Study on the Physical Properties and Application of a Novel Pharmaceutical Excipient Made from Starch and Cellulose Co-Processing
Abstract
1. Introduction
2. Results and Discussion
2.1. Microscopic Morphology
2.2. FTIR and XRD Analysis
2.3. Particle Size
2.4. Powder Flow Properties
2.5. Swelling and Water-Soluble Substances
2.6. Tensile Strength
2.7. Dilution Capacity
2.8. Biological Properties
3. Materials and Methods
3.1. Instruments and Materials
3.2. Preparation of Pregelatinized Starch-Microcrystalline Cellulose Co-Processed Materials
3.3. Microscopic Morphology—Scanning Electron Microscopy (SEM)
3.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.5. X-Ray Diffraction (XRD)
3.6. Particle Size and Particle Size Distribution
3.7. Powder Density and Carr’s Index
3.8. Swelling Degree
3.9. Substances Soluble in Water
3.10. Determination of Tensile Strength
3.11. Dilution Capacity Determination
3.12. Biological Experiments
3.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ubhe, T.S.; Gedam, P. A brief overview on tablet and it’s types. J. Adv. Pharmacol. 2020, 1, 21–31. [Google Scholar]
- Armstrong, N.A. Tablet manufacture by direct compression. Encycl. Pharm. Technol. 2007, 6, 3673–3683. [Google Scholar]
- Dai, S.; Xu, B.; Zhang, Z.; Yu, J.; Wang, F.; Shi, X.; Qiao, Y. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design. Int. J. Pharm. 2019, 572, 118742. [Google Scholar] [CrossRef]
- Mangal, S.; Meiser, F.; Morton, D.; Larson, I. Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties. Curr. Pharm. Des. 2015, 21, 5877–5889. [Google Scholar] [CrossRef]
- Bhavana, P.; Reddy, M.S. A Review on Co-Processed Excipients Used in Direct Compression of Tablet Dosage Form. GSC Biol. Pharm. Sci. 2023, 23, 212–219. [Google Scholar] [CrossRef]
- Rojas, J.; Kumar, V. Comparative Evaluation of Silicified Microcrystalline Cellulose II as a Direct Compression Vehicle. Int. J. Pharm. 2011, 416, 120–128. [Google Scholar] [CrossRef]
- Dominik, M.; Vraníková, B.; Svačinová, P.; Elbl, J.; Pavloková, S.; Prudilová, B.B.; Franc, A. Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®. Pharmaceutics 2021, 13, 1486. [Google Scholar]
- Vamadevan, V.; Bertoft, E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll. 2020, 103, 105663. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, X. Pre-gelatinized modification of starch. In Physical Modifications of Starch; Springer: Berlin/Heidelberg, Germany, 2023; pp. 91–102. [Google Scholar]
- Ma, H.; Liu, M.; Liang, Y.; Zheng, X.; Sun, L.; Dang, W.; Li, J.; Li, L.; Liu, C. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain Oil Sci. Technol. 2022, 5, 87–97. [Google Scholar] [CrossRef]
- Kaul, S.; Kaur, K.; Kaur, J.; Mehta, N.; Kennedy, J.F. Properties of Potato Starch as Influenced by Microwave, Ultrasonication, Alcoholic-Alkali and Pre-Gelatinization Treatments. Int. J. Biol. Macromol. 2022, 226, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Sabirin; Darussalam, A.; Kusarpoko, B.; Safrudin, A.; Mawarni, G.K.; Suparman; Musa. The use of partially pregelatinized starch from cassava as disintegrant. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024. [Google Scholar]
- Elgaied-Lamouchi, D.; Descamps, N.; Lefevre, P.; Rambur, I.; Pierquin, J.-Y.; Siepmann, F.; Siepmann, J.; Muschert, S. Starch-based controlled release matrix tablets: Impact of the type of starch. J. Drug Deliv. Sci. Technol. 2021, 61, 102152. [Google Scholar] [CrossRef]
