J.; Wu, C.; Guo, X.; Lee, B.J.; Chun, J.-S.; Kim, J.-H. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp. Mol. Med. 2020, 52, 1198–1208. [Google Scholar] [CrossRef]
- Cheng, H.; Huo, D.; Zhu, C.; Shen, S.; Wang, W.; Li, H.; Zhu, Z.; Xia, Y. Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials 2018, 178, 517–526. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; Jeyabharathi, S.; Sundar, K.; Muthukumaran, A. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif. Cells Nanomed. Biotechnol. 2014, 44, 471. [Google Scholar] [CrossRef]
- Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11, 2101. [Google Scholar] [CrossRef]
- Loeschner, K.; Hadrup, N.; Hansen, M.; Pereira, S.A.; Gammelgaard, B.; Møller, L.H.; Mortensen, A.; Lam, H.R.; Larsen, E.H. Absorption, distribution, metabolism and excretion of selenium oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics 2014, 6, 330–337. [Google Scholar] [CrossRef]
- Rufino, A.T.; Ramalho, A.; Sousa, A.; de Oliveira, J.M.P.F.; Freitas, P.; Gómez, M.A.G.; Piñeiro-Redondo, Y.; Rivas, J.; Carvalho, F. Protective role of flavonoids against intestinal pro-inflammatory effects of silver nanoparticles. Molecules 2021, 26, 6610. [Google Scholar] [CrossRef]
- Sachin, K.M.; Singh, M. Hydrophobics of CnTAB in an aqueous DMSO–BSA nanoemulsion for the monodispersion of flavonoids. RSC Adv. 2019, 9, 15805–158331. [Google Scholar] [CrossRef]
- Ma, R.; Pan, H.; Shen, T.; Li, P.; Chen, Y.; Li, Z.; Di, D.; Wang, S. Interaction of Flavonoids from Woodwardia unigemmata with Bovine Serum Albumin (BSA): Application of Spectroscopic Techniques and Molecular Modeling Methods. Molecules 2017, 22, 1317. [Google Scholar] [CrossRef]
- Jie, S.; Fu, A.; Wang, C.; Rajabi, S. A comprehensive review on the impact of polyphenol supplementation and exercise on depression and brain function parameters. Behav Brain Funct. 2025, 21, 10. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wójcik, E. Anti-Inflammatory, antioxidant, and neuroprotective effects of Polyphenols—Polyphenols as an element of diet therapy in depressive disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar]
- Cheatham, C.L.; Nieman, D.C.; Neilson, A.P.; Lila, M.A. Enhancing the cognitive effects of flavonoids with physical activity: Is there a case for the gut microbiome. Front. Neurosci. 2022, 16, 833202. [Google Scholar] [CrossRef]
- Li, N.; Je, Y.J.; Yang, M.; Jiang, X.H.; Ma, J.H. Pharmacokinetics of baicalin-phospholipid complex in rat plasma and brain tissues after intranasal and intravenous administration. Pharmazie 2011, 66, 374–377. [Google Scholar]
- Asgari, Z.; Iranzadeh, S.; Roghani, M. Myricetin alleviates learning and memory deficits in trimethyltin Alzheimer’s phenotype via attenuating hippocampal endoplasmic reticulum stress and regulating inflammation and oxidative stress. Brain Res. Bull. 2025, 227, 111382. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.J.; Kwon, S.; Jung, E.; Shim, I.; Lee, H.; Hahm, D.H. Acupuncture stimulation alleviates corticosterone-induced impairments of spatial memory and cholinergic neurons in rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 670536. [Google Scholar] [CrossRef]
- Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem. 2003, 87, 172–181. [Google Scholar] [CrossRef]
- Ramezani, M.; Darbandi, N.; Khodagholi, F.; Hashemi, A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural. Regen. Res. 2016, 11, 1976. [Google Scholar]
- Hirohata, M.; Hasegawa, K.; Tsutsumi-Yasuhara, S.; Ohhashi, Y.; Ookoshi, T.; Ono, K.; Yamada, M.; Naiki, H. Is the anti-amyloidogenic effect exerted against Alzheimer’s β- amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure? Biochemistry 2007, 46, 1888–1899. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Obregon, D.; Ehrhart, J.; Deng, J.; Tian, J.; Hou, H.; Giunta, B.; Sawmiller, D.; Tan, J. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res. 2013, 91, 1239–1246. [Google Scholar] [CrossRef]
- Paulke, A.; Schubert-Zsilavecz, M.; Wurglics, M. Determination of St. John’s wort flavonoid metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J. Chromatogr. B 2006, 832, 109–113. [Google Scholar] [CrossRef]