- Peerapattana, J.; Laovachirasuwan, P.; Sodata, P.; Srijesdaruk, V.; Otsuka, M. Evaluation of using spray-dried glutinous rice starch as a direct compression hydrophilic matrix tablet. Bio-Med. Mater. Eng. 2020, 31, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Tanaka, C.; Yuasa, H.; Sakamoto, T. Utility of microcrystalline cellulose for improving drug content uniformity in tablet manufacturing using direct powder compression. AAPS PharmSciTech 2019, 20, 151. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Xiu, H.; Zhao, X.; Ma, F.; Liu, L.; Yi, C.; Zhang, M.; Kozliak, E.; Ji, Y. Correlation Between the Powder Characteristics and Particle Morphology of Microcrystalline Cellulose (MCC) and Its Tablet Application Performance. Powder Technol. 2022, 399, 117194. [Google Scholar] [CrossRef]
- Limwong, V.; Sutanthavibul, N.; Kulvanich, P. Spherical composite particles of rice starch and microcrystalline cellulose: A new coprocessed excipient for direct compression. AAPS PharmSciTech 2004, 5, e30. [Google Scholar] [CrossRef]
- Wang, B.; Gao, W.; Kang, X.; Dong, Y.; Liu, P.; Yan, S.; Yu, B.; Guo, L.; Cui, B.; El-Aty, A.A. Structural changes in corn starch granules treated at different temperatures. Food Hydrocoll. 2021, 118, 106760. [Google Scholar] [CrossRef]
- Shen, H.; Yu, J.; Bai, J.; Liu, Y.; Ge, X.; Li, W.; Zheng, J. A new pre-gelatinized starch preparing by spray drying and electron beam irradiation of oat starch. Food Chem. 2023, 398, 133938. [Google Scholar] [CrossRef]
- Parmar, P.K.; Rao, S.G.; Bansal, A.K. Co-processing of small molecule excipients with polymers to improve functionality. Expert Opin. Drug Deliv. 2021, 18, 907–928. [Google Scholar] [CrossRef]
- Kian, L.K.; Jawaid, M.; Ariffin, H.; Alothman, O.Y. Isolation and characterization of microcrystalline cellulose from roselle fibers. Int. J. Biol. Macromol. 2017, 103, 931–940. [Google Scholar] [CrossRef]
- Wu, X.; Luan, M.; Yan, X.; Zhang, J.; Wu, X.; Zhang, Q. The impact of different concentrations of hyaluronic acid on the pasting and microstructural properties of corn starch. Int. J. Biol. Macromol. 2024, 254 Pt 1, 127555. [Google Scholar] [CrossRef]
- Li, D.; Yu, X.; Wang, P.; Cui, B.; Xu, E.; Tao, Y.; Han, Y. Effect of Pre-Gelatinization on A-Amylase-catalyzed Hydrolysis of Corn Starch under Moderate Electric Field. Int. J. Biol. Macromol. 2022, 221, 1335–1344. [Google Scholar] [CrossRef]
- Trisopon, K.; Kittipongpatana, N.; Kittipongpatana, O.S. A Spray-Dried, Co-Processed Rice Starch as a Multifunctional Excipient for Direct Compression. Pharmaceutics 2020, 12, 518. [Google Scholar] [CrossRef]
- Hämäläinen, N. The Effect of Granule Size on the Mini-Tablet Weight Variability and Content Uniformity. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2021. [Google Scholar]
- Hao, J.-q.; Yang, B.-x.; Sun, W.; Sun, R.-m.; Sun, H.-m.; Li, S.-m. Effects of source difference of sodium carboxymethyl starch on its properties and function. Acta Pharm. Sin. 2020, 55, 1022–1029. [Google Scholar]
- Crișan, A.G.; Iurian, S.; Porfire, A.; Rus, L.M.; Bogdan, C.; Casian, T.; Lucacel, R.C.; Turza, A.; Porav, S.; Tomuță, I. QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. Int. J. Pharm. 2022, 613, 121411. [Google Scholar] [CrossRef]
- Eraga, S.O.; Olayemi, O.J.; Obidiro, O.P.; Osemeke, O.L.; Iwuagwu, M.A. Effects of starch pre-gelatinization on the physicochemical and tableting properties of a co-processed excipient for direct compression. West. Afr. J. Pharm. 2024, 35, 118–130. [Google Scholar]
- Corrigan, J.; Li, F.; Dawson, N.; Reynolds, G.; Bellinghausen, S.; Zomer, S.; Litster, J. An interaction-based mixing model for predicting porosity and tensile strength of directly compressed ternary blends of pharmaceutical powders. Int. J. Pharm. 2024, 664, 124587. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Jiang, Y.-Z.; Tan, L. Positively-charged microcrystalline cellulose microparticles: Rapid killing effect on bacteria, trapping behavior and excellent elimination efficiency of biofilm matrix from water environment. J. Hazard. Mater. 2022, 424, 127299. [Google Scholar] [CrossRef] [PubMed]
- Chibuogwu, C.; Amadi, B.; Anyaegbunam, Z.; Emesiani, B.; Ofoefule, S. Application of starch and starch derivatives in pharmaceutical formulation. In Chemical Properties of Starch; IntechOpen: London, UK, 2019. [Google Scholar]
- Zhao, T.-q.; Yang, Y.; Wang, Y.-y.; Tao, M.-f. Effect of the capsule of Linaoxin on the expermiental hypoxia in mice. J. Bengbu Med. Univ. 2017, 42, 145–147. [Google Scholar]
- Hesseling, A.C.; Purchase, S.E.; Martinson, N.A.; Fairlie, L.; Schaaf, H.S.; Brigden, J.; Staples, S.; Gibb, D.M.; Garcia-Prats, A.; Conradie, F.; et al. Levofloxacin Preventive Treatment in Children Exposed to MDR Tuberculosis. N. Engl. J. Med. 2024, 391, 2315–2326. [Google Scholar] [CrossRef]
- Carmona, P.; Poulsen, J.; Westergren, J.; Pingel, T.N.; Röding, M.; Lambrechts, E.; De Keersmaecker, H.; Braeckmans, K.; Särkkä, A.; von Corswant, C.; et al. Controlling the structure of spin-coated multilayer ethylcellulose/hydroxypropylcellulose films for drug release. Int. J. Pharm. 2023, 644, 123350. [Google Scholar] [CrossRef]
- Ishizuka, Y.; Ueda, K.; Okada, H.; Takeda, J.; Karashima, M.; Yazawa, K.; Higashi, K.; Kawakami, K.; Ikeda, Y.; Moribe, K. Effect of Drug-Polymer Interactions through Hypromellose Acetate Succinate Substituents on the Physical Stability on Solid Dispersions Studied by Fourier-Transform Infrared and Solid-State Nuclear Magnetic Resonance. Mol. Pharm. 2019, 16, 2785–2794. [Google Scholar] [CrossRef] [PubMed]
- Deokar, G.S.; Deokar, A.M.; Kshirsagar, S.J.; Buranasompob, A.; Nirmal, N.P. Extraction, physicochemical characterization, functionality, and excipient ability of corn fiber gum-starch isolate from corn milling industry waste. Int. J. Pharm. 2023, 645, 123401. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Dai, C.; Bai, Y.; Xie, W.; Guan, T.; Sun, H.; Wang, B. Application of Multivariate Methods to Evaluate Differential Material Attributes of HPMC from Different Sources. ACS Omega 2021, 6, 28598–28610. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.; Carroll, M.; Almudahka, A.; Mann, J.; Abbott, A.; Winge, F.; Davis, A.; Hens, B.; Khadra, I.; Markl, D. Particle-based investigation of excipients stability: The effect of storage conditions on moisture content and swelling. RSC Pharm. 2025, 2, 369–386. [Google Scholar] [CrossRef]
- Commission, C.P. Chinese Pharmacopoeia (2025 Edition); China Medical Science Press: Beijing, China, 2025; Volume IV, pp. 1028–1029. [Google Scholar]
- Habib, Y.; Augsburger, L.; Reier, G.; Wheatley, T.; Shangraw, R. Dilution Potential: A New Perspective. Pharm. Dev. Technol. 1996, 1, 205–212. [Google Scholar] [CrossRef]
- Gohel, M.C.; Patel, T.M.; Parikh, R.K.; Parejiya, P.B.; Barot, B.S.; Ramkishan, A. Exploration of novel co-processed multifunctional diluent for the development of tablet dosage form. Indian. J. Pharm. Sci. 2012, 74, 381. [Google Scholar] [CrossRef]