- Sowndhararajan, S.; Deepa, P.; Kim, M.; Park, S.J.; Kim, M. Neuroprotective and cognitive enhancement potentials of baicalin: A Review. Brain Sci. 2018, 8, 104. [Google Scholar] [CrossRef]
- Boriero, D.; Carcereri de Prati, A.; Antonini, L.; Ragno, R.; Sohji, K.; Mariotto, S.; Butturini, E. The anti-STAT1 polyphenol myricetin inhibits M1 microglia activation and counteracts neuronal death. FEBS J. 2021, 288, 72021. [Google Scholar] [CrossRef]
- Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A. A randomized, double-blind, phase 2b proof-of- concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer’s Res. Ther. 2022, 14, 70. [Google Scholar] [CrossRef]
- Matuszewska, A.; Jaszek, M.; Stefaniuk, D.; Ciszewski, T.; Matuszewski, Ł. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS ONE. 2018, 13, e0197044. [Google Scholar] [CrossRef]
- Martin, B.K.; Szekely, C.; Brandt, J.; Piantadosi, S.; Breitner, J.C.; Craft, S.; Evans, D.; Green, R. Cognitive function over time in the Alzheimer’s Disease Anti- inflammatory Prevention Trial (ADAPT): Results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. 2008, 65, 896–905. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Li, B.; Wang, M.; Chen, S.; Li, M.; Zeng, J.; Wu, S.; Tu, Y.; Li, Y.; Zhang, R.; Huang, F.; et al. Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. BioMed Res. Int. 2022, 2022, 3263446. [Google Scholar] [CrossRef]
- Li, J.; Xiang, H.; Lu, J. Pharmacological Actions of Myricetin in the Nervous System: A Comprehensive Review of Preclinical Studies in Animals and Cell Models. Front. Pharmacol. 2021, 12, 797298. [Google Scholar] [CrossRef] [PubMed]
- Silvers, J.M.; Harrod, S.B.; Mactutus, C.F.; Booze, R.M. Automation of the novel object recognition task for use in adolescent rats. J. Neurosci Methods 2007, 66, 99–103. [Google Scholar] [CrossRef]
- Sonawane, S.K.; Ahmad, A.; Chinnathambi, C.S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS Omega 2019, 4, 12833–12840. [Google Scholar] [CrossRef]
- Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990, 9, 515–540. [Google Scholar] [CrossRef] [PubMed]
- Gamble, M. The Hematoxylins and Eosin, in Theory and Practice of Histological Techniques, 6th ed.; Bancroft, J.D., Gamble, M., Eds.; Churchill Livingstone: Edinburgh, UK, 2008; pp. 121–134. [Google Scholar]
- Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Ghasemi, Z.; Roghani, M. Sallyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur. J. Pharmacol. 2017, 794, 69–76. [Google Scholar] [CrossRef] [PubMed]
Limits | Methodology | References |
---|---|---|
Tau Aggregation | Tau Aggregation Inhibition Assay ThS Fluorescence Assay | [54] [54] |
Antioxidant properties | Estimation of Oxidative Stress Markers (MDA, GSH, and NRF2) | [55] |
Histopathology in Brain tissues | Hematoxylins and Eosin assay | [56] |
Measurement of brain activity of AChE | 5,5-dithiobis-2-nitrobenzoic Acid and Turns Yellow Assay | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Gutiérrez, R.M.; Téllez Gómez, J.; Mota Flores, J.M.; Corea Téllez, M.; Muñiz Ramírez, A. Baicalin–Myricetin-Coated Selenium Nanoparticles Mitigate Pathology in an Aβ1-42 Mice Model of Alzheimer’s Disease. Pharmaceuticals 2025, 18, 1391. https://doi.org/10.3390/ph18091391
Pérez Gutiérrez RM, Téllez Gómez J, Mota Flores JM, Corea Téllez M, Muñiz Ramírez A. Baicalin–Myricetin-Coated Selenium Nanoparticles Mitigate Pathology in an Aβ1-42 Mice Model of Alzheimer’s Disease. Pharmaceuticals. 2025; 18(9):1391. https://doi.org/10.3390/ph18091391
Chicago/Turabian StylePérez Gutiérrez, Rosa Martha, Julio Téllez Gómez, José María Mota Flores, Mónica Corea Téllez, and Alethia Muñiz Ramírez. 2025. "Baicalin–Myricetin-Coated Selenium Nanoparticles Mitigate Pathology in an Aβ1-42 Mice Model of Alzheimer’s Disease" Pharmaceuticals 18, no. 9: 1391. https://doi.org/10.3390/ph18091391
APA StylePérez Gutiérrez, R. M., Téllez Gómez, J., Mota Flores, J. M., Corea Téllez, M., & Muñiz Ramírez, A. (2025). Baicalin–Myricetin-Coated Selenium Nanoparticles Mitigate Pathology in an Aβ1-42 Mice Model of Alzheimer’s Disease. Pharmaceuticals, 18(9), 1391. https://doi.org/10.3390/ph18091391