- de Micheaux, P.L.; Drouilhet, R.; Liquet, B. The R Software: Fundamentals of Programming and Statistical Analysis; Springer Science & Business: Berlin/Heidelberg, Germany, 2014; Volume 40. [Google Scholar]
Samples | D10 (µm) | D50 (µm) | D90 (µm) | Span |
---|---|---|---|---|
PS | 30.32 ± 1.56 a | 113.90 ± 2.18 a | 196.77 ± 2.97 a | 1.46 ± 0.04 c |
PS-MCC-91 | 31.46 ± 1.56 a | 112.32 ± 2.03 a | 195.03 ± 3.04 a | 1.46 ± 0.03 c |
PS-MCC-82 | 30.74 ± 2.11 a | 109.33 ± 1.11 a | 193.30 ± 3.69 a | 1.49 ± 0.04 c |
PS-MCC-73 | 26.37 ± 0.78 b | 95.04 ± 1.37 b | 188.13 ± 3.94 b | 1.70 ± 0.02 b |
PS-MCC-55 | 18.02 ± 2.71 c | 65.49 ± 2.18 c | 168.23 ± 3.04 c | 2.30 ± 0.10 a |
Samples | Bulk Density (g/cm3) | Tapped Density (g/cm3) | Carr Index (%) |
---|---|---|---|
PS | 0.6885 ± 0.016 a | 0.8771 ± 0.010 a | 22.25 ± 1.53% c |
PS-MCC-91 | 0.6602 ± 0.006 a | 0.8838 ± 0.004 a | 25.30 ± 0.44% b |
PS-MCC-82 | 0.6209 ± 0.012 b | 0.8498 ± 0.014 b | 26.94 ± 0.62% b |
PS-MCC-73 | 0.5683 ± 0.017 c | 0.7899 ± 0.006 c | 28.06 ± 0.66% b |
PS-MCC-55 | 0.4160 ± 0.008 d | 0.6061 ± 0.026 d | 31.30 ± 1.06% a |
Sample | Water-Soluble Substances (%) | Swelling (mL) |
---|---|---|
PS | 6.48 ± 0.23 a | 53.67 ± 0.17 a |
PS-MCC-91 | 5.63 ± 0.09 b | 52.17 ± 0.17 b |
PS-MCC-82 | 3.62 ± 0.10 c | 50.83 ± 0.44 b |
PS-MCC-73 | 3.12 ± 0.05 d | 47.50 ± 1.32 c |
PS-MCC-55 | 2.14 ± 0.04 e | 41.50 ± 0.50 d |
Active Pharmaceutical Ingredients (API) | Drug Loading Capacity (%) | Tablet Hardness (N) | Formulations |
---|---|---|---|
Linaoxin | 50 | 28.66 ± 0.56 b | Linaoxin (40%, 45%, 50%), PC-MCC-73 (58%, 53%, 48%) Sodium Starch Glycolate (1%), Magnesium Stearate (1%) |
45 | 30.32 ± 0.41 b | ||
40 | 32.13 ± 0.18 a | ||
Lingzhi spore powder | 40 | 26.99 ± 0.31 b | Lingzhi spore powder (30%, 35%, 40%), PC-MCC-73 (49%, 44%, 39%), Betacyclodextrin (15%), Povidone K30 (5%), Magnesium Stearate (1%) |
35 | 31.93 ± 0.46 a | ||
30 | 33.22 ± 0.69 a |
Prescription 1 | Prescription 2 | ||
---|---|---|---|
Designation | Composition (%) | Designation | Composition (%) |
Levofloxacin | 70% | Levofloxacin | 70% |
Microcrystalline Cellulose SH-102 (MCC SH-102) | 6.30% | pregelatinized starch microcrystalline cellulose co-processed material (PS-MCC-73) | 21% |
Pregelatinized starch SH-YJ-H (PS SH-YJ-H) | 14.70% | ||
Crospovidone SH-SL | 4% | Crospovidone SH-SL | 4% |
Hydroxypropylcellulose SH-L (HPC SH-L) | 4% | HPC SH-L | 4% |
Sodium stearyl fumarate SH-AF (SSF SH-AF) | 1% | SSF SH-AF | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, Y.; Lei, H.; Fang, Y.; Wang, S.; Tang, J. Study on the Physical Properties and Application of a Novel Pharmaceutical Excipient Made from Starch and Cellulose Co-Processing. Pharmaceuticals 2025, 18, 1389. https://doi.org/10.3390/ph18091389
Bi Y, Lei H, Fang Y, Wang S, Tang J. Study on the Physical Properties and Application of a Novel Pharmaceutical Excipient Made from Starch and Cellulose Co-Processing. Pharmaceuticals. 2025; 18(9):1389. https://doi.org/10.3390/ph18091389
Chicago/Turabian StyleBi, Yong, Hanfang Lei, Ying Fang, Simeng Wang, and Jihui Tang. 2025. "Study on the Physical Properties and Application of a Novel Pharmaceutical Excipient Made from Starch and Cellulose Co-Processing" Pharmaceuticals 18, no. 9: 1389. https://doi.org/10.3390/ph18091389
APA StyleBi, Y., Lei, H., Fang, Y., Wang, S., & Tang, J. (2025). Study on the Physical Properties and Application of a Novel Pharmaceutical Excipient Made from Starch and Cellulose Co-Processing. Pharmaceuticals, 18(9), 1389. https://doi.org/10.3390/ph18091389